
Kernel Principal Component Analysis

Bernhard Sch�olkopf1, Alexander Smola2, Klaus{Robert M�uller2

1 Max-Planck-Institut f. biol. Kybernetik, Spemannstr. 38, 72076 T�ubingen, Germany
2 GMD FIRST, Rudower Chaussee 5, 12489 Berlin, Germany

Abstract. A new method for performing a nonlinear form of Principal
Component Analysis is proposed. By the use of integral operator kernel
functions, one can e�ciently compute principal components in high{
dimensional feature spaces, related to input space by some nonlinear
map; for instance the space of all possible d{pixel products in images.
We give the derivation of the method and present experimental results
on polynomial feature extraction for pattern recognition.

1 Introduction

Principal Component Analysis (PCA) is a basis transformation to diagonalize

an estimate of the covariance matrix of the data xk, k = 1; : : : ; `, xk 2 RN ,P`
k=1 xk = 0, de�ned as

C =
1

`

X̀

j=1

xjx
>

j : (1)

The new coordinates in the Eigenvector basis, i.e. the orthogonal projections
onto the Eigenvectors, are called principal components.

In this paper, we generalize this setting to a nonlinear one of the following
kind. Suppose we �rst map the data nonlinearly into a feature space F by

� : RN ! F; x 7! X: (2)

We will show that even if F has arbitrarily large dimensionality, for certain
choices of �, we can still perform PCA in F . This is done by the use of kernel
functions known from Support Vector Machines (Boser, Guyon, & Vapnik, 1992).

2 Kernel PCA

Assume for the moment that our data mapped into feature space, �(x1); : : : ; �(x`),

is centered, i.e.
P`

k=1 �(xk) = 0. To do PCA for the covariance matrix

�C =
1

`

X̀

j=1

�(xj)�(xj)
>; (3)

we have to �nd Eigenvalues � � 0 and Eigenvectors V 2 Fnf0g satisfying
�V = �CV: Substituting (3), we note that all solutions V lie in the span of
�(x1); : : : ; �(x`). This implies that we may consider the equivalent system

�(�(xk) �V) = (�(xk) � �CV) for all k = 1; : : : ; `; (4)

and that there exist coe�cients �1; : : : ; �` such that

V =
X̀

i=1

�i�(xi): (5)

Substituting (3) and (5) into (4), and de�ning an `� ` matrix K by

Kij := (�(xi) � �(xj)); (6)

we arrive at
`�K� = K2

�; (7)

where � denotes the column vector with entries �1; : : : ; �`. To �nd solutions of
(7), we solve the Eigenvalue problem

`�� = K� (8)

for nonzero Eigenvalues. Clearly, all solutions of (8) do satisy (7). Moreover, it
can be shown that any additional solutions of (8) do not make a di�erence in
the expansion (5) and thus are not interesting for us.

We normalize the solutions �k belonging to nonzero Eigenvalues by requiring
that the corresponding vectors in F be normalized, i.e. (Vk �Vk) = 1: By virtue
of (5), (6) and (8), this translates into

1 =
X̀

i;j=1

�ki �
k
j (�(xi) � �(xj)) = (�k �K�k) = �k(�

k ��k): (9)

For principal component extraction, we compute projections of the image of a
test point �(x) onto the Eigenvectors Vk in F according to

(Vk � �(x)) =
X̀

i=1

�ki (�(xi) � �(x)): (10)

Note that neither (6) nor (10) requires the �(xi) in explicit form | they are
only needed in dot products. Therefore, we are able to use kernel functions for
computing these dot products without actually performing the map � (Aizerman,
Braverman, & Rozonoer, 1964; Boser, Guyon, & Vapnik, 1992): for some choices
of a kernel k(x;y), it can be shown by methods of functional analysis that there
exists a map � into some dot product space F (possibly of in�nite dimension)
such that k computes the dot product in F . Kernels which have successfully been
used in Support Vector Machines (Sch�olkopf, Burges, & Vapnik, 1995) include
polynomial kernels

k(x;y) = (x � y)d; (11)

radial basis functions k(x;y) = exp
�
�kx� yk2=(2 �2)

�
, and sigmoid kernels

k(x;y) = tanh(�(x � y) +�). It can be shown that polynomial kernels of degree
d correspond to a map � into a feature space which is spanned by all products
of d entries of an input pattern, e.g., for the case of N = 2; d = 2,

(x � y)2 = (x2
1
; x1x2; x2x1; x

2

2
)(y2

1
; y1y2; y2y1; y

2

2
)>: (12)

linear PCA
R2

F

Φ

kernel PCA

k(x,y) = (x.y) k(x,y) = (x.y)d

x

x
x xx

x

x

x
xx

x

x

x

x

x
x

x
x

x

x x

x

x

x

R2

x

x
x xx

x

x

x
xx

x

x

Fig. 1. Basic idea of kernel PCA: by using a nonlinear kernel function k instead of
the standard dot product, we implicitly perform PCA in a possibly high{dimensional
space F which is nonlinearly related to input space. The dotted lines are contour lines
of constant feature value.

If the patterns are images, we can thus work in the space of all products of d
pixels and thereby take into account higher{order statistics when doing PCA.

Substituting kernel functions for all occurences of (�(x) ��(y)), we obtain the
following algorithm for kernel PCA (Fig. 1): we compute the dot product matrix
(cf. Eq. (6)) Kij = (k(xi;xj))ij , solve (8) by diagonalizing K, normalize the
Eigenvector expansion coe�cients �n by requiring Eq. (9), and extract principal
components (corresponding to the kernel k) of a test point x by computing
projections onto Eigenvectors (Eq. (10), Fig. 2).

We should point out that in practice, our algorithm is not equivalent to the
form of nonlinear PCA obtainable by explicitly mapping into the feature space
F : even though the rank of the dot product matrix will be limited by the sample
size, we may not even be able to compute this matrix, if the dimensionality is
prohibitively high. For instance, 16 � 16 pixel input images and a polynomial
degree d = 5 yield a dimensionality of 1010. Kernel PCA deals with this problem
by automatically choosing a subspace of F (with a dimensionality given by the
rank ofK), and by providing a means of computing dot products between vectors
in this subspace. This way, we have to evaluate ` kernel functions in input space
rather than a dot product in a 1010{dimensional space.

To conclude this section, we brie
y mention the case where we drop the
assumption that the �(xi) are centered in F . Note that we cannot in general
center the data, as we cannot compute the mean of a set of points that we do
not have in explicit form. Instead, we have to go through the above algebra

using ~�(xi) := �(xi) � (1=`)
P`

i=1 �(xi): It turns out that the matrix that we

Σ (Φ(x).V) = Σ αi k (x,xi)

input vector x

sample x1, x2, x3,...

comparison: k(x,xi)

feature value

weights (Eigenvector coefficients)α1 α2 α3 α4

k k k k

Fig. 2. Kernel PCA feature extraction for an OCR task (test point x, Eigenvector V).

−1 0 1
−0.5

0

0.5

1

−1 0 1
−0.5

0

0.5

1

−1 0 1
−0.5

0

0.5

1

−1 0 1
−0.5

0

0.5

1

−1 0 1
−0.5

0

0.5

1

Fig. 3. PCA with kernel (11, degrees d = 1; : : : ; 5. 100 points ((xi)1; (xi)2) were gen-
erated from (xi)2 = (xi)

2
1+ noise (Gaussian, with standard deviation 0.2); all (xi)j

were rescaled according to (xi)j 7! sgn((xi)j) � j(xi)j j
1=d. Displayed are contour lines

of constant value of the �rst principal component. Nonlinear kernels (d > 1) extract
features which nicely increase along the direction of main variance in the data; linear
PCA (d = 1) does its best in that respect, too, but it is limited to straight directions.

have to diagonalize in that case, call it ~K, can be expressed in terms of K as
~Kij = K � 1`K �K1` + 1`K1`; using the shorthand (1`)ij := 1=` (for details,
see Sch�olkopf, Smola, & M�uller, 19963).

3 Experiments on Feature Extraction

Figure 3 shows the �rst principal component of a toy data set, extracted by
polynomial kernel PCA. For an investigation of the utility of kernel PCA fea-
tures for a realistic pattern recognition problem, we trained a separating
hyperplane classi�er (Vapnik & Chervonenkis, 1974; Cortes & Vapnik, 1995)
on nonlinear features extracted from the US postal service (USPS) handwritten
digit data base by kernel PCA. This database contains 9300 examples of dimen-
sionality 256; 2000 of them make up the test set. For computational reasons,
we used only a subset of 3000 training examples for the dot product matrix.
Using polynomial kernels (11) of degrees d = 1; : : : ; 6, and extracting the �rst
2n (n = 6; 7; : : : ; 11) principal components, we found the following. In the case
of linear PCA (d = 1), the best classi�cation performance (8.6% error) is at-
tained for 128 components. Extracting the same number of nonlinear compo-
nents (d = 2; : : : ; 6) in all cases lead to superior performance (around 6% error).
Moreover, in the nonlinear case, the performance can be further improved by
using a larger number of components (note that there exist more higher{order
features than there are pixels in an image). Using d > 2 and 2048 components, we
obtained around 4% error, which coincides with the best result reported for stan-
dard nonlinear Support Vector Machines (Sch�olkopf, Burges, & Vapnik, 1995).
This result is competitive with convolutional 5{layer neural networks (5.0% were
reported by LeCun et al., 1989); it is much better than linear classi�ers operat-
ing directly on the image data (a linear Support Vector Machine achieves 8.9%;
Sch�olkopf, Burges, & Vapnik, 1995). These �ndings have been con�rmed on an
object recognition task, the MPI chair data base (for details on all experiments,
see Sch�olkopf, Smola, & M�uller, 1996). We should add that our results were
obtained without using any prior knowledge about symmetries of the problem
at hand. This explains why the performance is inferior to Virtual Support Vec-
tor classi�ers (3.2%, Sch�olkopf, Burges, & Vapnik, 1996), and Tangent Distance

3 This paper, along with several Support Vector publications, can be downloaded from
http://www.mpik-tueb.mpg.de/people/personal/bs/svm.html.

Nearest Neighbour classi�ers (2.6%, Simard, LeCun, & Denker, 1993). We be-
lieve that adding e.g. local translation invariance, be it by generating \virtual"
translated examples or by choosing a suitable kernel, could further improve the
results.

4 Discussion

This paper was devoted to the exposition of a new technique for nonlinear prin-
cipal component analysis. To develop this technique, we made use of a kernel
method which so far only had been used in supervised learning (Vapnik, 1995).
Clearly, the kernel method can be applied to any algorithm which can be formu-
lated in terms of dot products exclusively, including for instance k-means and
independent component analysis (cf. Sch�olkopf, Smola, & M�uller, 1996).

In experiments comparing the utility of kernel PCA features for pattern
recognition using a linear classi�er, we found two advantages of nonlinear ker-
nel PCA: �rst, nonlinear principal components a�orded better recognition rates
than corresponding numbers of linear principal components; and second, the
performance for nonlinear components can be further improved by using more
components than possible in the linear case.

The computational complexity of kernel PCA does not grow with the dimen-
sionality of the feature space that we are implicitely working in. This makes it
possible to work for instance in the space of all possible d-th order products be-
tween pixels of an image. As in the variant of standard PCA which diagonalizes
the dot product matrix (e.g. Kirby & Sirovich, 1990), we have to diagonalize
an ` � ` matrix (` being the number of examples, or the size of a representa-
tive subset), with a comparable computational complexity | we only need to
compute kernel functions rather than dot products. If the dimensionality of in-
put space is smaller than the number of examples, kernel principal component
extraction is computationally more expensive than linear PCA; however, this
additional investment can pay back afterwards: we have presented results indi-
cating that in pattern recognition, it is su�cient to use a linear classi�er, as long
as the features extracted are nonlinear. The main advantage of linear PCA up to
date, however, consists in the possibility to reconstruct the patterns from their
principal components.

Compared to other methods for nonlinear PCA, as autoassociative MLPs
with a bottleneck hidden layer (e.g. Diamantaras & Kung, 1996) or principal
curves (Hastie & Stuetzle, 1989), kernel PCA has the advantage that no nonlin-
ear optimization is involved | we only need to solve an Eigenvalue problem as
in the case of standard PCA. Therefore, we are not in danger of getting trapped
in local minima during during training. Compared to most neural network type
generalizations of PCA (e.g. Oja, 1982), kernel PCA moreover has the advan-
tage that it provides a better understanding of what kind of nonlinear features
are extracted: they are principal components in a feature space which is �xed
a priori by choosing a kernel function. In this sense, the type of nonlinearities
that we are looking for are already speci�ed in advance, however this speci�ca-
tion is a very wide one, it merely selects the (high{dimensional) feature space,
but not the relevant feature subspace: the latter is done automatically. In this
respect it is worthwhile to note that by using sigmoid kernels (Sec. 2) we can

in fact also extract features which are of the same type as the ones extracted
by MLPs (cf. Fig. 2), and the latter is often considered a nonparametric tech-
nique. With its rather wide class of admissible nonlinearities, kernel PCA forms
a framework comprising various types of feature extraction systems. A number
of di�erent kernels have already been used in Support Vector Machines, of poly-
nomial, Gaussian, and sigmoid type. They all led to high accuracy classi�ers, and
constructed their decision boundaries, which are hyperplanes in di�erent feature
spaces, from almost the same Support Vectors (Sch�olkopf, Burges, & Vapnik,
1995). The general question of how to choose the best kernel for a given problem
is yet unsolved, both for Support Vector Machines and for kernel PCA.

PCA feature extraction has found application in many areas, including noise
reduction, pattern recognition, regression estimation, and image indexing. In all
cases where taking into account nonlinearities might be bene�cial, kernel PCA
provides a new tool which can be applied with little computational cost and
possibly substantial performance gains.

Acknowledgements. BS is supported by the Studienstiftung des Deutschen Volkes.
AS is supported by a grant of the DFG (JA 379/51). This work pro�ted from dis-
cussions with V. Blanz, L. Bottou, C. Burges, S. Solla, and V. Vapnik. Thanks
to AT&T and Bell Labsoratories for the possibility of using the USPS database.

References

M. A. Aizerman, E. M. Braverman, & L. I. Rozono�er. Theoretical foundations of the
potential function method in pattern recognition learning. Automation and Remote
Control, 25:821{837, 1964.

B. E. Boser, I. M. Guyon, & V .Vapnik. A training algorithm for optimal margin
classi�ers. In Fifth Annual Workshop on COLT, Pittsburgh, 1992. ACM.

C. Cortes & V. Vapnik. Support vector networks. Machine Learning, 20:273{297, 1995.
T. Hastie & W. Stuetzle. Principal curves. JASA, 84:502 { 516, 1989.
M. Kirby & L. Sirovich. Application of the Karhunen{Lo�eve procedure for the charac-

terization of human faces. IEEE Transactions, PAMI-12(1):103{108, 1990.
E. Oja. A simpli�ed neuron model as a principal component analyzer. J. Math. Biol-

ogy, 15:267{273, 1982.
B. Sch�olkopf, C. Burges, & V. Vapnik. Extracting support data for a given task. In

U. M. Fayyad & R. Uthurusamy, eds., Proceedings, First International Conference
on Knowledge Discovery & Data Mining, Menlo Park, CA, 1995. AAAI Press.

B. Sch�olkopf, C. Burges, & V. Vapnik. Incorporating invariances in support vec-
tor learning machines. In C. v. d. Malsburg, W. v. Seelen, J. C. Vorbr�uggen, &
B. Sendho�, eds., ICANN'96, p. 47{52, Berlin, 1996. Springer LNCS Vol. 1112.

B. Sch�olkopf, A. J. Smola, & K.-R. M�uller. Nonlinear component analysis as a ker-
nel eigenvalue problem. Technical Report 44, Max{Planck{Institut f�ur biologische
Kybernetik, 1996. Submitted to Neural Computation.

P. Simard, Y. LeCun, & J. Denker. E�cient pattern recognition using a new transfor-
mation distance. In S. J. Hanson, J. D. Cowan, & C. L. Giles, editors, Advances
in NIPS 5, San Mateo, CA, 1993. Morgan Kaufmann.

V. Vapnik & A. Chervonenkis. Theory of Pattern Recognition [in Russian]. Nauka,
Moscow, 1974. (German Translation: W. Wapnik & A. Tscherwonenkis, Theorie
der Zeichenerkennung, Akademie{Verlag, Berlin, 1979).

This article was processed using the LATEX macro package with LLNCS style

