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Abstract. In this paper we deal with the construction of lower-dimensional manifolds from
high-dimensional data which is an important task in data mining, machine learning and statistics.
Here, we consider principal manifolds as the minimum of a regularized, non-linear empirical quanti-
zation error functional. For the discretization we use a sparse grid method in latent parameter space.
This approach avoids, to some extent, the curse of dimension of conventional grids like in the GTM
approach. The arising non-linear problem is solved by a descent method which resembles the expec-
tation minimization algorithm. We present our sparse grid principal manifold approach, discuss its
properties and report on the results of numerical experiments for one-, two- and three-dimensional
model problems.
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1. Introduction. The reconstruction of lower-dimensional manifolds from high-
dimensional data is an important task in data mining, machine learning and statistical
learning theory. It offers a powerful framework for nonparametric dimension reduction
and has many practical applications in e.g. speech and image processing, sonification,
or process monitoring. The key idea is to find the most succinct low dimensional
structure that is embedded in a higher dimensional space. With its help, algorithms
can work directly in the lower dimensional latent space of the manifold instead in
the high-dimensional data space and thus get computationally feasible. Applications
range from clustering over feature extraction to recognition tasks. Here, besides the
classical principal component analysis (PCA) [45], various non-linear local and non-
local methods have been developed in the recent decade. Popular approaches are,
among others, multidimensional scaling (MDS), Kohonen’s SOM, generative topolog-
ical mapping (GTM), local linear embedding (LLE), Isomap, Laplacian eigenmaps,
Hessian eigenmaps, local tangent space alignment (LTSA), curvilinear distance anal-
ysis (CDA), diffusion wavelets, auto-associative neural networks, Kernel PCA, non-
linear principal component analysis and regularized principal manifolds. For a survey
on these techniques and potential applications, see [21, 43] and the references cited
therein, as well as the web pages [1, 2] and the links therein.1

To this end, the lower-dimensional manifold has to be modeled properly, either
explicitly or implicitly. Here, often radial basis approaches are used where kernel
functions are attached to the data points. Then, the corresponding algorithms scale
in general cubically with the number of data points. This allows to deal with sets
with quite high-dimensional points but limits the applications to a moderate amount
of data. Alternatively, if an approximation of the manifold is explicitly represented
by some sort of parametrization, grids are employed. This way, principal curves and
surfaces can be constructed by polygonal line algorithms. Also Kohonen’s SOM and
the generative topographic mapping use a grid in latent space. Then, quite large data
sets can be dealt with. But, due to the curse of dimensionality, the dimension of the
manifold is restricted to at most three (or four) which limits the applicability of these
methods to some extent. In general, just two-dimensional grids are presently used in
practice.

1Note that such dimensionality reduction algorithms can often be formulated in terms of what
they preserve about the original data. Some, like PCA preserve variance, others, like MDS or Isomap
large distances (metric, non-metric or geodesic), others like SOM or LLE preserve nearby neighbours.
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In this paper, we propose to represent the manifold parametrically and to approx-
imate the component functions of the parametric mapping using a so-called sparse
grid instead of a conventional grid. Sparse grids are based on tensor products of one-
dimensional multiscale functions. The coefficients in the resulting multivariate series
representation of a sufficiently smooth mapping function then exhibit a specific decay
with the number of levels involved. For certain function classes, i.e. for d-dimensional
functions with dominating r-th mixed derivatives, truncation of the associated series
expansion results in sparse grid spaces which need only O(m log(m)d−1) degrees of
freedom instead of O(md) degrees of freedom for the case of uniform full grids, see [18]
and the references cited therein. Here, m denotes the number of grid points in one
coordinate direction. With h ∼ 1/m, the achieved accuracy is however only slightly
reduced from O(hr) to O(hr(log h−1)d−1) in the L2-norm if piecewise polynomials of
degree r−1 are used in the underlying one-dimensional multilevel basis. With respect
to the energy norm even the same order O(hr−1) of accuracy can be obtained for both
cases. For a general survey on the sparse grid method and its various variants and
applications, see [18].

These properties make the sparse grid technique a good candidate for manifold
reconstruction problems. To this end, a vector-valued version of the sparse grid ap-
proach is employed for the finite-dimensional approximation of the component func-
tions of the parametric mapping of a manifold. This mapping is determined as the
sparse grid solution of a non-linear minimization problem which involves an empir-
ical quantization error measuring the distance of the manifold from the given data
points and a regularization term incorporating the smoothness assumption on the
manifold. This approach is closely related to regularization networks, see [28] and
compare especially [59]. The solution of the resulting discrete non-linear problem is
computed by a descent method. It turns out that sparse grids allow to reconstruct
manifolds in a more cost effective way than the conventional full grids that are com-
monly employed in, e.g., the GTM approach. Furthermore, they open way to deal
with higher-dimensional manifolds than just two- or three-dimensional ones.

The remainder of this paper is organized as follows. In section 2 we state the
manifold reconstruction task as the minimization of a regularized empirical error
functional. In section 3 we present the discretization of the problem in a general finite
dimensional space and discuss a descent method similar to the expectation maxi-
mization algorithm (EM) as a way to locally solve the resulting nonlinear system.
Then, in section 4 we introduce sparse grids for the approximate representation of
general manifolds and use them in the discretization of the regularized empirical error
functional. It turns out that the sparse grid approach and the corresponding algo-
rithm scales favorably with respect to both the number of data points given and the
number of degrees of freedom involved in the discretization. In section 5, we present
the results of numerical experiments using our sparse grid manifold reconstruction
approach. Here, besides principal curves, we deal with principal surfaces and more
general principal manifolds. We compare the sparse grid approach to the conventional
full grid method and discuss its properties for typical model problems. Finally, we
give some conclusions in section 6.

2. The problem. Given are N data points {x1, . . . , xN} ⊂ X = R
n which

we assume to be drawn iid from an unknown underlying probability distribution
P (x), x ∈ X . We define an index set T , e.g. R

d, and consider the maps f : T → X ,
and a class F of such maps with e.g. additional properties to be fixed later on. The
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aim is now to find a map f ∈ F such that the quantization error

R(f) =

∫

X

min
t∈T

c(x, f(t)) dP (x)

is minimized in F . Here, c denotes a loss function which is typically chosen as
c(x, f(t)) = ‖x − f(t)‖2

2. Of course, this problem is unsolvable since the probabil-
ity distribution P (x) is not known. Therefore, we replace P (x) by the empirical
density

PN (x) =
1

N

N∑

i=1

δ(x − xi)

and minimize the empirical quantization error

∫

X

min
t∈T

‖x− f(t)‖2
2 dP (x) ≈ 1

N

N∑

i=1

min
t∈T

‖xi − f(t)‖2
2 =: Remp(f) (2.1)

in F .
Note that various situations with finite and infinite sets T can be described in

this framework, compare also [57]. In case of a finite T , this involves codes with
discrete quantization. For example, if T = {1}, f(1) ∈ X and F the set of constant
functions, we obtain the sample mean as result of the minimization problem. If
T = {1, . . . , k}, f : i → fi, fi ∈ X and F the set of associated functions, we obtain
the distortion error of a vector quantizer for which a local minimum can be found by
the well-known k-means algorithm.

Moreover, for infinite T interesting applications may be modelled as well: Then,
instead of discrete quantization, a mapping onto a manifold of dimensionality lower
than the input space can be considered. For example, if T = R, f : t → f0 + tf1,
f0, f1 ∈ X , ‖f1‖ = 1 and F the space of all such line segments, we obtain from the
minimization of (2.1) over F the line parallel to the direction of the largest variance
in P which just resembles the well-known principal component analysis (PCA), see
[45] for further details. An example is given in Figure 2.1 (left).

Figure 2.1. Linear and nonlinear principal component analysis. First component of linear
PCA (left) and of nonlinear PCA, i.e. principal curve (right).

Furthermore, for T = [0, 1]d, f : t → f(t) = (f(1)(t), . . . , f(n)(t)), f ∈ F where F
is the class of n-tuples of continuous R

d-valued functions, we obtain with d = 1 the
so-called principal curve problem [42] which is a nonlinear generalization of PCA. An
example is given in Figure 2.1 (right). A further discussion and results on various
versions of principal curves can be found in [19, 22, 46, 47, 55, 62]. Finally, in the
case d > 1, general principal surfaces and principal manifolds [10, 41, 59, 57] are
modelled which are an instance of nonlinear principal component analysis, compare
also [25, 27, 50] for related approaches. An example is shown in Figure 2.2.
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Figure 2.2. Nonlinear principal manifold, d = 2, n = 3.

Note that we encounter here a nonlinear problem due to the general choice of f .
Note furthermore that the minimization of the associated functional (2.1) on F is now
an ill-posed problem unless F is a compact set. To nevertheless obtain a well-posed
(nonlinear) problem one usually employs some sort of regularization. To this end, we
consider

Rreg(f) = Remp + λS(f) (2.2)

where Remp again denotes the empirical error functional (2.1), S(f) is a smoothing
functional which enforces a certain regularity on f and λ ∈ R

+ denotes the regular-
ization parameter which balances the two terms.

Depending on the problem under consideration, there are many ways to choose
the smoothing term S(f) in practical applications. First of all, S should be a convex,
non-negative functional of f . For example, for the construction of principal curves,
i.e. for the case d = 1, S can be geometrically chosen and interpreted as a length
constraint2 on the curve f :

S(f) = ‖Gf‖2
L2(T,X) = (Gf,Gf) =

n∑

i=1

(Gfi, Gfi) with e.g. G = ∇ = ∂t. (2.3)

Note that also constraints on higher derivatives (curvature) may be employed [55].
For principal surfaces and manifolds, i.e. for the case d > 1, analogous additional
constraints on area and volume, curvature and higher order derivatives make sense
and are subject of actual research. To this end, we make use of a (squared) weighted
generalized3 version of the variation of Hardy and Krause. For a definition of the
variation of Hardy and Krause and further details on it, see e.g. [53]. We set

S(f) =

n∑

i=1

V
(U,V,W )
HK (f(i)) (2.4)

2To be precise, ‖∂tf‖2
L2(T,X)

=
R

ḟ2
(1)

+ ḟ2
(2)

+ . . .+ ḟ2
(n)
dt is an integral over the squared speed

of the curve f . Then, since a re-parametrization of f to constant speed does not change Rreg but
minimizes the regularization term, ‖∂tf‖2

L2(T,X)
equals the squared length of the curve at the optimal

solution [59].
3Note that the classical variation in the sense of Hardy and Krause integrates absolute values,

uses just V (u) = {ū} and only employs 0 in its construction. It also does not employ weights wuv.
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with4

V
(U,V,W )
HK (f(i)) =

∑

u∈U

v∈V

wu,v






∫

[0ū,1ū]

(

∂v f(i)(t;0
u)

)2

dtū +

∫

[0ū,1ū]

(

∂v f(i)(t;1
u)

)2

dtū






(2.5)
where, for a vector t ∈ R

d, non-empty5 u and u ⊂ {1, . . . , d}, the expression tu

denotes the components u of t, i.e. all components {1, . . . , d} \ u are eliminated.
Here, 0 = (0, . . . , 0)T , 1 = (1, . . . , 1)T ∈ R

d, denote the two diagonal corners of T ,
respectively. Furthermore, f(i)(·;bu) means that f(i) is only evaluated at points t
where tj = bj for j ∈ u, and

∂uf(i)(t) :=
∂|u|

∏

j∈u ∂tj
f(i)(x)

is the partial derivative of f(i) taken once with respect to each tj for j ∈ u. Finally,
ū := {1, . . . , d} \u. Here, the sets U , V and the weights W are given. U determines a
set of fixed directions (which define slices 0u and 1u with u ⊂ U). The set V defines
derivative directions.

Formula (2.5) gets clearer if we consider two examples: For U = {{}}, V = {v :
|v| = 1}, W = {wu,v = 1} we just obtain (2.3). For d = 2, if we set U =

{
{}

}
∪

{
u ⊂

{1, . . . , d}, |u| = 1
}

=
{
{}, {1}, {2}

}
, V (u) =

{
v ⊂ {1, . . . , d} \ u, |v| = 1

}
and

W = {wu,v = 1}, we obtain

1∫

0

1∫

0

(∂t1f(i)(t1, t2))
2 dt1 dt2

︸ ︷︷ ︸

u={}, v={1}

+

1∫

0

1∫

0

(∂t2f(i)(t1, t2))
2 dt1 dt2

︸ ︷︷ ︸

u={}, v={2}

+

1∫

0

(∂t1f(i)(t1, 0))2 dt1

︸ ︷︷ ︸

u={2}, v={1}

+

1∫

0

(∂t1f(i)(t1, 1))2 dt1

︸ ︷︷ ︸

u={2}, v={1}

+

1∫

0

(∂t2f(i)(0, t2))
2 dt2

︸ ︷︷ ︸

u={1}, v={2}

+

1∫

0

(∂t2f(i)(1, t2))
2 dt2

︸ ︷︷ ︸

u={1}, v={2}

. (2.6)

In the general case, we may choose S as a prior assumption on the function class
of the reconstructed manifold. To be more precise, we assume f to live in a certain
function space H = {f ∈ L2(T,X) : ‖f‖H ≤ c < ∞} with associated norm ‖.‖H.
This space might be a subspace of F which is a reproducing kernel Hilbert space
[4, 63]. Then, S(f) just corresponds to ‖f‖2

H. In other words, we minimize the
empirical quantization error (2.1) under the side constraint ‖f‖H = c. The Lagrange
approach then results (up to a constant term) in (2.2) with λ being the Lagrange
multiplier. In the simple case of Sobolev spaces and related function spaces, we have
S(f) = ‖Gf‖2

L2(T,X) with G a specifically chosen differential operator which expresses
the additional regularity of f . In the general case of a reproducing kernel Hilbert space
with associated kernel k(·, ·), the corresponding G is no longer a differential operator
but merely a pseudo-differential operator. For example, for the widely used kernel

4Note that terms with u ∩ v 6= ∅ vanish.
5Note that for u = {} both integral terms would be equal. Then we retain just one of them.
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k(x, y) = exp(−‖x− y‖2
2/(2σ

2)), we have by means of Fourier analysis

‖Gf‖2
L2(T,X) =

∫
∑

j

σ2j

j!2j
(Djf(x))2dx

with D2j = ∆j and D2j+1 = ∇∆j . Note that the relation between a representation
with (2.3) and a representation with the associated reproducing kernel is often given
via some sort of representer theorem, see e.g. [48, 58]. There is a wide range of possible
kernels, a further discussion on kernels and their relation to smoothing operators can
be found in [57] and the references cited therein.

3. Discretization and solution. Now we choose a countable basis {φj(t)}, j =
1, . . . ,∞, φj : t→ R of F , and expand f as infinite series in this basis, i.e.

f(t) =

∞∑

j=1

αj · φj(t)

with coefficient vector αj = (αj,1, . . . , αj,n)T ∈ R
n. Note that the multiplication

αj · φj(t) has to be understood component-wise, i.e.

αj · φj(t) = (αj,1φj(t), . . . , αj,nφj(t))
T and f(i)(t) =

∞∑

j=1

αj,iφj(t), i = 1, . . . , n.

We thus employ the same basis function set for each component of f . We can then
reformulate our problem (2.2) as follows: Find the minimum of

argmin
t1,...,tN ∈T

α1,...,α∞

1

N

N∑

i=1

‖xi − f(ti; ~α∞)‖2
2 + λ‖Gf(·; ~α∞)‖2

L2(T,X). (3.1)

The infinite parameter vector ~α∞ = (αT
1 , . . . , α

T
∞)T collects here all the component

vectors αj , j = 1, . . . ,∞. It enters the notation of the function f in a parametric way
to indicate its dependence on the coefficients αj , j = 1, . . . ,∞. Note that the interior
minimization mint∈T ‖xi − f(t)‖2

2 from (2.1) is now translated into N independent
minimizations (one for each xi) and can thus be written in front of the sum.

So far, (3.1) is a non-linear minimization problem with an infinite dimensional
search space (in ~α∞) which is not computationally feasible yet. To allow for a
numerical solution we have to resort to some sort of discretization. To this end,
we restrict ourselves to a finite dimensional subset FM ⊂ F with finite basis, i.e.
span{φ1, . . . , φM} = FM . This leads to a finite-dimensional approximation fM of f ,
i.e.

f(t) ≈ fM (t; ~αM ) =

M∑

j=1

αj · φj(t) (3.2)

with associated coefficient vector ~αM = (αT
1 , . . . , α

T
M )T ∈ (Rn)M and to the following

finite-dimensional problem: Find the minimum of

argmin
t1,...,tN ∈T

α1,...,αM

1

N

N∑

i=1

‖xi − fM (ti; ~αM )‖2
2 + λ‖GfM (·; ~αM )‖2

L2(T,X). (3.3)
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Here, to obtain fast convergence of fM towards f the choice of a proper sequence of
bases for the sequence of function spaces {FM}M and a certain smoothness of f is
important. A solution of the discrete nonlinear minimization problem (3.3) can then
be gained by a conventional descent method which is closely related to the well-known
expectation maximization algorithm [24]:

1. Choose some initial values, for example as the result of a PCA of the given
data {xi}.

2. Projection step: Keep {αj, j = 1, . . . ,M} fixed and minimize with respect to
{ti, i = 1, . . . , N}:

argmin
ti

‖xi − fM (ti; ~αM )‖2
2, i = 1, . . . , N. (3.4)

To this end, N different, decoupled non-linear minimization problems of size d
must be solved.6

3. Adaption step: Keep {ti, i = 1, . . . , N} fixed and minimize with respect to
{αj , j = 1, . . . ,M} :

argmin
α1,...,αM

1

N

N∑

i=1

‖xi − fM (ti; ~αM )‖2
2 + λ‖Gf(·; ~αM )‖2

L2(T,X). (3.5)

Note that this is just a vector-valued regression problem with the data (ti, xi),
i = 1, . . . , N . Now, since we assumed that G acts componentwise on f ,
differentiation with respect to αj , j = 1, . . . ,M results in n linear systems of
equations

(BTB +Nλ · C)~α
(k)
M = BT~x(k), k = 1, . . . n, (3.6)

where B denotes the N × M matrix with entries Bij = φj(ti) and C de-
notes the M × M matrix with entries Cij =

∫
Gφi(t)Gφj(t)dt. Here, the

data vector ~x(k) consists of the k-th coordinates of the data points xi, i.e.

~x(k) = (x1,k, . . . , xN,k)T as does the unknown vector ~α
(k)
M ∈ R

M , i.e. ~α
(k)
M =

(α1,k, . . . , αM,k)T , k = 1, . . . , n. We thus have to solve the same system with
n different right hand sides.

The steps 2 and 3 are iterated until convergence.
So far, we were not specific about the choice of the smoothing operator S nor on

the choice of the basis functions φj . In the case d = 1, i.e. for principal curves, a
natural choice for the regularization operator is the constraint of a fixed curve length.
This translates to S(f) = ‖∇f‖2

L2(T,X) =
∑n

i=1 ‖ḟ(i)‖2
L2

, see [47]. Furthermore, f
is approximated by a polygonal line fM which is spanned by M points. In the case
d = 2 and d = 3, a natural extension would be a smoothing operator S like (2.4)
which relates to the area and volume of the manifold, respectively.

Furthermore, a 2- or 3-dimensional mesh of points may be used to span the
approximand fM . But in case of a general d, the degrees of freedom involved in a
uniform mesh behave as M = O(md) where m denotes the number of points in one
coordinate direction of the mesh. Here, the curse of dimension shows up, i.e. the

6 In principle, this can be achieved by any standard nonlinear minimization method which allows
for jumps in the derivative, like e.g. the downhill simplex approach or the Max-Powell method [52].
In the following, we employ the piecewise linear structure of our basis functions and use a domain
decomposition approach to identify smooth parts of ‖xi − fM (t; ~αM )‖2

2 where we then use a (local)
Newton type method to find the minimum with a few iterations.
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number of degrees of freedom scale exponentially with the dimension d. Thus, for
d > 4 such an approach gets impossible due to the huge number of degrees of freedom
involved.

Another approach is to rely on the theory of reproducing kernel Hilbert spaces
(RKHS). To this end, the function to be found is assumed to belong to a RKHS H.
Then, the smoothing operator is chosen as S(f) = ‖f‖2

H where ‖.‖H denotes the
norm associated to the RKHS H, for details see [4, 63]. Here, an associated kernel
function k(x, x′) uniquely determines the RKHS H. In the kernel approach, M points
qj ∈ T, j = 1, . . . ,M are chosen and to each point the kernel function is attached
accordingly. We thus have φj(t) = k(qj , t) and the associated finite expansion reads

fM (t) =

M∑

j=1

αj · k(qj , t). (3.7)

A solution of the corresponding discrete nonlinear minimization problem (3.3) can be
gained by the above-mentioned descent algorithm. The resulting linear system in the
projection step 2 again reads as (3.6), where now the matrix B contains the values
Bij = k(qj , ti) and the matrix C is just Cij = k(qj , qi).

The overall costs are then as follows: The projection step involves O(NM) oper-
ations7 which is due to the globality of the kernel. The setup of the matrices in the
adaption step needs O(M2N) operations, and the solution of the linear system (3.6)
involves O(M3) operations since the matrix is usually full due to the globality of the
kernel k. Altogether we see that this approach scales linear in the number of data but
it scales cubic in the number of parameters αj . Thus only a moderate number M of
parameters can be employed in such a model. Note furthermore that a good choice of
the points qj is not straightforward and, moreover, associated to this question, neither
the convergence of fM to f nor its convergence rate is completely clear.

Interestingly, the so-called generative topographic mapping (GTM) method can
be reinterpreted as a variant of the kernel based discretization involving a grid based
approach. It was introduced in [10] as a probabilistic reformulation of the self-
organizing map (SOM) and got further developed in [11] and [19, 20]. The GTM is a
probability density model which describes the distribution of data in high-dimensional
space in terms of a smaller number of latent variables using a uniform grid of points
qj in latent space T . Here, the mesh points are equipped with non-linear basis func-
tions φj(t) which might be Gaussians or sigmoidal functions and fM is again spanned
as linear combination (3.2) so that each point t in latent space T is mapped to a
corresponding point x in the n-dimensional data space X . We may again write fM (t)
as (3.7). Now, if we denote the node locations in T by tj′ , j

′ = 1, . . . ,M , then (3.7)
defines a corresponding set of vectors

zj′ = fM (tj′). (3.8)

Each of these vectors forms the center of an isotropic Gaussian distribution in data
space, whose inverse variance we denote by β, such that

p(x|j′) =

(
β

2π

)n/2

exp(−β
2
‖zj′ − x‖2

2). (3.9)

7Here we assume a constant number of iteration steps to achieve a local minimum.
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The probability density function for the GTM model is then obtained by summing
over all of the Gaussian components, i.e.

p(x|~αM , β) =

M∑

j′=1

P (j′)p(x|j′) =

M∑

j′=1

1

M

(
β

2π

)n/2

exp(−β
2
‖zj′ − x‖2

2)

where we have taken the prior probabilities P (j′) of each of the components j′ to be
constant and equal to 1/M . Altogether, the GTM model is just a constraint mixture
of Gaussians with adaptive parameters αj and β where the Gaussian distribution
(3.9) represents a noise model.

Furthermore, for further regularization, a prior over the class of mappings f is
needed. In [10] a Gaussian prior over the parameters αj was employed, i.e. P (~αM ) =
∏M

j

(
β
2π

)n/2

exp(−β
2 ‖αj‖2

2). This approach depends strongly on the number of basis

functions φj(t) = k(qj , t) and easily results in overfitting. To overcome this problem
a Gaussian process prior

P (~αM ) = (2π)−n/2|k|1/2 exp



−
∑

j,j′

αj · αj′k(qj , qj′ )





was introduced in [11]. Then, since a parametric probability density model can be
fitted to a data set {x1, . . . , xN} by maximum likelihood, we obtain the log likelihood
function

L(~αM , β) =

N∑

i=1

ln p(xi|~αM , β) + lnP (~αM ) + C

after taking the log posterior probability and exploiting the i.i.d. assumption on the
data set. With (3.7) and (3.8), maximization with respect to ~αM just results in the
discretization (3.3) of (2.2) with the choice S(f) = ‖f‖2

H(k) where ‖.‖H(k) denotes

the norm associated to the RKHS H(k) associated to the kernel k(·, ·) and k is the
Gaussian. Here, the parameter β/2 can be absorbed into the regularization parameter
λ and the forefactors (β/(2π))n/2 and (2π)−n/2|k|1/2 enter the constantC which plays
no role after maximization of L(~αM , β) anyway. For further details, see [11] and the
discussion in [57], sections 17.4.1. and 17.4.2.

The latent space of the GTM is generally chosen to have a low dimensionality
(typically d=2). Although it is straightforward to formulate the GTM for latent
spaces of any dimension, the model becomes computationally intractable if d gets
large. The reason is the curse of dimensionality, i.e. the number of nodes in the grid
grows exponentially with d (as does the number of basis functions). Note that the
same problem arises with the SOM. While there are attempts to use random sampling
in latent space or to apply semi-linear models to face that problem [11], such methods
do not really cure it.

4. Sparse grids. To avoid the above-mentioned problems with the curse of
dimension on one hand and with the cubic scaling in the number of parameters on
the other hand, we suggest to employ the so-called sparse grid approach for the
discretization of f .
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4.1. Construction and properties. Sparse grid spaces were originally devel-
oped for the efficient discretization of d-dimensional elliptic problems of second order.
They are based on tensor products of one-dimensional multiscale functions. The
coefficients of a sufficiently smooth solution in the resulting multivariate series repre-
sentation then exhibit a specific decay with the number of levels involved. For certain
function classes, i.e. for functions with dominating r-th mixed derivatives, trunca-
tion of the associated series expansion results in sparse grid spaces which need only
O(m log(m)d−1) degrees of freedom instead of O(md) degrees of freedom for the case
of uniform full grids, see [18] and the references cited therein. Here, m denotes the
number of grid points in one coordinate direction. With, h ∼ 1/m, the achieved
accuracy, however, is only slightly reduced from O(hr) to O(hr(log h−1)d−1) in the
L2-norm if piecewise polynomials of degree r−1 are used in the basic one-dimensional
multilevel basis. With respect to the energy norm even the same order of accuracy can
be obtained for both cases. Furthermore there are so-called energy-norm based sparse
grids which only need O(m) degrees of freedom but result in O(hr−1) accuracy with
respect to the energy norm. This approach completely eliminates the dependence of
the dimension d in the complexities at least for the m-asymptotics, the order constants
however still depend exponentially on d. The sparse grid method has successfully been
applied to problems from quantum mechanics [30], to stochastic differential equations
[56], to high-dimensional integration problems from physics and finance [12, 32, 54]
and to the solution of moderately higher-dimensional partial differential equations,
mainly of elliptic type [6, 7, 16]. For a survey, see [18].

These properties make the sparse grid technique a good candidate for manifold
reconstruction problems. To this end, a vector-valued version of the sparse grid ap-
proach is employed for the finite-dimensional approximation of f in (3.2), where each
coordinate function is represented in the same sparse grid basis. In this subsection,
we first present the construction principle of sparse grids and their properties for the
case of scalar functions for reasons of simplicity, i.e. for the case n = 1. We will carry
the sparse grid approach over to vector-valued functions and manifolds with n > 1 in
the following subsection.

First, we restrict ourselves to the case of piecewise d-linear functions in the sparse
grid construction. We proceed as follows: In a piecewise linear setting, the simplest
choice of a 1 D basis function is the standard hat function φ(x),

φ(x) :=

{
1 − |x|, if x ∈ [−1, 1] ,

0, else.
(4.1)

This function can be used to generate an arbitrary φlj ,ij
(xj) with associated support

[xlj ,ij
− hlj , xlj ,ij

+ hlj ] = [(ij − 1)hlj , (ij + 1)hlj ] by dilation and translation, that is

φlj ,ij
(xj) := φ

(
xj − ij · hlj

hlj

)

. (4.2)

The resulting 1D basis functions are the input of the tensor product construction
which provides a suitable piecewise d-linear basis function in each grid point xl,i :=
i · hl, 0 ≤ i ≤ 2l, see Figure 4.1:

φl,i(x) :=

d∏

j=1

φlj ,ij
(xj) . (4.3)

Here, l = (l1, . . . , ld) ∈ N
d denotes a multi-index which indicates the multivariate

level of refinement, i = (i1, . . . , id) ∈ N
d denotes a multi-index which indicates the

10



multivariate position, 0 := (0, . . . , 0), and the inequalities in 0 ≤ i ≤ 2l are to be
understood componentwise. We thus consider the family of d-dimensional standard
rectangular grids

{
Tl, l ∈ N

d
}

(4.4)

on T = [0, 1]d with multivariate mesh size hl := (hl1 , . . . , hld) := 2−l. That is,
the grid Tl is equidistant with respect to each individual coordinate direction, but, in
general, may have different mesh sizes in the different coordinate directions. The grid
points xl,i of grid Tl are just the points

xl,i := (xl1,i1 , . . . , xld,id
) := i · hl , 0 ≤ i ≤ 2l . (4.5)

W

2

1

X

x

y 21

W
W

Figure 4.1. Tensor product approach for piecewise bilinear basis functions.

Clearly, the functions φl,i (with obvious modification at the boundary of T ) span
the space Vl of piecewise d-linear functions on T on grid Tl, i.e.

Vl := span
{
φl,i : 0 ≤ i ≤ 2l

}
, (4.6)

and form a basis of Vl.
Additionally, we introduce the hierarchical increments Wl,

Wl := span

{

φl,i :
1 ≤ ij ≤ 2lj − 1, ij odd, if lj > 0,
0 ≤ ij ≤ 1, if lj = 0,

1 ≤ j ≤ d

}

, (4.7)

for which the relation

Vl =
⊕

t≤l

Wt (4.8)

can be seen easily. Note that the supports of all basis functions φl,i spanning Wl are
mutually disjoint for l > 0. Thus, with the index set

Il :=

{

i ∈ N
d :

1 ≤ ij ≤ 2lj − 1, ij odd, if lj > 0,
0 ≤ ij ≤ 1, if lj = 0,

1 ≤ j ≤ d

}

, (4.9)

we get another basis of Vl, the hierarchical basis

{φk,i : i ∈ Ik,k ≤ l} (4.10)

which generalizes the well-known 1 D basis shown in Figure 4.2 to the d-dimensional
case by means of a tensor product approach.

11



Figure 4.2. Piecewise linear hierarchical basis, l = 4.

With these hierarchical difference spaces Wl, we can define

V (d) :=

∞∑

l1=0

. . .

∞∑

ld=0

W(l1,...,ld) =
⊕

l∈Nd
0

Wl (4.11)

with its natural hierarchical basis
{
φl,i : i ∈ Il, l ∈ N

d
0

}
. (4.12)

Now it is easy to see that any function f ∈ V (d) can be uniquely split by

f(x) =
∑

l

fl(x), fl(x) =
∑

i∈Il

vl,i · φl,i(x) ∈ Wl , (4.13)

where the vl,i ∈ R are the coefficient values of the hierarchical product basis repre-
sentation of f .

The main observation is now as follows: The coefficients vl,i with respect to the
hierarchical basis possess a specific decay with the level l if f possesses bounded second
mixed derivatives, i.e. if

f : T → R : Dαu ∈ Lq(T ), |α|∞ ≤ r,

with r = 2, where

Dαf :=
∂|α|1f

∂xα1
1 · · · ∂xαd

d

. (4.14)

Here, α ∈ N
d
0 with the norms |α|1 :=

∑d
j=1 αj and |α|∞ := max1≤j≤d αj .

A straightforward calculation using partial integration twice and the product
structure, see [18] for details, gives the integral representation8

vl,i =

∫

Ω

ψl,i(x) ·D2f(x) dx (4.15)

8For coefficients associated to the boundary, i.e. for lj = 0, partial integration is not applied for
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for any coefficient value vl,i of the hierarchical representation (4.13) of f with l > 0.

Here ψlj ,ij
(xj) := −2−(lj+1) · φlj ,ij

(xj), and furthermore ψl,i(x) :=
∏d

j=1 ψlj ,ij
(xj).

We then can derive the estimate

|vl,i| ≤ 2−d · 2−2·|l|1 · |u|2,∞ = O(2−2·|l|1), l > 0, (4.16)

with respect to the semi-norm |f |α,∞ := ‖Dαf‖∞ . In other words, if f belongs to
the space of functions with second bounded mixed derivatives, then its hierarchical
coefficients possess a decay like 2−2·|l|1. For the detailed proof see e.g. [18].

Depending on the norm of the error we are interested in, this justifies various
truncation schemes of the series expansion of f . For a given k ∈ N, the regular sparse
grid space is defined as

V
(1)
k :=

⊕

q(l) ≤ k

Wl (4.17)

with

q(l) := 1 +
∑

m=1,..,d

lm 6=0

(lm − 1) and q(0) = 0,

see also [18, 65]. The associated truncated series, i.e. the interpolant of f in V
(1)
k

reads

f
(1)
k :=

∑

q(l) ≤ k

∑

i

vl,iφl,i.

Note that this is the finite element analogon of the well-known hyperbolic cross or
Korobov spaces which are based on the Fourier series expansion instead of the hier-
archical Faber basis. An example of a regular sparse grid is given for the two- and
three-dimensional case in Figure 4.3. The basic concept can be traced back to [5, 60],
see also [23, 26, 34].

The dimension of the space V
(1)
k fulfills

|V (1)
k | = O(h−1

k · | log2 hk|d−1) (4.18)

with hk = 2−k, whereas for the interpolation error of a function f in the sparse grid

space V
(1)
k there holds

||f − f
(1)
k ||Lp

= O(h2
k · kd−1), (4.19)

the respective j-th coordinate directions but the respective coordinate xj is just set to zero or one,
depending on the value of ij . This leads to the general formula

vl,i =

2

6

6

4

Z

. . .

Z d
Y

j=1
lj 6=0

ψlj ,ij
(xj)

0

B

B

@

d
Y

j=1
lj 6=0

∂2

∂xj

1

C

C

A

f(x) d

0

B

B

@

d
Y

j=1
lj 6=0

xj

1

C

C

A

3

7

7

5

x|(l=0):=xl,i|(l=0)

where x|(l=0) denotes the tuple of coordinates from x with lj = 0. In this case, estimate (4.15)

involves |f |α,∞ with αj = 2 if lj > 0 and αj = 0 if lj = 0. Furthermore, the term 2−d gets replaced

by 2−|sgn(l)|1 but the term 2−2|l|1 stays the same.
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Figure 4.3. Regular sparse grids: Two-dimensional example (left) and three-dimensional ex-
ample (right).

for the Lp-norms, and

||f − f
(1)
k ||E = O(hk), (4.20)

for the energy (semi-)norm ‖f‖E = (∇f,∇f)1/2 induced by the Laplacian, see for
example [18] for detailed proofs. Note that the conventional full grid space

V
(∞)
k :=

⊕

|l|∞≤k

Wl

results in an error in the Lp-norm of the order O(h2
k) and an error in the energy-

norm of the order O(hk) (albeit for functions with just bounded conventional second

derivative). It however possesses a dimension |V (∞)
k | = O(h−d

k ) and thus exhibits
the curse of dimensionality with respect to hk. In comparison to that we now see

a crucial improvement for V
(1)
k : The number of degrees of freedom is significantly

reduced, whereas the accuracy deteriorates only slightly for the Lp-norm and stays
of the same order for the energy-norm. The curse of dimensionality is now present
in the log(hk)-term only. Note that this result is optimal for function with second
bounded mixed derivative with respect to the Lp-norms.

This basic concept of sparse grids has been generalized in various ways: First,
there are special sparse grids which are optimized with respect to the energy semi-
norm [17]. These energy-based sparse grids are further sparsified and thus possess a
cost complexity of order O(h−1

k ) and result in an accuracy of order O(hk). Thus, the
exponential dependence of the logarithmic terms on d is completely removed (but is
still present in the constants). A thorough discussion of the constants can be found
in [35]. A generalization to sparse grids which are optimal with respect to other
Sobolev norms can be found in [37]. Then, there are generalized sparse grids [32],
dimension-adaptive sparse grids [33] and locally adaptive sparse grids [36], all with
favorable properties and specific applications. Note finally that also basis functions
of higher order, or prewavelets and wavelets can be used straightforwardly in the
sparse grid construction process instead of the common hat function φ from (4.1).
For further details, see [18].

4.2. Sparse grids and full grids for manifolds. The sparse grid construction
for the approximation of scalar functions can now easily carried over to the case of
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a vector of functions, i.e. to functions f : T → X , f = (f(1)(t), . . . f(n)(t)) which
represent manifolds in a parametric way. To this end, each coordinate function f(i) of
f is represented in the same multivariate hierarchical basis and is approximated on
the same sparse grid. Then all properties of sparse grids for scalar functions carry over
to the vector valued case in a straightforward way. The representation of a manifold f

in the sparse grid space (V
(1)
k )n reads

f
(1)
k (t) :=

∑

q(l)≤ k

∑

i

vl,iφl,i(t) (4.21)

now with just vector-valued hierarchical coefficients vl,i ∈ R
n. Analogously, the rep-

resentation of a manifold f in the full grid space (V
(∞)
k )n reads

f
(∞)
k (t) :=

∑

|l|∞≤ k

∑

i

vl,iφl,i(t). (4.22)

Now if we plug these expansions into the minimization problem (3.1) we obtain
the associated discrete minimization problems (3.3). In the gradient descent algorithm
we obtain then corresponding minimization problems (3.4) in the projection step and
linear systems (3.5) in the adaption step. The switch in notation from index j, value

αj and number M of (3.2) to the multi-index (l, i), the value vl,i and numbers |V (1)
k |

and |V (∞)
k | in (4.21) and (4.22) is obvious: All we need is an enumeration of the

multi-indices (l, i) involved in the respective sums, i.e. a unique mapping (l, i) → j.
We leave this to the reader and refrain here from explicitly giving (3.3), (3.4) and
(3.5) in (l, i)-notation for the ease of presentation.

For the regularization term we employ S(f) = ‖Gf‖2
L2(T,X) with G = ∇ or more

general vector-valued differential operators.9 Then, the matrix C in (3.6) resembles
the discrete Laplacian or the associated corresponding discrete differential operators.
Alternatively, we may use the squared generalized variation of Hardy and Krause

S(f) =
∑d

i=1 V
(U,V,W )
HK (f(i)). Depending on the specific choice of U and V , this

relates to a fixed (squared) length of the boundary curves, a fixed area of the surface
of the boundary sides, a fixed volume, etc. of the manifold.

The overall costs for the sparse grid approach are then as follows: The number of
degrees of freedom is M = O(2kkd−1). The projection step involves in a naive imple-
mentation O(NM) operations whereas a more sophisticated approach using specific
updates needs O(Nkd−1) operations with d-dependent order constant. For the adap-
tion step we now do not assemble the matrices but merely program the action of the
matrix-vector multiplication which is needed in an iterative solver like the precondi-
tioned CG method. The matrix-vector multiplication10 then costs O(M + Nkd−1)
operations. The cost for the solution of the linear systems involves the number of
iterations needed to reach a prescribed accuracy which depends on the condition

9 Note that for an appropriate wavelet basis we also can make use of norm-equivalences of the
type ‖f‖2

Hs ≈
P

l
22s|l|∞

P

i
f2
l,i
‖φl,i‖

2
L2

to replace a Sobolev-type norm based on a differential

operator of degree s by a diagonally weighted sum of wavelet coefficients. Then, the matrix C in
(3.6) resembles just a diagonal matrix with the weights 22s|l|∞‖φl,i‖

2
L2

. This gives the possibility to
implement more involved Sobolev-type regularization terms in an easy way.

10The implementation via the matrix-vector multiplication avoids the assembly of the matrix.
Therefore we have a storage complexity of only O(N + M) which allows to deal with much larger
problems than for the kernel approach where the associated full matrix (global kernel) is usually
assembled explicitly.
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number of the system matrix. In the best case, a multigrid or multilevel method may
be envisioned here, for which the number of iterations is independent of M . Then,
assuming a constant number of EM iterations, the overall solution costs behave like
O(M + Nkd−1). Here, we presently employ a multilevel preconditioned conjugate
gradient method which is based on prewavelets, see [29, 39]. Alternative multigrid-
like solvers may be designed along the lines of [38, 40]. Altogether we see that the
sparse grid approach scales linear in the amount M of data and, up to logarithmic
factors, also linear in the number of grid points employed. This has to be compared to
the kernel-based approach which scales cubic in N due to the globality of the kernel.
Furthermore, the number of degrees of freedom is now M = O(2kkd−1) for level k and
thus depends exponentially on d only with respect to the logarithmic term k (albeit
the constants in the order notation still may scale exponentially with d).

The costs for the full grid approach are as follows: The number of degrees of
freedom is now M = O(2kd). The projection step in its update version involves
now O(N) operations, the adaption step involves in the matrix-vector multiplication
O(M +N) operations and, in the best case of a multigrid method, the overall solution
costs behave like O(M +N).

Altogether, we see that the sparse grid approach is with M = O(2kkd−1) sub-
stantially more cost effective and thus allows to deal with problems involving large
set of data points and dimensions larger than three. This is in contrast to the full
grid approach where M = O(2kd) and in contrast to the kernel-based method with
global kernel where the cost scales cubic in its M .11

5. Numerical experiments. We now consider the results of numerical experi-
ments.

5.1. Principal curves, d = 1. First, we consider the behavior of our approach
for the most simple case of curves f , i.e. f : T → X , with T = [0, 1]1 and X = R

n,
where n = 2. Here, a sparse grid is not invoked yet, only a simple one-dimensional
grid on T is used. We employ the data of Figure 5.1 (left). If we use a conventional
principal component analysis, we obtain a quite bad reconstruction for such a data
set. The first and the second eigenvector of the PCA of the data is shown in Figure
5.1 (middle) and (right), respectively. We clearly see that such data lead to bad
linear reconstructions with an error proportional to the respective diameter of the
data. Here, the first eigenvector is the optimal solution with respect to the empirical
quantization error (2.1), but a projection onto it destroys the previously existing data
separation. A projection onto the second eigenvector maintains the separation, but
its empirical quantization error is substantially larger.

Now, we consider the results obtained with our grid-based manifold reconstruc-
tion approach. To this end, we start the EM algorithm with the 2nd eigenvector of
the PCA. Figure 5.2 shows the results obtained for successively finer levels of dis-
cretization, i.e. mesh widths.

Note that the result of the EM algorithm depends sensitively on the respective
starting value. If we start the procedure with the first eigenvector a substantially
worse solution results. This is depicted in Figure 5.3. Here, the result (top) with
the first eigenvector as starting value together with the latent variables, i.e. the data
points projected onto T (bottom) is shown on the left side, whereas the result with
the second eigenvector as starting value is shown on the right side. We clearly see

11If the kernel functions k(qj , t) are chosen data centered, i.e. qj = xj , then M = N here.
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Figure 5.1. Data points (left), data points and first eigenvector, rescaled x-axis (middle), data
points and second eigenvector, rescaled x-axis (right).
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Figure 5.2. Solution of EM algorithm on four successive levels of refinement, second eigenvec-
tor of the linear PCA as starting value, rescaled x-axis.

that the solution on the left side is substantially worse than the one on the right side.

We now consider another example with data points sampled from a circle with
noise, compare [3]. Again, the solution obtained by the EM algorithm is dependent
on the initial value. We start with the first eigenvector given by the PCA. Figure 5.4
(left) shows the result obtained by directly computing on level 5, Figure 5.4 (middle
and right) gives the result when successively the solution obtained on the coarser level
is used as starting value for the next finer level. We clearly see that such a nested
multilevel approach gives the better result, i.e. it tends more to the global minimum.

We finally treat a principal curve problem in three-dimensional space. To this
end, we randomly sample 160 points of the helix

f(t) =
(
sin t, cos t, 2t/(5π)

)T
, t ∈ T = [0, 5π]

with white noise of variance 0.03, i.e. the points may be off the helix. Figure 5.5 shows
the resulting curve together with the three component functions f(1)(t), f(2)(t), f(3)(t).
We see that the reconstruction was perfectly successful, the structure of the helix was
indeed learned.

We use this example to consider the approximation properties of our approach in
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Figure 5.3. Solution of EM algorithm: first eigenvector of linear PCA as starting value (left)
and second eigenvector of linear PCA (right). Associated latent variables in T -space (bottom left
and right).

Figure 5.4. Direct solution of a circle-like problem on level 4 with 1st eigenvector of PCA as
starting value (left), iterates with starting values as solution from corresponding the next coarser
levels (middle and right) .

more detail. To this end, we are interested in the convergence rate of the root mean
square error

RMSEk :=

√
√
√
√ 1

|X(fK)|

|X(fK)|
∑

i=1

d(xi, fk). (5.1)

For this, we compute the solution fK of the problem (3.3) on a uniform grid with K
levels of refinement, i.e. (2K + 1)d points xi in parameters space T , then we sample
fK randomly using 50

.
000 points which gives the point set X(fK) and compute for

each point in X(fK) the squared distance to fk as d(xi, fk) = inft∈T ‖xi − fk(t)‖2
2

involving orthogonal projection, compare the projection step in the above-mentioned
descent method. We also consider the convergence of the maximum error

maxk := max
xi∈X(fK)

√

d(xi, fk) (5.2)

which is closely related to the Hausdorff distance of two curves.
In Table 5.1 we give the results for 163

.
840 data points xi which were sampled

randomly but equally distributed, this time without noise, from the helix. We clearly
see a convergence order of two for the RMSE- and the max-error. Note that the
number of data points is here still larger than the number of grid points employed.
Note furthermore that we consider here convergence towards the reconstructed curve
on a fine level K only and not towards the sampled interpolated true helix yet.

In further experiments we observed that if the number of grid points exceeds the
number of data points then the rates deteriorate somewhat into roughly first order
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Figure 5.5. Starting situation with third eigenvector of the PCA and reconstructed helix after
32 iterations on level 9 (top) and their corresponding three component functions (bottom).

Table 5.1

Error and convergence rate for the helix problem measured against the discrete solution on
level K = 17, 163

.
840 sample points without noise, λ = 1.95e−06, S = ∇.

k n ·M RMSEk
RMSEk

RMSEk+1

√
maxk

√
maxk√

maxk+1

4 51 3.52−2 3.9 8.17−2 4.0
5 99 8.94−3 4.0 2.06−2 4.0
6 195 2.25−3 4.0 5.20−3 3.8
7 387 5.61−4 4.0 1.37−3 4.0
8 771 1.41−4 4.0 3.45−4 2.8
9 1

.
539 3.55−5 3.9 1.24−4 2.0

10 3
.
075 8.98−6 − 6.08−5 −

which either may indicate overfitting effects or may reflect the H3/2-regularity of the
solution of the adaption step problems due to the Dirac right hand sides, compare
also [31]. This can be seen in Figure 5.6.

Now we are interested in the convergence towards the true helix f . To this end we
have to successively use more sample data points, more grid points, i.e. finer levels l,
and successively smaller values of λ. To this end, the set X of points in (5.1) and (5.2)
is sampled from the true f . Figure 5.7 (left) shows the resulting RMSE versus the
degrees of freedom for varying values of λ. We clearly see that the error decays first
for a rising number of degrees of freedom but then stays constant depending on the
respective value of λ. We also see that if we use successively smaller values of λ and

successively larger numbers of degrees of freedom we obtain convergence with a rate of
the order two, compare the slope of the left lower curve in Figure 5.7 (left). In Figure
5.7 (right) we show the RMSE versus λ for varying levels k for the discretization. An
analogous behavior can be observed here.

The error is here substantially influenced by the parameter λ. Recall that the reg-
ularization term ‖∇f‖2

L2(T,X) induces a length constraint on the reconstructed curve.

This effect can be seen in Figure 5.8 in more detail. The reconstructed curve (bold)
converges towards the values sampled from the true helix (points) for rising values
of λ. Due to the imposed length constraint, the computed helix is somewhat shrinked
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Figure 5.6. Error for the helix problem measured against the discrete solution on level K = 17
versus the degrees of freedom n ·M for varying sample sizes Ni ∈ {320, 640, 1

.
280, ...}, λ = 1.95e−06,

S = ∇.
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for larger values of λ (Figure 5.8 (left)). But its diameter soon tends to approach the
true helix diameter for smaller values of λ (Figure 5.8 (middle)). Nevertheless, for
still smaller values, its length is still a bit restricted and the very first and last points
of the true helix are thus not reached (Figure 5.8 (right)).

Figure 5.8. Reconstructed curve (bold) and values sampled from the true helix (points) for
λ = 2.0 · 10−3, 5.0 · 10−4, 2.5 · 10−5.
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Note finally that in general just two EM iterations were needed to reach the
relative discretization error accuracy when starting with the solution on the next
coarser level.

5.2. Principal surfaces, d = 2, n = 3. So far, we only dealt with curves, i.e.
one-dimensional manifolds, which were approximated by simple polygons involving
just a one-dimensional grid. Now, we turn to two-dimensional manifolds in three-
dimensional space, i.e. principal surfaces, where we may employ regular sparse grids
for the three two-dimensional component functions f(1)(t1, t2), f(2)(t1, t2), f(3)(t1, t2).
This results in a substantial saving compared to the use of functions which live on a
uniform full grid.

As an example, we consider a simple half sphere which we sample randomly using
516

.
961 points (without noise). For an illustration see Figure 5.9.

Figure 5.9. Half sphere manifold (left) and sample points (right).

As regularization term we employ

S(f) =

3∑

i=1

1∫

0

1∫

0

[
∂t1f(i)(t1, t2)

]2
+

[
∂t2f(i)(t1, t2)

]2
dt1 dt2

+
1

5

1∫

0

[
∂t1f(i)(t1, 0)

]2
+

[
∂t1f(i)(t1, 1)

]2
dt1 (5.3)

+
1

5

1∫

0

[
∂t2f(i)(0, t2)

]2
+

[
∂t2f(i)(1, t2)

]2
dt2,

i.e. we use (2.4) with the sets U = {{}, {1}, {2}}, V = {{1}, {2}} and corresponding
weights wu,v. The first part expresses an area restriction for the surface while the other
four terms can be considered as a length restriction for the four boundary curves. The
weight factors 1/5 are a subjective choice which gave good results in our numerical
experiments.

In Table 5.2 we show the results for the case of uniform full grids. As regularization
parameter we employed λ = 5 · 10−4. We see a convergence order of roughly two for
the RMSEk-error and the maxk-error which somewhat declines on higher levels to a
rate of about one. Note that the amount of points used in the discretization scales
with 22k which reflects the use of a full two-dimensional grid.

In further experiments we observed that the onset of the decline of the convergence
rate is related to the the number of grid points, the number of data points and the
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Table 5.2

Error and convergence rate for the half sphere problem measured against the discrete solution
on level K = 11, 1

.
034

.
289 sample points, full uniform grid, λ = 5e−4, regularization term (5.3).

k n ·M RMSEk
RMSEk

RMSEk+1

√
maxk

√
maxk√

maxk+1

3 243 5.54−3 3.83 2.60−2 3.66
4 867 1.45−3 3.88 7.10−3 3.81
5 3

.
267 3.73−4 3.92 1.87−3 3.82

6 12
.
675 9.51−5 3.69 4.89−4 3.06

7 49
.
923 2.58−5 2.96 1.60−4 2.50

8 198
.
147 8.70−6 2.16 6.38−5 2.34

9 789
.
507 4.04−6 2.20 2.73−5 2.55

10 3
.
151

.
875 1.84−6 − 1.07−5 −

choice of λ. This can be seen in Figure 5.10. The deterioration of the convergence rate
especially for the smaller number of data points indicates typical overfitting effects.
For a proper choice of the amount of data points, of the amount of grid points and of
the regularization parameter the rate of two can however be maintained.
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Figure 5.10. Error for the half sphere problem versus the degrees of freedom n · M and
varying sample sizes Ni = {8

.
100, 32

.
041, 128

.
064, 516

.
961, 1

.
034

.
289}, full uniform grid, λ = 5e−4,

regularization term (5.3), measured against the discrete solution on the finest level K = 11.

In Table 5.3 we now give for comparison the results for the case of regular sparse
grids. We use the value λ = 1.95e−6 to compensate for the fewer points in the sparse
grid.12 We see a convergence order of roughly two for the RMSEk-error and the
maxk-error at coarser levels (maybe with an additional log-factor which it is typical
for sparse grids) which is substantially reduced on the finer levels due to overfitting.
Note that the amount M of points used in the discretization now only scales with
k · 2k which reflects the use of a sparse two-dimensional grid.

The reconstructed half spheres with their full grid and sparse grid for level k = 5
are shown in Figure 5.11.

Again, the onset of the decline of the convergence rate is related to the the number
of grid points, the number of data points and the choice of λ. This can be seen in
Figure 5.12. The deterioration of the convergence rate especially for the smaller
number of data points indicates typical overfitting effects. The rate of about two

12Note that besides the regularization due to the smoothing term S(f) in general a further regu-
larization by discretization comes into play.
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Table 5.3

Error and convergence rate for the half sphere problem measured against the discrete solution
on level K = 14, 1

.
034

.
289 sample points, sparse grid, λ = 1.95e−6, regularization term (5.3).

k n ·M RMSEk
RMSEk

RMSEk+1

√
maxk

√
maxk√

maxk+1

3 147 5.71−3 3.96 2.64−2 3.64
4 339 1.44−3 3.82 7.25−3 2.72
5 771 3.77−4 3.65 2.66−3 1.40
6 1

.
731 1.03−4 3.37 1.90−3 3.35

7 3
.
843 3.07−5 2.72 5.68−4 1.63

8 8
.
451 1.13−5 1.85 3.49−4 0.96

9 18
.
435 6.09−6 1.31 3.63−4 0.98

10 39
.
939 4.66−6 1.15 3.71−4 1.03

11 86
.
019 4.04−6 1.13 3.59−4 1.04

12 184
.
323 3.56−6 − 3.47−4 −

Figure 5.11. Reconstructed half spheres, full grid (left) and sparse grid (right), k = 5.

can however be maintained for a proper choice of the amount of data points, of the
amount of grid points and of the regularization parameter.
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Figure 5.12. Error for the half sphere problem versus the degrees of freedom n · M and
varying sample sizes Ni = {8

.
100, 32

.
041, 128

.
064, 516

.
961, 1

.
034

.
289}, sparse grid, λ = 1.95e−6,

regularization term (5.3), measured against the discrete solution on the finest level K = 14.

Altogether, the sparse grid behaves superior to the full grid due to its reduced
amount of grid points when it comes to the question of accuracy versus costs involved.
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This makes the sparse grid approach a good candidate for manifold learning problems
in moderately higher dimensions.13

5.3. A classification example. Since there is a close relationship of our ap-
proach to the GTM we also applied the sparse grid method to the oil flow data set
which is used in [10] as a benchmark problem for the GTM. Here, the problem is to
determine the fraction of oil in a multi-phase pipeline carrying a mixture of oil, water
and gas. Each data point consists of 12 measurements taken from dual-energy gamma
densitometers measuring the attenuation of gamma beams passing through the pipe.
Synthetically generated data is used which models accurately the attenuation pro-
cesses in the pipe, as well as the presence of noise (arising from photon statistics), for
details see [9]. The three phases in the pipe (oil, water and gas) can belong to one
of three different geometrical configurations, corresponding to laminar, homogeneous,
and annular flows. The data set consists of 1

.
000 points drawn with equal probability

from the three configurations.
The main goal is now data visualization and cluster detection. To this end, the

latent-variable space is chosen to be two-dimensional, and the data points are mapped
from R

12 via the reconstructed manifold into the latent space T = [0, 1]2. Each point
is then labelled according to its multi-phase configuration. From the distribution of
points one may then get information of the data’s intrinsic structure.

Figure 5.13 (left) gives the result for the linear PCA, Figure 5.13 (right) shows
the result obtained with our sparse grid EM approach using the regularization term
(5.3) with U = {{}, {1}, {2}}, V = {{1}, {2}} and weights from (5.3). Here, the red
crosses, blue circles and black squares represent stratified, annular and homogeneous
multi-phase configurations, respectively. We see that PCA fails completely, the three
classes are not visually separated at all. For our sparse grid approach however a clear
spatial separation of the data points is achieved. There, even a separation of the class
of red crosses into 3 further subclasses can be observed. Thus, the result obtained
with our sparse grid approach reveals much more of the data’s intrinsic structure than
a simple search for directions with high variance. These findings are comparable to
those obtained with the GTM approach [10] and the kernel based method from [59].
However, the costs of the computation is now substantially reduced due to the sparse
grid method.

Finally, we choose the latent-variable space to be three-dimensional, i.e. the data
points are mapped from R

12 via the reconstructed manifold into T = [0, 1]3. We used
the regularization term (2.4) with U = {} ∪ {u ⊂ {1, 2, 3} : |u| = 1} ∪ {u ⊂ {1, 2, 3} :
|u| = 2}, V = {v ⊂ {1, 2, 3} : |v| = 1} and weights wu,v with values 1 if |u| = 0, values
0.3 if |u| = 1, and values 0.1 if |u| = 2. The result is shown in Figure 5.14. Now, an
even better separation of classes is obtained: The black, red and blue points are well
separated and for the black points even three subclusters can be seen.

6. Concluding remarks. In this paper we presented a sparse grid method for
the construction of lower-dimensional principal manifolds from high-dimensional data.
This approach avoids to some extent the curse of dimension that appears with con-
ventional grids. The arising non-linear problem is solved by a descent method which
resembles the expectation minimization algorithm. We discussed the basic ideas and

13In practice, problems with up to 12 dimensions can be dealt with the regular sparse grid method.
Higher dimensional problems usually can not be handled due to the log-terms involved. Then one can
resort to energy-norm based sparse grids, generalized sparse grids or dimension-adaptive sparse grids
which may work in higher dimensions when other error measures are considered and/or additional
properties of the manifold like weighted, i.e. not equally important dimensions are present.

24



0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t1

t
2

Latent variables

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t1

t
2

Latent variables

Figure 5.13. Oil flow data: Result for the linear PCA (left) and for the sparse grid approach
(right) with k = 7, λ = 0.01, regularization term (5.3), d = 2.
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Figure 5.14. Oil flow data: Result for the linear PCA (left) and the sparse grid approach
(right) with k = 5, λ = 0.01, regularization term (2.4), d = 3.

main ingredients of the approach and demonstrated its properties for one-, two- and
three-dimensional model problems to give a proof of concept. The method can in
principle be applied to problems with manifolds with about 12 intrinsic dimensions,
provided that a better and more efficient implementation than the present prototype
one is realized. This may be done along the lines of [29]. But for higher dimensions
the logarithmic terms pose a practical obstacle here. Then, energy-norm based sparse
grids, dimension-adaptive sparse grids or fully adaptive sparse grid versions of our
approach may be envisioned.

Presently, the proper choice of the regularization term S for d > 1 is an open
question and needs further investigation. So far, we made good experiences with a
regularization term that is similar in structure to the variation of Hardy and Krause.
Its terms directly relate to geometric constraints on the manifold. But further inves-
tigations are needed here.

Up to now, the dimension of the intrinsic space, i.e. the manifold, must be cho-
sen a-priori. It would be advantageous to have a method where this dimension is
determined automatically from the given data. To this end, there exist certain tech-
niques where dimension is heuristically estimated from local or global PCAs, com-
pare [8, 15, 51] and the references cited therein. A more theoretically founded ap-
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proach relies on Whitney’s famous embedding theorem [64] and its refinement due
to Taken’s [61]. Here, Broomhead and King suggested to calculate the dimension d
of the manifold a-posteriori by first taking the embedding dimension sufficiently high

and then determining d from the numerical rank of the covariance matrix of the em-
bedded data [13]. The resulting numerical strategy can be seen as a combination
of Taken’s method of delays with the principal component analysis of the data in
some extended space. Actual methods for dimension estimation which draw from
these ideas are found in [14, 44, 49]. These techniques may be incorporated into a
dimension-adaptive version of our sparse grid method to obtain the necessary dimen-
sion of the manifold in an adaptive way, provided proper error estimators can be
developed. However, such an approach is future work.
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