
Chapter 6

Application of Principal Curves to

Hand-Written Character

Skeletonization

The main subject of this chapter is an application of an extended version of the polygonal line

algorithm to hand-written character skeletonization. Skeletonization is one of the important areas

in image processing. It is most often, although not exclusively, used for images of hand-written or

printed characters so we describe it here in this context. When we look at the image of a letter, we

see it as a collection of curves rather than a raster of pixels. Since the earliest days of computers, it

has been one of the challenges for researchers working in the area of pattern recognition to imitate

this ability of the human mind [Din55, KCRU57]. Approaching skeletonization from a practical

point of view, representing a character by a set of thin curves rather than by a raster of pixels is

useful for reducing the storage space and processing time of the character image. It was found that

this representation is particularly effective in finding relevant features of the character for optical

character recognition [Deu68, AH69].

The objective of skeletonization is to find the medial axis of a character. Ideally, the medial axis

is defined as a smooth curve (or set of curves) that follows the shape of a character equidistantly

from its contours. In case of hand-written characters, one can also define the medial axis as the

trajectory of the penstroke that created the letter. Most skeletonization algorithms approximate the

medial axis by a unit-width binary image obtained from the original character by iteratively peeling

its contour pixels until there remains no more removable pixel [Pav80, NS84, SA86]. The process

is called the thinning of the character template, and the result is the skeleton of the character. The

different thinning methods are characterized by the rules that govern the deletion of black pixels.

In this chapter we propose another approach to skeletonization. The development of the method

82

was inspired by the apparent similarity between the definition of principal curves and the medial

axis. A principal curve is a smooth curve that goes through the “middle” of a data set, whereas

the medial axis is a set of smooth curves that go equidistantly from the contours of a character.

Therefore, by representing the black pixels of a character by a two-dimensional data set, one can

use the principal curve of the data set to approximate the medial axis of the character. Other methods

using this “analogue” approach for skeletonization are described in Section 6.1. In this section we

also summarize existing applications of the HS principal curve algorithm.

Since the medial axis can be a set of connected curves rather then only one curve, in Section 6.2

we extend the polygonal line algorithm to find a principal graph of a data set. The extended algo-

rithm also contains two elements specific to the task of skeletonization, an initialization method to

capture the approximate topology of the character, and a collection of restructuring operations to

improve the structural quality of the skeleton produced by the initialization method. To avoid con-

fusion, in what follows we use the term skeleton for the unit-width binary image approximating the

medial axis, and we refer to the set of connected curves produced by the polygonal line algorithm

as the skeleton graph of the character template.

In Section 6.3 test results of the extended polygonal line algorithm are presented. In Sec-

tion 6.3.1 we apply the algorithm to isolated hand-written digits from the NIST Special Database

19 [Gro95]. The results indicate that the proposed algorithm finds a smooth medial axis of the great

majority of a wide variety of character templates, and substantially improves the pixelwise skele-

ton obtained by traditional thinning methods. In Section 6.3.2 we present results of experiments

with images of continuous handwriting. These experiments demonstrate that the skeleton graph

produced by the algorithm can be used for representing hand-written text efficiently.

6.1 Related Work

6.1.1 Applications and Extensions of the HS Algorithm

Hastie [Has84] presented several experiments on real data. In the first example, computer chip

waste is sampled and analyzed by two laboratories to estimate the gold content of the lot. It is in the

interest of the owner of the lot to know which laboratory produces on average lower gold content

estimates for a given sample. The principal curve method was used to point out that at higher levels

of gold content one of the laboratories produced higher assays than the other. The difference was

reversed at lower levels. [Has84] argues that these results could not have been obtained by using

standard regression techniques. In another example, a principal curve was used for non-linear factor

analysis on a data set of three-dimensional points representing measurements of mineral content of

core samples.

83

The first real application of principal curves was part of the Stanford Linear Collider project

[HS89]. The collider consists of a linear accelerator used to accelerate two particle beams, and two

arcs that bend these beams to bring them to collision. The particle beams are guided by roughly 475

magnets that lie on a smooth curve with a circumference of about three kilometers. Measurement

errors in the range of ±1 millimeters in placing the magnets resulted that the beam could not be

adequately focused. Engineers realized that it was not necessary to move the magnets to the ideal

curve, but rather to a curve through the existing positions that was smooth enough to allow focused

bending of the beam. The HS principal curve procedure was used to find this curve.

Banfield and Raftery [BR92] described an almost fully automatic method for identifying ice

floes and their outlines in satellite images. The core procedure of the method uses a closed principal

curve to estimate the floe outlines. Besides eliminating the estimation bias of the HS algorithm (see

Section 3.1.3), [BR92] also replaced the initialization step of the HS algorithm by a more sophis-

ticated routine that produced a rough estimate of the floe outlines. Furthermore, [BR92] extended

existing clustering methods by allowing groups of data points to be centered about principal curves

rather than points or lines.

Principal curve clustering was further extended and analyzed by Stanford and Raftery [SR00].

Here, fitting a principal curve is combined with the Classification EM algorithm [CG92] to itera-

tively refine clusters of data centered about principal curves. The number of clusters and the smooth-

ness parameters of the principal curves are chosen automatically by comparing approximate Bayes

factors [KR95] of different models. Combining the clustering algorithm with a denoising procedure

and an initialization procedure, [SR00] proposed an automatic method for extracting curvilinear

features of simulated and real data.

Chang and Ghosh [CG98b, CG98a] used principal curves for nonlinear feature extraction and

pattern classification. [CG98b] pointed out experimentally that a combination of the HS and BR

algorithms (the BR algorithm is run after the HS algorithm) reduces the estimation bias of the HS

algorithm and also decreases the variance of the BR algorithm that was demonstrated in Section 5.2.

[CG98b] and [CG98a] demonstrated on several examples that the improved algorithm can be used

effectively for feature extraction and classification.

Reinhard and Niranjan [RN98] applied principal curves to model the short time spectrum of

speech signals. First, high-dimensional data points representing diphones (pairs of consecutive

phones) are projected to a two-dimensional subspace. Each diphone is than modeled by a principal

curve. In the recognition phase, test data is compared to the principal curves representing the dif-

ferent diphones, and classified as the diphone represented by the nearest principal curve. [RN98]

demonstrated in experiments that the diphone recognition accuracy of can can be comparable to the

accuracy of the state-of-the-art hidden Markov models.

84

6.1.2 Piecewise Linear Approach to Skeletonization

[SWP98] used the HS principal curve algorithm for character skeletonization. The initial curve is

produced by a variant of the SOM algorithm where the neighborhood relationships are defined by

a minimum spanning tree of the pixels of the character template. The HS algorithm is then used to

fit the curve to the character template. In the expectation step a weighted kernel smoother is used

which, in this case, is equivalent to the update rule of the SOM algorithm. [SWP98] demonstrated

that principal curves can be successfully used for skeletonizing characters in fading or noisy texts

where traditional skeletonization techniques are either inapplicable or perform poorly.

Similar skeletonization methods were proposed by Mahmoud et al. [MAG91] and Datta and

Parui [DP97]. Similarly to [SWP98], [DP97] uses the SOM algorithm to optimize the positions of

vertices of a piecewise linear skeleton. The algorithm follows a “bottom-up” strategy in building

the skeletal structure: the approximation starts from a linear topology and later adds forks and loops

to the skeleton based on local geometric patterns formed during the SOM optimization. [MAG91]

proposed an algorithm to obtain piecewise linear skeletons of Arabic characters. The method is

based on fuzzy clustering and the fuzzy ISODATA algorithm [BD75] that uses a similar optimization

to the batch version of the SOM algorithm.

Although, similarly to the principal graph algorithm, [MAG91, DP97, SWP98] also use a piece-

wise linear approximation of the skeleton of the character, their approaches substantially differ from

our approach in that smoothness of the skeleton is not a primary issue in these works. Although the

SOM algorithm implicitly ensures smoothness of the skeleton to a certain extent, it lacks a clear

and intuitive formulation of the two competing criteria, smoothness of the skeleton and closeness

of the fit, which is explicitly present in our method. In this sense our algorithm complements these

methods rather then competes with them. For example, the method of [SWP98] could be used

as an alternative initialization step for the principal graph algorithm if the input is too noisy for

our thinning-based initialization step. One could also use the restructuring operations described in

[DP97] combined with the fitting-and-smoothing optimization step of the principal graph algorithm

in a “bottom-up” approach of building the skeleton graph.

6.2 The Principal Graph Algorithm

In this section we describe the principal graph algorithm, an extension of the polygonal line al-

gorithm for finding smooth skeletons of hand-written character templates. To transform binary

(black-and-white) character templates into two-dimensional data sets, we place the midpoint of the

bottom-most left-most pixel of the template to the center of a coordinate system. The unit length

of the coordinate system is set to the width (and height) of a pixel, so the midpoint of each pixel

85

has integer coordinates. Then we add the midpoint of each black pixel to the data set. Figure 26

illustrates the data representation model.

���

4321i=0

4

3

2

1

����

j=0

Figure 26: Representing a binary image by the integer coordinates of its black pixels. The 5× 5 image is

transformed into the set X =
{

[

0
1

]

,
[

0
2

]

,
[

1
1

]

,
[

1
3

]

,
[

1
4

]

,
[

2
0

]

,
[

2
4

]

,
[

3
0

]

,
[

3
4

]

,
[

4
0

]

}

.

The polygonal line algorithm was tested on images of isolated handwritten digits from the NIST

Special Database 19 [Gro95]. We found that the polygonal line algorithm can be used effectively to

find smooth medial axes of simple digits which contain no loops or crossings of strokes. Figure 27

shows some of these results.

To find smooth skeletons of more complex characters we extend and modify the polygonal line

algorithm. In Section 6.2.1 we extend the optimization and the projection steps so that in the inner

loop of the polygonal line algorithm we can optimize Euclidean graphs rather than only polygonal

curves. To capture the approximate topology of the character, we replace the initialization step

by a more sophisticated routine based on a traditional thinning method. The new initialization

procedure is described in Section 6.2.2. Since the initial graph contains enough vertices for a

smooth approximation, we no longer need to use the outer loop of the polygonal line algorithm to

add vertices to the graph one by one. Instead, we use the inner loop of the algorithm only twice.

Between the two fitting-and-smoothing steps, we “clean” the skeleton graph from spurious branches

and loops that are created by the initial thinning procedure. Section 6.2.3 describes the restructuring

operations used in this step. The flow chart of the extended polygonal line algorithm is given in

Figure 28. Figure 29 illustrates the evolution of the skeleton graph on an example.

6.2.1 Principal Graphs

In this section we introduce the notion of a Euclidean graph as a natural extension of polygonal

curves. The principal curve algorithm is then extended to optimize a Euclidean graph rather than

a single curve. We introduce new vertex types to accommodate junction points of a graph. The

new vertex types are tailored to the task of finding a smooth skeleton of a character template. In a

86

(a)
Character template
Polygonal principal curve

(b)
Character template
Polygonal principal curve

(c)
Character template
Polygonal principal curve

(d)
Character template
Polygonal principal curve

Figure 27: The polygonal line algorithm can be used effectively to find smooth medial axes of simple digits
which contain no loops or crossings of strokes.

different application, other vertex types can be introduced along the same lines.

Once the local distance function and the local penalty term are formulated for the new vertex

types, the vertex optimization step (Section 5.1.5) is completely defined for Euclidean graphs. The

projection step (Section 5.1.4) can be used without modification. As another indication of the ro-

bustness of the polygonal line algorithm, the penalty factor λ, which was developed using the data

generating model (85), remains as defined in (73).

Euclidean Graphs

A Euclidean graph GV ,§ in the d-dimensional Euclidean space is defined by two sets, V and §,

where V =
{

v1, . . . ,vm
}

⊂R
d is a set of vertices, and § =

{

(vi1 ,v j1), . . . ,(vik ,v jk)
}

=
{

si1 j1 , . . . ,sik, jk

}

,

87

Fitting & smoothing

Vertex optimization

Projection

Convergence?

START

END

Initialization

Restructuring

Fitting & smoothing
N

Y
END

START

Fitting & smoothing

Figure 28: The flow chart of the extended polygonal line algorithm.

1 ≤ i1, j1, . . . , ik, jk ≤ m is a set of edges, such that si j is a line segment that connects vi and v j. We

say that two vertices are adjacent or neighbors if there is an edge connecting them. The edge

si j = (vi,v j) is said to be incident with the vertices vi and v j. The vertices vi and v j are also called

the endpoints of si j. The degree of a vertex is the number of edges incident with it.

Let x ∈ R
d be an arbitrary data point. The squared Euclidean distance between x and a graph

GV ,§ is the squared distance between x and the nearest edge of GV ,§ to x, i.e.,

∆(x,GV ,§) = min
s∈§

∆(x,s).

Then, given a data set Xn = {x1, . . . ,xn} ⊂ R
d , the empirical distance function of GV ,§ is defined as

usual,

∆n(GV ,§) =
1
n

n

∑
i=1

∆(xi,GV ,§).

Note that a polygonal curve f is a special Euclidean graph with the property that the vertices of f,

v1, . . . ,vm, can be indexed so that si j = (vi,v j) is an edge if and only if j = i+1.

In what follows we will use the term graph as an abbreviation for Euclidean graph. We will also

omit the indices of GV ,§ if it does not cause confusion.

New Vertex Types

The definition of the local distance function (74) in Section 5.1.5 differentiates between vertices

at the end and in the middle of the polygonal curve. We call these vertices end-vertices and line-

vertices, respectively. In this section we introduce new vertex types to accommodate intersecting

curves that occur in handwritten characters. Vertices of different types are characterized by their

degrees and the types of the local curvature penalty imposed at them (see Table 3).

The only vertex type of degree one is the end-vertex. Here we penalize the squared length of

the incident edge as defined in (75). If two edges are joined by a vertex, the vertex is either a

88

(a)
Character template
Skeleton graph

(b)
Character template
Skeleton graph

(c)
Character template
Skeleton graph

(d)
Character template
Skeleton graph

Figure 29: Evolution of the skeleton graph. The skeleton graph produced by the extended polygonal line al-
gorithm (a) after the initialization step, (b) after the first fitting-and-smoothing step, (c) after the restructuring
step, and (d) after the second fitting-and-smoothing step (the output of the algorithm).

line-vertex or a corner-vertex. The angle at a line-vertex is penalized as in (75), while at a corner

vertex we penalize the angle for its deviation from right angle. We introduce three different vertex

types of degree three. At a star3-vertex, no penalty is imposed. At a T-vertex, we penalize one of

the three angles for its deviation from straight angle. The remaining two angles are penalized for

their deviations from right angle. At a Y-vertex, two of the possible angles are penalized for their

deviations from straight angle. We use only two of the several possible configurations at a vertex of

degree four. At a star4-vertex no penalty is imposed, while at an X-vertex we penalize sharp angles

on the two crossing curves. Vertices of degree three or more are called junction-vertices.

In principle, several other types of vertices can be considered. However, in practice we found

that these types are sufficient to represent hand-written characters from the Latin alphabet and of the

89

ten digits. Vertices at the end and in the middle of a curve are represented by end-vertices and line-

vertices, respectively. Two curves can be joined at their endpoints by a corner-vertex (Figure 30(a)).

The role of a Y-vertex is to “merge” two smooth curves into one (Figure 30(b)). A T-vertex is used

to join the end of a curve to the middle of another curve (Figure 30(c)). An X-vertex represents the

crossing point of two smooth curves (Figure 30(d)). Star3 and star4-vertices are used in the first

fitting-and-smoothing step, before we make the decision on the penalty configuration at a particular

junction-vertex.

(a)
Character template
Skeleton graph

(b)
Character template
Skeleton graph

(c)
Character template
Skeleton graph

(d)
Character template
Skeleton graph

Figure 30: Roles of vertices of different types. (a) A corner-vertex joins two curves at their endpoints. (b) A
Y-vertex merges two smooth curves into one. (c) A T-vertex joins the end of a curve to the middle of another
curve. (d) An X-vertex represents the crossing point of two smooth curves.

90

The Local Distance Function

Since the edges can no longer be naturally ordered as in the case of curves, we revise our notation

used in Chapter 5 in the formal definition of the formulas of the local distance function and the

local penalty. Let v1, . . .vm denote the vertices of the graph and let si j denote the edge that connects

vertices vi and v j. Let Vi and Si j be the nearest neighbor sets of vertex vi and edge si j, respectively,

as defined in Section 5.1.4, let s′i j be the line obtained by the infinite extension of the line segment

si j, and let

σ(si j) = ∑
x∈Si j

∆(x,s′i j),

ν(vi) = ∑
x∈Vi

∆(x,vi).

(Note that the new notation is a simple generalization of the notation used in Section 5.1.5 as ν(vi)

is the same as before, σ+(vi) = σ(si,i+1), and σ−(vi) = σ(si,i−1).) Then the local distance function

of vi is defined by

∆n(vi) =
1
n

(

ν(vi)+
φi

∑
j=1

σ(si,i j)

)

(86)

where φi is the degree of vi (1 ≤ φi ≤ 4), and i1, . . . , iφi are the indices of the adjacent vertices to vi.

Note that (86) is an extension of (74) where ∆n(vi) is defined for φi = 1,2.

The Local Penalty

For the definition of the local penalty, let πi j` = r2(1+ cosγi j`) be the angle penalty at v j where γi j`

denotes the angle of line segments s ji and s j`, and let µi j = ‖vi −v j‖2 be the length penalty at edge

si j. At corner and T-vertices we introduce ωi j` = 2r2 cos2 γi j` to penalize the deviation of γi j` from

right angle. The penalty Pv(vi) at vertex vi is defined in Table 3 for the different vertex types. (Note

that for end and line-vertices, Pv(vi) remains as defined in (72).) When the vertex vi is moved, only

angles at vi and at neighbors of vi can change. Therefore, the total penalty at vi is defined as

P(vi) = Pv(vi)+
φi

∑
j=1

Pv(vi j) (87)

where φi is the degree of vi (1 ≤ φi ≤ 4), and i1, . . . , iφi are the indices of the adjacent vertices to

vi. Note that (87) is an extension of (75) where P(vi) is defined for line and end-vertices. Also

note that the definition of the global penalized distance function (68), and hence the discussion in

Section 5.1.6, remains valid if ∆′
n(f) is redefined for a graph GV ,§ as

∆′
n(GV ,§) = ∑

v∈V

ν(v)+ ∑
s∈§

σ(s).

91

Type of vi φ(vi) Penalty at vi Configuration
end 1 Pv(vi) = µi,i1 i1v vi

line 2 Pv(vi) = πi1,i,i2 i1v vi2vi

corner 2 Pv(vi) = ωi1,i,i2
i1v vi2

vi

star3 3 Pv(vi) = 0
vi vi3

vi2
i1v

T 3 Pv(vi) = πi2,i,i3 +ωi1,i,i2 +ωi1,i,i3
vi2 vi3vii1v

Y 3 Pv(vi) = πi1,i,i2 +πi1,i,i3 i1v
vi2vi vi3

star4 4 Pv(vi) = 0 vi3 vi4

vi2

vi

vi1

X 4 Pv(vi) = πi1,i,i4 +πi2,i,i3 vi3 vi4

vi2

vi

vi1

Table 3: Vertex types and their attributes. The third column defines the penalties applied at each vertex
type. The arcs in the fourth column indicate the penalized angles. The dashed arc indicates that the angle is
penalized for its deviation from right angle (rather than for its deviation from from straight angle).

Degrading Vertices

Most of the reconstructing operations described in Section 6.2.3 proceed by deleting noisy edges

and vertices from the skeleton graph. When an edge is deleted from the graph, the degrees of the

two incident vertices decrease by one. Since there exist more than one vertex types for a given

degree, the new types of the degraded vertices must be explicitly specified by degradation rules.

When an edge incident to an end-vertex is deleted, we delete the vertex to avoid singular points in

the skeleton graph. Line and corner-vertices are degraded to end-vertices, while star4-vertices are

degraded to star3-vertices. Any vertex of degree three is degraded to a line-vertex if the remaining

angle was penalized for its deviation from straight angle before the degradation, or if the angle is

larger than 100 degrees. Otherwise, it is degraded to a corner-vertex. An X-vertex is degraded to

a T-vertex if both of the two unpenalized angles are between 80 and 100 degrees, otherwise it is

degraded to a Y-vertex. The explicit degradation rules are given in Table 4.

6.2.2 The Initialization Step

The most important requirement for the initial graph is that it approximately capture the topology of

the original character template. We use a traditional connectedness-preserving thinning technique

that works well for moderately noisy images. If the task is to recover characters from noisy or

faded images, this initialization procedure can be replaced by a more sophisticated routine (e.g., the

method based on the minimum spanning tree algorithm presented in [SWP98]) without modifying

92

Type
(before)

Configuration
(before)

Deleted
edge

Type
(after)

Configuration
(after)

Conditions

end i1v vi si,i1 deleted – –

line i1v vi2vi
si,i2 end i1v

vi
–

corner i1v vi2
vi

si,i2 end i1v
vi

–

star3
vi vi3

vi2
i1v si,i1 line vi3

vi2 vi
γi2,i,i3 > 100◦

star3
vi vi3

vi2
i1v si,i2 corner

vi vi3
i1v γi1,i,i3 ≤ 100◦

T
vi2 vi3vii1v si,i1 line vi

vi2 vi3 –

T
vi2 vi3vii1v si,i3 line vi

vi2

i1v
γi1,i,i2 > 100◦

T
vi2 vi3vii1v si,i3 corner vi

vi2

i1v
γi1,i,i2 ≤ 100◦

Y i1v
vi2vi vi3

si,i2 line i1v vi vi3 –

Y i1v
vi2vi vi3

si,i1 line
vi2vi vi3

γi2,i,i3 > 100◦

Y i1v
vi2vi vi3

si,i1 corner
vi2vi vi3

γi2,i,i3 ≤ 100◦

star4 vi3 vi4

vi2

vi

vi1 si,i2 star3 vi3 vi4vi

vi1 –

X vi3 vi4

vi2

vi

vi1 si,i2 T vi3 vi4vi

vi1 80◦ ≤ γi1,i,i3 ≤ 100◦,
80◦ ≤ γi3,i,i4 ≤ 100◦

X vi3 vi4

vi2

vi

vi1 si,i2 Y vi3 vi4vi

vi1
not as above,
γi1,i,i4 > γi1,i,i3 ,
γi3,i,i4 > γi1,i,i3

Table 4: Vertex degradation rules.

other modules of the algorithm.

We selected the particular thinning algorithm based on a survey [LLS93] which used several

criteria to systematically compare twenty skeletonization algorithms. From among the algorithms

that preserve connectedness, we chose the Suzuki-Abe algorithm [SA86] due to its high speed an

simplicity. Other properties, such as reconstructability, quality of the skeleton (spurious branches,

elongation or shrinkage at the end points), or similarity to a reference skeleton, were less important

at this initial phase. Some of the imperfections are corrected by the fitting-and-smoothing operation,

while others are treated in the restructuring step. The Suzuki-Abe algorithm starts by computing

and storing the distance of each black pixel from the nearest white pixel (distance transformation).

In the second step, layers of border pixels are iteratively deleted until pixels with locally maximal

93

distance values are reached. Finally, some of the remaining pixels are deleted so that connectedness

is preserved and the skeleton is of width one.

After thinning the template, an initial skeleton graph is computed (Figure 31). In general, mid-

points of pixels of the skeleton are used as vertices of the graph, and two vertices are connected by

an edge if the corresponding pixels are eight-neighbors, i.e., if they have at least one common corner.

To avoid short circles and crossing edges near junctions of the skeleton, neighboring junction pixels

(pixels having more than two eight-neighbors) are recursively placed into pixel-sets. For such a set,

only one vertex is created in the center of gravity of the pixels’ midpoints. This junction-vertex is

then connected to vertices representing pixels neighboring to any of the junction pixels in the set. In

this initial phase, only end, line, star3, and star4-vertices are used depending on whether the degree

of the vertex is one, two, three, or four, respectively. In the rare case when a vertex representing a

set of junction pixels has more than four neighbors, the neighbors are split into two or more sets of

two or three vertices. Each neighbor in a set is then connected to a mutual junction-vertex, and the

created junction-vertices are connected to each other. The circled vertices in Figures 31(c) and (d)

demonstrate this case.

6.2.3 The Restructuring Step

The restructuring step complements the two fitting-and-smoothing steps. In the fitting-and-smoothing

step we relocate vertices and edges of the skeleton graph based on their positions relative to the tem-

plate, but we do not modify the skeleton graph in a graph theoretical sense. In the restructuring step

we use geometric properties of the skeleton graph to modify the configuration of vertices and edges.

We do not explicitly use the template, and we do not move vertices and edges of the skeleton graph

in this step.

The double purpose of the restructuring step is to eliminate or rectify imperfections of the initial

skeleton graph, and to simplify the skeletal description of the template. Below we define operations

that can be used to modify the configuration of the skeleton graph. Since the types of the imperfec-

tions depend on properties of both the input data and the initialization method, one should carefully

select the particular operations and set their parameters according to the specific application. At

the description of the operations, we give approximate values for each parameter based on our ex-

periments with a wide variety of real data. Specific settings will be given in Section 6.3 where we

present the results of two particular experiments.

For the formal description of the restructuring operations, we define some simple concepts.

We call a list of vertices pi1,...,i` = (vi1 , . . . ,vi`), ` > 1 a path if each pair of consecutive vertices

(vi j ,vi j+1), j = 1, . . . , `− 1 is connected by an edge. A loop is a path pi1,...,i` such that i1 = i` and

none of the inner vertices vi2 , . . . ,vi`−1 are equal to each other or to vi1 . The length of a path is

94

(a)
Character template
Skeleton
Initial skeleton graph

(b)
Character template
Skeleton
Initial skeleton graph

(c)
Character template
Skeleton
Initial skeleton graph

(d)
Character template
Skeleton
Initial skeleton graph

Figure 31: Examples of transforming the skeleton into an initial skeleton graph.

defined by

l(pi1,...,i`) =
`−1

∑
j=1

l(si j,i j+1) =
`−1

∑
j=1

‖vi j+1 −vi j‖.

A path pi1,...,i` is simple if its endpoints vi1 and vi` are not line-vertices, while all its inner vertices

vi2 , . . . ,vi`−1 are line-vertices. A simple path is called a branch if at least one of its endpoints is an

end-vertex. When we delete a simple path pi1,...,i` , we remove all inner vertices vi2 , . . . ,vi`−1 and

all edges si1,i2 , . . . ,si`−1,i` . Endpoints of the path vi1 and vi` are degraded as specified by Table 4.

Figure 32 illustrates these concepts.

Most of the reconstructing operations simplify the skeleton graph by eliminating certain simple

paths that are shorter then a threshold. To achieve scale and resolution independence, we use the

thickness of the character as the yardstick in length measurements. We estimate the thickness of the

95

v4 v5

v6 v7 v8
v9

v3

v4 v5v1

v8
v9

v2

v3

v4 v5

v6 v7

v1

v8
v9

v2

v3
3f :

2

1f :

f :

Figure 32: Paths, loops, simple paths, branches, and deletion. A loop in f1 is p3458763. Simple paths of f1

are p123, p3458, p3678, and p89. p123 and p89 are branches of f1. f2 and f3 were obtained by deleting p3678 and
p123, respectively, from f1.

data set Xn = {x1, . . . ,xn} by

τ = 4
n

∑
i=1

√

∆n(xi,G).

Deleting Short Branches

Small protrusions on the contours of the character template tend to result in short branches in the

initial skeleton graph. We first approached this problem by deleting any branch that is shorter than

a threshold, τbranch. Unfortunately, this approach proved to be too simple in practice. By setting

τbranch to a relatively large value, we eliminated a lot of short branches that represented “real” parts

of the character, whereas by setting τbranch to a relatively small value, a lot of “noisy” branches

remained in the graph. We found that after the first fitting-and-smoothing step, if the size of the

protrusion is comparable to the thickness of the skeleton, i.e., the protrusion is likely to be a “real”

part of the skeleton, the angles of the short branch and the connecting paths tend to be close to right

angle (Figure 33(a)). On the other hand, if the short branch has been created by the noisy contour

of the character, the angle of the short branch and one of the connecting path tends to be very sharp

(Figure 33(b)). So, in the decision of deleting the short branch pi,i3,... (Figure 33), we weight the

length of the branch by

wi = 1− cos2 γ

where

γ = min(γi1,i,i3 ,γi2,i,i3),

and we delete pi,i3,... if wil(pi,i3,...) < τbranch. Experiments showed that to delete most of the noisy

branches without removing essential parts of the skeleton, τbranch should be set between τ and 2τ.

Figure 34 shows three skeleton graphs before and after the deletions. To avoid recursively pruning

longer branches, we found it useful to sort the short branches in increasing order by their length, and

96

deleting them in that order. This was especially important in the case of extremely noisy skeleton

graphs such as depicted by Figures 34(a) and (b).

vivi1
vi2vivi1

vi2

vi3 vi3

(a) (b)

Figure 33: If the protrusion is a “real” part of the skeleton, the angles of the short branch and the connecting
paths tend to be close to right angle (a), whereas if the short branch has been created by a few noisy pixels
on the contour of the character, the short branch tends to slant to one of the connecting paths during the first
fitting-and-smoothing step (b).

Removing Short Loops

Short loops created by thinning algorithms usually indicate isolated islands of white pixels in the

template. We remove any loop from the skeleton graph if its length is below a threshold τloop. A

loop is removed by deleting the longest simple path it contains. Experiments showed that to remove

most of the noisy loops without removing essential parts of the skeleton, τloop should be set between

2τ and 3τ. Figure 35 shows three skeleton graphs before and after the operation.

Merging Star3-Vertices

In experiments we found that if two penstrokes cross each other at a sharp angle, the thinning

procedure tends to create two star3-vertices connected by a short simple path rather then a star4-

vertex. The first approach to correct this imperfection was to merge any two star3-vertices that are

connected by a simple path shorter than a threshold, τstar3. Unfortunately, this approach proved to

be too simple in practice. By setting τstar3 to a relatively large value, we eliminated a lot of short

paths that were not created by crossing penstrokes, whereas by setting τstar3 to a relatively small

value, a lot of paths created by crossing penstrokes remained in the graph. We found that it is more

likely that the short path pi,..., j (Figure 36) is created by two crossing penstrokes if the angles γi1,i,i2

and γ j1, j, j2 are small. To avoid merging vi and v j when these two angles are large, we weight the

length of the path pi,..., j by an experimentally developed factor

wi j =

[

(1− cosγi1,i,i2)+(1− cosγ j1, j, j2)

4

]3

,

and we merge vi and v j if wi jl(pi,..., j) < τstar3. When merging two star3-vertices vi and v j, we first

delete the path pi,..., j, and remove vi and v j. Then we add a new vertex vnew and connect the four

97

(a)
Character template
Skeleton graph

(b)
Character template
Skeleton graph

(c)
Character template
Skeleton graph

Character template
Skeleton graph

Character template
Skeleton graph

Character template
Skeleton graph

Figure 34: Deleting short branches. Skeleton graphs before (top row) and after (bottom row) the deletion.

remaining neighbors of vi and v j to vnew (Figure 36). Experiments indicated that for the best results

τstar3 should be set between 0.5τ and τ. Figure 37 shows three skeleton graphs before and after the

merge.

Updating Star3 and Star4-Vertices

Initially, all the junction-vertices of the skeleton are either star3 or star4-vertices. After the skele-

ton has been smoothed by the first fitting-and-smoothing step and cleaned by the restructuring op-

erations described above, we update the junction-vertices of the skeleton to Y, T and X-vertices

depending on the local geometry of the junction-vertices and their neighbors. A star4-vertex is al-

ways updated to an X-vertex. When updating a star3-vertex, we face the same situation as when

degrading an X-vertex, so a star3-vertex is updated to a T-vertex if two of the angles at the vertex

are between 80 and 100 degrees, otherwise it is updated to a Y-vertex. The formal rules are given in

the last two rows of Table 4.

98

(a)
Character template
Skeleton graph

(b)
Character template
Skeleton graph

(c)
Character template
Skeleton graph

Character template
Skeleton graph

Character template
Skeleton graph

Character template
Skeleton graph

Figure 35: Removing short loops. Skeleton graphs before (top row) and after (bottom row) the removal.

Filtering Vertices

In this step, we iteratively remove every line-vertex whose two incident edges are shorter than a

threshold τ f ilter. Formally, any line-vertex v j is removed from the graph if

‖v j −vi‖ < τ f ilter and ‖v j −v`‖ < τ f ilter

where vi and v` are the neighbors of v j. When a line-vertex v j is removed, the two edges incident

to v j, si j and s j`, are also removed. Then the two former neighbors of v j are connected by a new

edge (Figure 38).

Filtering vertices is an optional operation. It can be used to speed up the optimization if the

character template has a high resolution since in this case the initial skeleton graph has much more

vertices than it is needed for reasonably smooth approximation. It can be also used after the opti-

mization to improve the compression rate if the objective is to compress the image by storing the

character skeleton instead of the template. In this case the filtering operation can be coupled with a

smoothing operation at the other end where the character is recovered based on the skeleton graph

(see Section 6.3.2). Figure 39 shows an example of a skeleton graph before and after the filtering

operation.

99

vi

vi1

vi2
vj

vj2

v
1j vi1

vi2 vj2

v
1

vnew

Before:

j

After:

Figure 36: When merging two star3-vertices, we remove the vertices and the path connecting them. Then
we add a new vertex and connect the former neighbors of the two star3-vertices to the new vertex.

6.3 Experimental Results

6.3.1 Skeletonizing Isolated Digits

In this section we report results on isolated hand-written digits from the NIST Special Database

19 [Gro95]. To set the parameters and to tune the algorithm, we chose 100 characters per digit

randomly. Figures 40 through 49 display eight templates for each digit. These examples were

chosen so that they roughly represent the 100 characters both in terms of the variety of the input data

and in terms of the success rate of the algorithm. To illuminate the contrast between the pixelwise

skeleton of the character and the skeleton graph produced by the principal graph algorithm, we show

the initial graph (upper row in each figure) and the final graph (lower row in each figure) for each

chosen character template. The length thresholds of the restructuring operations were set to the

values indicated by Table 5.

τbranch τloop τstar3 τ f ilter

1.2τ 3τ τ τ

Table 5: Length thresholds of the restructuring operations in experiments with isolated digits.

The results indicate that the principal graph algorithm finds a smooth medial axis of the great

majority of the characters. In the few cases when the skeleton graph is imperfect, we could identify

two sources of errors. The first cause is that, obviously, the restructuring operations do not work

perfectly for all the characters. For instance, short branches can be cut (Figure 46(a)), short loops

can be eliminated (Figure 42(c)), or star3-vertices can be merged mistakenly (Figure 44(h)). To

correct these errors, one has to include some a-priori information in the process, such as a collection

of possible configurations of skeleton graphs that can occur in hand-written digits. The other source

of errors is that at this phase, we do not have restructuring operations that add components to the

skeleton graph. For instance, skeleton graphs in Figures 42(e) and 48(d) could be improved by

connecting broken lines based on the closeness of their endpoints. One could also add short paths

to create branches or loops that were missing from the initial graph (Figures 42(b) and 48(f)). This

operation could be based on local thickness measurements along the graph that could point out

protrusions caused by overlapping lines in the character. The exact definitions and implementations

100

(a)
Character template
Skeleton graph

(b)
Character template
Skeleton graph

(c)
Character template
Skeleton graph

Character template
Skeleton graph

Character template
Skeleton graph

Character template
Skeleton graph

Figure 37: Merging star3-vertices. Skeleton graphs before (top row) and after (bottom row) the merge.

v
vj

vli v vli

After:Before:

Figure 38: Removing the line-vertex v j in the filtering operation.

of these operations are subjects of future research.

101

(a)
Character template
Skeleton graph

(b)
Character template
Skeleton graph

(c)
Character template
Skeleton graph

Figure 39: Filtering vertices. A skeleton graph (a) before filtering, (b) after filtering with τf ilter = 1, and (b)
after filtering with τf ilter = 2.

(a)
0:0

(b)
0:2

(c)
0:10

(d)
0:18

(e)
0:31

(f)
0:55

(g)
0:60

(h)
0:67

Figure 40: Skeleton graphs of isolated 0’s. Initial (upper row) and final (lower row) skeletons.

(a)
1:19

(b)
1:30

(c)
1:35

(d)
1:36

(e)
1:57

(f)
1:62

(g)
1:81

(h)
1:91

Figure 41: Skeleton graphs of isolated 1’s. Initial (upper row) and final (lower row) skeletons.

102

(a)
2:0

(b)
2:13

(c)
2:22

(d)
2:35

(e)
2:48

(f)
2:56

(g)
2:75

(h)
2:83

Figure 42: Skeleton graphs of isolated 2’s. Initial (upper row) and final (lower row) skeletons.

(a)
3:14

(b)
3:21

(c)
3:29

(d)
3:33

(e)
3:49

(f)
3:61

(g)
3:66

(h)
3:92

Figure 43: Skeleton graphs of isolated 3’s. Initial (upper row) and final (lower row) skeletons.

(a)
4:11

(b)
4:25

(c)
4:28

(d)
4:35

(e)
4:37

(f)
4:56

(g)
4:63

(h)
4:71

Figure 44: Skeleton graphs of isolated 4’s. Initial (upper row) and final (lower row) skeletons.

(a)
5:1

(b)
5:13

(c)
5:35

(d)
5:53

(e)
5:55

(f)
5:59

(g)
5:86

(h)
5:92

Figure 45: Skeleton graphs of isolated 5’s. Initial (upper row) and final (lower row) skeletons.

103

(a)
6:1

(b)
6:2

(c)
6:24

(d)
6:35

(e)
6:52

(f)
6:54

(g)
6:61

(h)
6:94

Figure 46: Skeleton graphs of isolated 6’s. Initial (upper row) and final (lower row) skeletons.

(a)
7:9

(b)
7:18

(c)
7:32

(d)
7:45

(e)
7:47

(f)
7:52

(g)
7:67

(h)
7:81

Figure 47: Skeleton graphs of isolated 7’s. Initial (upper row) and final (lower row) skeletons.

(a)
8:3

(b)
8:7

(c)
8:13

(d)
8:28

(e)
8:56

(f)
8:59

(g)
8:62

(h)
8:74

Figure 48: Skeleton graphs of isolated 8’s. Initial (upper row) and final (lower row) skeletons.

(a)
9:0

(b)
9:19

(c)
9:25

(d)
9:36

(e)
9:39

(f)
9:51

(g)
9:56

(h)
9:80

Figure 49: Skeleton graphs of isolated 9’s. Initial (upper row) and final (lower row) skeletons.

104

6.3.2 Skeletonizing and Compressing Continuous Handwriting

In this section we present results of experiments with images of continuous handwriting. We used

the principal graph algorithm to skeletonize short pangrams (sentences that contain all the letters of

the alphabet) written by different individuals. The emphasis in these experiments was on using the

skeleton graph for representing hand-written text efficiently.

Figure 50 shows the images of two pangrams written by two individuals. For the sake of easy

referencing, hereafter we will call them Alice (Figure 50(a)) and Bob (Figure 50(b)). After scanning

the images, the principal graph algorithm was used to produce the skeleton graphs depicted by

Figure 51. Since the images were much cleaner than the images of isolated digits used in the

previous section, τbranch and τloop were set slightly lower than in the previous experiments. We

also found that the incorrect merge of two star3-vertices has a much worse visual effect than not

merging two star3-vertices when they should be merged, so we set τstar3 to half of the value that

was used in the experiments with isolated digits. Finally, we did not use filtering vertices in the

restructuring step. The length thresholds of the restructuring operations were set to the values

indicated by Table 6. The thickness of each curve in Figure 51 was set to the estimated thickness τ
of the template.

τbranch τloop τstar3 τ f ilter

τ 2τ 0.5τ 0

Table 6: Length thresholds of the restructuring operations in experiments with continuous handwriting.
τ f ilter = 0 indicates that we did not filter vertices in the reconstruction step.

(a) (b)

Figure 50: Original images of continuous handwritings. (a) Alice, (b) Bob.

To demonstrate the efficiency of representing the texts by their skeleton graphs, we applied the

vertex filtering operation after the skeleton graphs were produced. For achieving high compression

rate, τ f ilter should be set to a relatively large value to remove most of the line-vertices from the

skeleton graph. Since filtering with a large threshold has an unfortunate visual effect of producing

sharp-angled polygonal curves (see Figure 39(c)), we fit cubic splines through the vertices of each

path of the skeleton graph. Tables 7 and 8 show the results.

105

(a)

Character template
Skeleton graph

(b)

Character template
Skeleton graph

Figure 51: Skeleton graphs of continuous handwritings. (a) Alice, (b) Bob.

To be able to compute the number of bytes needed for storing the images, in the compression

routine we also set the number of bits nb used to store each coordinate of a vertex. The vertices are

stored consecutively with one bit sequence of length nb marking the end of a path. So, for example,

when nb is set to 8, the vertices of the skeleton graph are rounded to the points of a 255× 255

rectangular grid, and the remaining byte is used to mark the end of a path. By using this scheme,

the skeleton graph can be stored by using

N =
⌈

(np +2m)nb/8
⌉

bytes where np is the number of paths and m is the number of vertices. Tables 7 and 8 show the

skeleton graphs and the number of bytes needed to store the images. The numbers of paths in

Alice’s and Bob’s texts are 148 and 74, respectively. As a comparison, the size of the raw bitmap

compressed by using the Lempel-Ziv algorithm (gzip under UNIX) is 2322 bytes in Alice’s case,

and 1184 bytes in Bob’s case. So, for instance, if the filter threshold is set to 6τ, and 8 bits are

used to store the coordinates of the vertices, the algorithm produces a skeleton that approximates

the original text quite well while compressing the image to less than half of the size of the gzipped

raw bitmap. Note that the bit sequence representing the skeleton graph can be further compressed

by using traditional compression methods.

106

τ f ilter m nb = 8 nb = 6
Skeleton graph N Skeleton graph N

2τ 743 1634 – –

4τ 492 1132 – –

6τ 408 964 723

10τ 361 870 653

20τ 324 796 597

Table 7: Compression of Alice’s handwriting. m is the number of vertices, nb is the number of bits used to
store each coordinate of a vertex, and N is the total number of bytes needed to store the skeleton graph of the
image.

107

τ f ilter m nb = 8 nb = 6
Skeleton graph N Skeleton graph N

2τ 435 944 – –

4τ 280 634 – –

6τ 225 524 393

10τ 195 464 348

20τ 173 420 315

Table 8: Compression of Bob’s handwriting. m is the number of vertices, nb is the number of bits used to
store each coordinate of a vertex, and N is the total number of bytes needed to store the skeleton graph of the
image.

108

