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Robust Linear Dimensionality Reduction
Yehuda Koren and Liran Carmel

Abstract— We present a novel family of data-driven linear
transformations, aimed at finding low dimensional embeddings of
multivariate data, in a way that optimally preserves the structure
of the data. The well-studied PCA and Fisher’s LDA are shown
to be special members in this family of transformations, and we
demonstrate how to generalize these two methods such as to en-
hance their performance. Furthermore, our technique is the only
one, to the best of our knowledge, that reflects in the resulting
embedding both the data coordinates and pairwise relationships
between the data elements. Even more so, when information on
the clustering (labeling) decomposition of the data is known, this
information can also be integrated in the linear transformation,
resulting in embeddings that clearly show the separation between
the clusters, as well as their internal structure. All this makes
our technique very flexible and powerful, and lets us cope with
kinds of data that other techniques fail to describe properly.

Index Terms— Dimensionality reduction, visualization, classifi-
cation, feature extraction, projection, linear transformation, prin-
cipal component analysis, Fisher’s linear discriminant analysis.

I. INTRODUCTION

D IMENSIONALITY reduction is one of the key tech-
niques in data analysis, aimed at revealing meaningful

structures and unexpected relationships in multivariate data.
It assembles numerous methods, all striving to present high
dimensional data in a low dimensional space, in a way that
faithfully captures desired structural elements of the data.
Dimensionality reduction is used for many purposes. For
example, it is beneficial as a visualization tool to present
multivariate data in a human accessible form, as a method of
feature extraction, and as a preliminary transformation applied
to the data prior to the use of other analysis tools like clustering
and classification. There are many criteria that can be used to
sort the various methods of dimensionality reduction. In this
paper, we have found it very useful to use two dichotomies —
coordinate based methods versus weight based ones (which is
essentially the dichotomy between entities and relationships),
and linear methods versus nonlinear ones.

Almost always, multivariate data are supplied in one of two
basic forms. Either each data element is a vector of (potentially
many) variables, or some numeric value is provided to describe
the relationships between each pair of data elements. In
the first case, we use the term coordinates to denote the
different entries of the data elements, and those dimensionality
reduction techniques that can deal with such data are called
coordinate based methods. In the second case, we use the
term weights for the pairwise relationships between the data
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elements, and those dimensionality reduction techniques that
can deal with such data are called weight based methods.

Weight based methods attempt to assign coordinates to the
data elements in the low dimensional space, such that their
embedding reflects in some sense their pairwise relationships.
Distances, similarities and dissimilarities are the most com-
monly used types of weights. Multidimensional scaling is
the customary notion for these methods that use distances
or dissimilarities as weights. See description of many such
techniques in, e.g., [5], [10], [12].

Coordinate based methods compute a mapping of high di-
mensional data into lower dimensional ones. A linear method
is one for which the mapping can be described by a linear
transformation. Here, we shall denote any other method as
nonlinear method. Many coordinate based methods, linear as
well as nonlinear, are introduced in, e.g., [5], [12].

In this paper we present a novel family of dimensionality
reduction techniques, which show a rather broad spectrum of
appealing properties. One of the most salient of these is that
it “spoils” the dichotomy coordinates/weights by allowing for
the merger of both forms in a single framework. One way to
look at our methods is as coordinate based methods, that are
capable of taking into consideration pairwise weights too, if
these are available.

Another prominent property of the methods to be described
here is that they are linear. Despite being more limited than
their nonlinear counterparts, linear dimensionality reduction
techniques possess several significant advantages:

1) The low dimensional data is reliable in the sense that
it is guaranteed to show genuine properties of the
original data. In contrast, nonlinear techniques might
unrecognizably deform the topology of the original high
dimensional data.

2) The low dimensional axes are meaningful as they are
linear combinations of the original axes. Sometimes,
analysis of these combinations can induce interesting
domain-specific interpretations.

3) The transformation matrix can be stored in memory and
be used whenever new data elements should undergo the
same transformation as the original data.

4) In general, the computational complexity of linear meth-
ods is very low, both in time and in space.

We shall later prove that our methods generalize the well
known principal component analysis and Fisher’s linear dis-
criminant analysis, which are both linear dimensionality re-
duction techniques.

In this paper we will put special emphasize on yet another
important property of our methods, namely their robustness.
As dimensionality reduction techniques are data-driven, they
might exhibit undesirable sensitivity to outliers (extreme obser-
vations that are well separated from the remainder of the data).
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We will show that we can make our methods especially robust
in this aspect, by using a special from of pairwise weighting.

The last property of our methods which we would like
to mention here is that they can also take into consideration
knowledge about data labeling, which is the situation where
the data elements are partitioned into disjoint clusters by some
external source, normally a clustering algorithm or a domain
specific knowledge. Reducing dimensionality of such data
requires special effort since, besides the desire to convey the
overall structure, we would also like to reflect the inter-cluster
and intra-cluster relationships. We will show how we can
design our methods to show the different clusters as separate
as possible, as well as to preserve intra-cluster structure. The
resulting embeddings can be very instructive in validating the
results of a clustering algorithm or in revealing the structure
of the clusters and their relationships.

II. BASIC NOTIONS

Throughout the paper, we shall always assume n data
elements represented by m coordinates, arranged row-wise
in an n×m coordinate matrix X (such that Xiα is the αth
coordinate of the ith data element). Hereinafter, we shall
use Greek indices for coordinates and Latin indices for data
elements. Without loss of generality we assume that the data
is centered, meaning that the mean of each coordinate over
the entire dataset is zero, ∑n

i=1 Xiα = 0 for α = 1, . . . ,m. This
can always be achieved by a harmless translation of the data.
We shall denote by S the m×m biased covariance matrix,
S = 1

nXT X .
Dimensionality reduction aims at finding a meaningful rep-

resentation of the data in p dimensions. By definition p < m,
but in this paper we shall also always assume that p < n, which
means that we require a minimal number of data elements. As
p is typically small, this requirement is met for any plausible
dataset. In linear dimensionality reduction, it is customary
to characterize the low dimensional space by p direction
vectors v1, . . . ,vp ∈ R

m, so that the α-coordinate vector of the
transformed data (1 � α � p) is obtained by projecting the
data on the αth direction vector, Xvα ∈ R

n. Consequently, we
shall call the vectors Xv1, . . . ,Xvp the coordinate vectors.

We denote by disti j the Euclidean distance between
elements i and j (in the original space), disti j =√

∑m
α=1(Xiα −Xjα)2. When referring to Euclidean distances

in a p-dimensional embedding of the data, we shall add the

superscript p, thus distp
i j =

√
∑p

α=1((Xvα)i − (Xvα) j)2.
The Laplacian is a key entity for describing pairwise rela-

tionships between data elements. This is an n× n symmetric
positive-semidefinite matrix, characterized by having zero row
and column sums. Its usefulness stems from the fact that the
quadratic form associated with it is just a weighted sum of all
pairwise squared distances:

Lemma II.1 Let L be an n× n Laplacian, and let x ∈ R
n.

Then

xT Lx = ∑
i< j

−Li j(xi − x j)2.

Similarly, for p coordinate vectors x1, . . . ,xp ∈ R
n we have:

p

∑
α=1

(xα)T Lxα = ∑
i< j

−Li j ·
(

p

∑
α=1

((xα)i − (xα) j)
2

)
=

= ∑
i< j

−Li j ·
(

distp
i j

)2
.

The proof of this lemma is direct.
Next, we develop some essential mathematical background

that is needed for subsequent derivations. Different parts of
this material can be found in standard linear algebra textbooks.
The casual reader can make do with understanding Theorem
II.1, Theorem II.2 and Corollary II.1, and does not have to
delve into the proofs. In the following, δi j is the Kronecker
delta (defined as 1 for i = j and as 0 otherwise), and Aα is
the αth column of matrix A.

Theorem II.1 Let A be an n× n symmetric matrix. Denote
by λ1 � · · · � λn its sorted eigenvalues, and by u1, . . . ,un the
corresponding eigenvectors. Then u1, . . . ,up are the maximizer
of the constrained maximization problem

max
v1,...,vp

p

∑
α=1

(vα)T Avα

subject to: (vα)T vβ = δαβ , α,β = 1, . . . , p.

(1)

Similarly, the minimizer of the same problem are the p lowest
eigenvectors un−p+1, . . . ,un.

For the proof, we first need the following lemma.

Lemma II.2 Let X be an n × p matrix with orthonormal
columns (i.e., XT X = I), and let v1, . . . ,vp−1 ∈ R

n be any
vectors. Then there is an n × p matrix with orthonormal
columns, Y , such that for every 2 � α � p, Y α is orthog-
onal to v1, . . . ,vα−1. Additionally, for every n× n matrix A,
trace(XT AX) = trace(Y T AY ).

Proof: In this proof we use the symbol R(X) for the
range of matrix X (defined as span(X1, . . . ,X p)). Let us denote
the projection of v1 into R(X) by ṽ1. If ṽ1 = 0 then we set
Y 1 = X1 and Ŷ 2, . . . ,Ŷ p = X2, . . . ,X p. Obviously, Ŷ 2, . . . ,Ŷ p

are orthogonal to v1. If ṽ1 �= 0, we rotate X1,X2, . . . ,X p within
R(X) obtaining Y 1,Ŷ 2, . . . ,Ŷ p, such that Y 1 = ṽ1/‖ṽ1‖. Since
rotations do not alter orthogonality relations, we still have that
Ŷ 2 . . . ,Ŷ p are orthogonal to v1. We continue recursively with
the vectors v2, . . . ,vp−1 and the matrix (Ŷ 2 . . .Ŷ p). Note that
during the recursion, the v1 and Y 1 orthogonality that were
already achieved are not ruined, since we limit the rotations
to the space span(Ŷ 2, . . . ,Ŷ p) which is orthogonal to v1 and to
Y 1. At the end of the process we obtain p orthonormal vectors
Y 1, . . . ,Y p that satisfy the requested property.

Since all rotations are performed within R(X), there is
some p× p matrix R such that Y = XR. Since X and Y have
orthonormal columns we use I = Y TY = RT XT XR = RT R to
conclude that R is an orthonormal matrix, and so RRT = I. We
use the fact that the trace is cyclically-commutative to obtain

trace(Y T AY ) = trace(RT XT AXR) = trace(RRT XT AX) =

= trace(XT AX).
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Now we can turn to prove Theorem II.1.
Proof: Let v1, . . . ,vp be arranged in the n× p matrix V .

This allows us to rewrite (1) in the simple matrix notation

max
V

trace(V T AV )

subject to: V TV = I .
(2)

Let V0 = (v1
0, . . . ,v

p
0) be the maximizer of (2). Since the

eigenvectors u1, . . . ,un form a basis of R
n, we can decompose

each vα
0 as a linear combination vα

0 = ∑n
β=1 cα

β uβ . Lemma II.2
allows us to assume, without loss of generality, that for every
2 � α � p, vα

0 is orthogonal to the eigenvectors u1, . . . ,uα−1.
We may therefore take cα

β = 0 for β < α , and write vα
0 =

∑n
β=α cα

β uβ . Next, we use the constraint (vα
0 )T vα

0 = 1 to obtain
an equation for the coefficients cα

β ,

1 = (vα
0 )T vα

0 =

(
n

∑
β=α

cα
β uβ

)T ( n

∑
β=α

cα
β uβ

)
=

n

∑
β=α

(
cα

β

)2
,

where the last equality stems from the orthonormality of
u1, . . . ,un. Using this result, we can expand the quadratic form
(vα

0 )T Avα
0 as

(vα
0 )T Avα

0 =

(
n

∑
β=α

cα
β uβ

)T

A

(
n

∑
β=α

cα
β uβ

)
=

=

(
n

∑
β=α

cα
β uβ

)T ( n

∑
β=α

cα
β λβ uβ

)
=

=
n

∑
β=α

(
cα

β

)2
λβ �

n

∑
β=α

(
cα

β

)2
λα = λα .

Thus, the maximum of the target function is bounded by

trace(V T
0 AV0) =

p

∑
α=1

(vα
0 )T Avα

0 �
p

∑
α=1

λα .

Since ∑p
α=1(u

α)T Auα = ∑p
α=1 λα , we conclude that indeed the

highest eigenvectors u1, . . . ,up are the maximizer of (1).
The proof for the minimization problem goes along exactly

the same lines.
Theorem II.1 requires orthonormality relations between the

vectors v1, . . . ,vp. In the following theorem we generalize this
result by allowing for these vector to be mutually conjugate.
Hereinafter, the generalized eigenvalue problem Ax = λBx is
referred to as the generalized eigenvalue problem of (A,B).

Theorem II.2 Let A be an n×n symmetric matrix, and let B
be an n×n positive definite matrix. Denote by λ1 � · · · � λn

the sorted generalized eigenvalues of the generalized eigen-
value problem of (A,B), and by u1, . . . ,un the corresponding
generalized eigenvectors. Then u1, . . . ,up are the maximizer of
the constrained maximization problem

max
v1,...,vp

p

∑
α=1

(vα)T Avα

subject to: (vα)T Bvβ = δαβ , α,β = 1, . . . , p.

(3)

Similarly, the minimizer of the same problem are the p lowest
generalized eigenvectors un−p+1, . . . ,un.

Proof: Since B is positive definite it can be decomposed
into B = CTC, with C an n× n invertible matrix (e.g., using
Cholesky decomposition). Making the substitution vα =C−1v̂α

in (3), we reformulate the problem as

max
v̂1,...,v̂p

p

∑
α=1

(v̂α)TC−T AC−1v̂α

subject to: (v̂α)T v̂β = δαβ , α,β = 1, . . . , p.

(4)

Let v̂1
0, . . . , v̂

p
0 be the maximizer of (4). According to Theorem

II.1 these are simply the p highest eigenvectors of C−T AC−1,
obeying therefore C−T AC−1v̂α

0 = λα v̂α
0 . Using this equation,

and transforming back into the vectors vα
0 = C−1v̂α

0 , we get
C−T Avα

0 = λαCvα
0 , which is just Avα

0 = λαBvα . Hence, the
maximizer of (3) is nothing but the p highest generalized
eigenvectors of (A,B). An identical proof can be used to prove
the claim for the minimization.

The optimization problem (3) is a fundamental building
block in this paper. Sometimes, it is more comprehensible to
use a different, but completely equivalent, formulation.

Corollary II.1 The problem

max
v1,...,vp

∑p
α=1(v

α)T Avα

∑p
α=1(vα)T Bvα (5)

subject to: (vα)T Bvβ = δαβ , α,β = 1, . . . , p.

has the same maximizer as problem (3). The same goes with
the minimization problem.

The proof of this corollary is immediate.

III. A GENERALIZED PROJECTION SCHEME

An important and fundamental family of linear dimension-
ality reduction transformations is the set of projections into
a low dimensional space. In algebraic terms, projections are
characterized by having all the direction vectors orthonormal,
namely

(vα)T vβ = δαβ , α,β = 1, . . . , p. (6)

In a sense, projections preserve the structure of the data more
authentically than other linear transformations, since they can
be achieved by a rigid rotation of the data, followed by a
selection of a subgroup of the axes.

A. Derivation of PCA

Principal component analysis (PCA) is probably the most
widely used and well studied projection used for dimension-
ality reduction. A comprehensive discussion on PCA can be
found in many textbooks, see, e.g., [5], [12]. PCA projects
(possibly) correlated variables into a (possibly lower number
of) uncorrelated variables called principal components. The
first principal component accounts for as much of the vari-
ability in the data as possible, and each succeeding component
accounts for as much of the remaining variability as possible.
By using only the first few principal components, PCA makes
it possible to reduce the number of significant dimensions of
the data, while maintaining the maximum possible variance
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thereof. Formally, it can be shown that the orthonormal direc-
tion vectors v1, . . . ,vp in PCA should be taken as the p highest
unit eigenvectors of the covariance matrix S.

Much intuition on this technique is gained by understanding
that PCA is the best variance-preserving projection. Here,
we would like to gain even more intuition by deriving PCA
using a different, although related, motivation. This derivation
will later enable us to suggest significant generalizations of
PCA. In the following theorem we show that PCA finds the
projection that maximizes the sum of all squared pairwise
distances between the projected data elements.

Theorem III.1 PCA computes the p-dimensional projection
that maximizes

∑
i< j

(
distp

i j

)2
. (7)

This theorem implies intimate relationships between PCA
and multidimensional scaling. Despite the fact that the former
is coordinate based, while the latter is weight based, both
methods share, in a sense, similar objectives. Clearly distp

i j �
disti j for any p-dimensional projection and any two elements
i, j, and so

∑
i< j

(
distp

i j

)2
� ∑

i< j
(disti j)

2 .

Consequently, Theorem III.1 shows that PCA computes the
projection that maximizes the preservation of pairwise dis-
tances, similar to what multidimensional scaling strives to
achieve.

Before proving Theorem III.1, we define the n × n unit
Laplacian, denoted by Lu, as Lu

i j = δi j · n − 1. The unit
Laplacian satisfies the following lemma:

Lemma III.1 The matrices XT LuX and S are identical up to
a positive multiplicative factor, XT LuX = n2 ·S.

Proof: We shall examine a specific entry of the matrix,

(XT LuX)αβ =
n

∑
i, j=1

Lu
i jXiαXjβ =

n

∑
i, j=1

(n ·δi j −1)XiαXjβ =

=
n

∑
i=1

n ·XiαXiβ −
n

∑
i, j=1

XiαXjβ =

= n(XT X)αβ −
n

∑
i=1

Xiα ·
n

∑
j=1

Xjβ = n2Sαβ .

The last equality is due to the fact that the coordinates are
centered.

Now we can turn to prove Theorem III.1.
Proof: Recall that the data coordinates in the p-

dimensional projection are given by Xv1, . . . ,Xvp. By Lemma
II.1 we get

∑
i< j

(distp
i j)

2 =
p

∑
α=1

(Xvα)T Lu(Xvα) =
p

∑
α=1

(vα)T XT LuXvα .

Hence, a projection maximizing (7) can be formally posed as
the solution of

max
v1,...,vp

p

∑
α=1

(vα)T XT LuXvα

subject to: (vα)T vβ = δαβ , α,β = 1, . . . , p.

(8)

By Theorem II.1 the maximizer of (8) is the set of p highest
eigenvectors of the matrix XT LuX . By Lemma III.1, these
are also the p highest eigenvectors of the covariance matrix
(multiplication of a matrix by a positive constant does not
change the eigenvectors or their order). Hence, the solution of
(8) is achieved exactly by the first p principal components.

B. Weighted PCA

Formulating PCA as in (8) implies a straightforward gener-
alization — simply replace the unit Laplacian with a general
one in the target function. In the notation of Theorem III.1,
this means that the p-dimensional projection will maximize a
weighted sum of squared distances, instead of an unweighted
sum. Hence, it would be natural to call such a projection
method by the name weighted PCA.

Let us formalize this idea. Let {di j}n
i, j=1 be symmetric non-

negative pairwise weights, with di j measuring how important
it is for us to place the data elements i and j further apart in
the low dimensional space. By convention, di j = 0 for i = j.
For this reason, these weights will be called dissimilarities
in the context of weighted PCA. Normally, they are either
supplied from an external source, or calculated from the
data coordinates, in order to reflect any desired relationships
between the data elements. Generalizing (7), we now seek for
the projection that maximizes

∑
i< j

di j

(
distp

i j

)2
. (9)

The n×n Laplacian Ld associated with the dissimilarities is

Ld
i j =

{
∑n

j=1 di j i = j
−di j i �= j .

This Laplacian is intimately related to the weighted PCA, as
is clear from the following proposition.

Proposition III.1 The p-dimensional projection that maxi-
mizes

∑
i< j

di j

(
distp

i j

)2

is obtained by taking the direction vectors to be the p highest
eigenvectors of the matrix XT LdX.

Proof: The proof is the same as that of Theorem III.1,
just replace Lu with Ld .

Here we see a first example of a very fundamental property
of our dimensionality reduction method. We have a full control
over all the pairwise relationships between the data elements,
involving very large matrices (the Laplacian Ld is n × n,
with 1

2n(n− 1) degrees of freedom). However, the massive
calculations (finding the eigenvectors) are carried out over the
m×m matrix XT LdX . As m is typically much smaller than n,
the computation is very fast.

When would we like to apply such a weighted version of
PCA? Well, there may be many occasions. Sometimes, we
may have external knowledge about the dissimilarities, which
we would like to incorporate in the projection. An example
of such a dataset will be discussed later, in Subsection IV-A.
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In other cases, dissimilarities can be calculated directly from
the coordinates, and used to overcome certain drawbacks of
the standard PCA. In the next two subsections, we suggest
two different ways to calculate dissimilarities — the first is
designed to cope with outliers in the data, and the second is
designed to cope with labeled data.

1) Normalized PCA: As we have shown in Theorem III.1,
PCA strives to maximize the sum of all squared distances. The
fact that the distances are squared puts much more emphasis on
the preservation of large distances, frequently at the expense
of the preservation of shorter distances. In many cases, for
example when outliers are present, this behavior might impair
the results of PCA. Since pairwise distances involving outliers
are significantly larger than the other pairwise distances, PCA
tends to preserve outlying structures, sometimes by signif-
icantly slanting the projection. Indeed, PCA is known for
its extreme sensitivity to outliers, which frequently appear in
real-world datasets. We illustrate this phenomenon in Figure
1, where we present a synthetic two-dimensional dataset,
comprising a bulk of 50 normally-distributed points as well
as two outlying points. As can be seen in the figure, the one-
dimensional projection computed by PCA projects the data in
a direction that emphasizes the outliers while hiding almost
all of the structure of the bulky region.

The concept of weighted PCA may be used to significantly
improve the outlier robustness of PCA, by underweighting
distant data elements. A natural way to do this is to take the
dissimilarities as

di j =
1

disti j
.

The resulting projections are well balanced, aiming at preserv-
ing both large and small pairwise distances. We have found
this method, which we call normalized PCA, to be superior to
the standard PCA, especially when the data contain outliers.
Figure 1 exemplifies this, as the one-dimensional projection
achieved by normalized PCA is demonstrated to preserve
much better the overall structure of the dataset.

As another instructive example, Figure 2 shows three two-
dimensional projections of the four-dimensional sleep dataset,
consists of the body weight, brain weight, maximum life span
and gestation time of thirty mammals. This is a portion of a
larger dataset (columns with missing data omitted), originally
referred to in [1], and is publicly available in [11]. Figure
2a shows the projection obtained by PCA. We see that the
data are concentrated in one elongated cluster, except for three
outliers — man, Asian elephant and African elephant. Ideally,
we would expect the first principal component to account for
the variability in the main cluster, namely to point to the
direction shown by the arrow in the figure. This, however,
does not happen since the first principal component “works
hard” to separate the outliers from the main bulk and from
each other. Applying normalized PCA gives the projection
shown in Figure 2b, where we see a significant “straightening”
of the first principal component. Yet, it still does not point
in the direction of the arrow, and is nonetheless influenced
by the three outliers. It looks as if the outliers are still
dominant, and that a more drastic underweighting is needed.
Therefore, we have tried to use a version of normalized PCA,
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Fig. 1. Two one-dimensional projections of an originally two-dimensional
dataset that contains two outliers. The PCA projection is deceived by the
outliers, unlike the normalized PCA projection that maintains much of the
structure of the data.

taking the dissimilarities as the inverse squared distances,
di j = 1/dist2i j. This weighting scheme results in the projection
shown in Figure 2c. Now, the first principal component is
what we have been aiming for in the first place. The second
principal component also accounts much less for the outliers,
and consequently shows much more clearly the fine structure
of the main cluster.

The last example demonstrated a powerful property of
weighted PCA. The choice of dissimilarities is completely up
to the user, and can be specifically tailored for particular ap-
plication. For example, an even more dramatic underweighting
of outliers may be attained if we take the dissimilarities to be
proportional to a decaying exponential function of the original
pairwise distances.

Yet another enlightening example is shown in Figure 3,
which draws two-dimensional projections of a portion of
Alpadyin’s handwritten digits dataset. This dataset, developed
by Alpaydin and Kaynak [2] and publicly available in [3],
consists of ∼380 64-dimensional samples of each of the ten
digits. In the figure we show the drawings of the three digits
0,4 and 6. Figure 3a shows the projection obtained by PCA,
from which we see that it was guided by the large intra-
cluster variability of the numeral 4. Astonishingly, using the
normalized PCA weighting scheme, see Figure 3b, we obtain
clusters that are far more separated, even though we have not
supplied to the algorithm any information about the clustering
decomposition of the data. This occurs due to the fact that
approximately the same set of axes efficiently captures the
maximal fraction of both the intra-cluster and inter-cluster
(weighted) variability.
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Fig. 2. Two-dimensional projections of the four-dimensional sleep dataset. (a) PCA. (b) Normalized PCA. (c) Weighted PCA, with the weights taken as the
square of those in normalized PCA.
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Fig. 3. Two-dimensional projections of the 64-dimensional Alpaydin’s handwritten digits dataset. (a) PCA. (b) Normalized PCA. (c) Supervised PCA with
binary weights. (d) Supervised PCA with normalized weights.
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clusters, while the supervised PCA projection keeps them wide apart.

2) Supervised PCA: As the previous example shows, when
the data are labeled, a projection is often required to emphasize
the discrimination between the clusters. PCA, and even nor-
malized PCA, may fail to accomplish this, no matter how easy
the task is, as they are unsupervised techniques. The directions
that maximize the scatter of the data might not be as adequate
to discriminate between clusters.

Fortunately, our weighted PCA scheme can straightfor-
wardly take into consideration data labeling. Assume that we
are given any previously assigned pairwise dissimilarity val-
ues, for example calculated as in normalized PCA, or simply
uniform constants. Then, we may artificially underweight the
dissimilarities between intra-cluster pairs of data elements,
thus instructing the projection that it is more important to
show the inter-cluster separation. Technically, this is done
by multiplying the intra-cluster dissimilarities by some decay
factor 0 � t � 1, obtaining the modified dissimilarities

dlabeled
i j =

{
t ·di j i and j have the same label
di j otherwise.

Typically, we use t = 0, which means that the internal structure
of each cluster is set only indirectly according to the inter-
cluster relationships of its members.

Figure 4 spectacularly shows the effect of supervised PCA.
A two-dimensional synthetic dataset is drawn, comprising two
normally-distributed clusters (200 points each), together with
two one-dimensional projections. As is well apparent, the
one-dimensional PCA projection completely merges the two
clusters, whereas by setting all the intra-cluster dissimilarities
to zero, we obtain a one-dimensional projection that clearly
captures the dataset clustering decomposition.

Another fascinating example on a real-world dataset is
shown in Figures 3c-d. Here, we refer again to Alpadyin’s
handwritten digits dataset, but this time use the supervised
PCA scheme to achieve the drawings. Figure 3c used binary
weights only, with a dissimilarity of one between any two
samples not from within the same cluster. Figure 3d, which

is almost undistinguishable from Figure 3c, uses normalized
weights as in normalized PCA, with a decay factor t = 0.
Our first conclusion is that binary weights give results which
are essentially equivalent to those achieved by other, more
sophisticated, weighting schemes. This is a general conclusion
that we have also observed in other datasets that do not contain
outlying clusters, with the immediate implication of saving
computation time. The second and more surprising conclusion
is that supervised PCA gives practically the same results as
normalized PCA. This is definitely a feature of this particular
dataset, and is not a general property. In some sense, the
two methods are complete opposites. While normalized PCA
tries to maintain the dissimilarities between similar samples,
supervised PCA tries to maintain the dissimilarities between
the dissimilar samples.

IV. RATIO OPTIMIZATION

So far we have enriched the standard PCA by modifying the
matrix A in the maximization problem (1). Further strength-
ening of the method can be achieved by changing the form
of the target function itself and writing it as a ratio. This
enables the insertion of richer objectives into the optimization,
as maximizing a ratio reflects some compromise between
maximizing the numerator and minimizing the denominator.
Next, we shall see some powerful methods developed in accord
with this idea.

A. Maximization of Weighted Pairwise Dissimilarities

By Corollary II.1, the weighted PCA can be formulated as

max
v1,...,vp

∑i< j di j

(
distp

i j

)2

∑p
α=1(vα)T vα .

We suggest replacing it by altering the denominator,

max
v1,...,vp

∑i< j di j

(
distp

i j

)2

∑p
α=1(vα)T XT Xvα . (10)

Notice that vT XT Xv is the variance of the projection in
direction v, and the denominator sums the variances along
all axes. Therefore, while the numerator strives at maximizing
weighted pairwise distances, as before, the denominator pre-
vents “blowing up” of the result by minimizing the scatter
of the data along the principal axes. This target function
seems to be perfectly suitable for labeled data, where intra-
cluster dissimilarities have been decayed. In this case we
expect highly dissimilar data elements (belonging to different
clusters) to be placed distantly to maximize the numerator. But
data elements of the same cluster have (almost) no influence
on the numerator so they are placed closely to minimize the
denominator.

Obviously, a target function alone does not suffice for a
proper dimensionality reduction scheme, as it should be ac-
companied by a precise definition of the relationships between
the direction vectors. In the spirit of Section III, we may



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

require orthonormality relationships, resulting in the scheme

max
v1,...,vp

∑i< j di j

(
distp

i j

)2

∑p
α=1(vα)T XT Xvα

subject to: (vα)T vβ = δαβ . α,β = 1, . . . , p.

(11)

Such a projection scheme is in many ways the more natural
way to work in multiple dimensions. In fact, the Foley-
Sammon transformation [7] is an example of a scheme that
can be put in such a form. However, we shall not dwell on
this scheme for two reasons:

1) Notice that (11) digresses from the mathematical frame-
work developed in this paper as it cannot be put in the
form of (5).

2) In the realm of dimensionality reduction, there seems
to be a subtle, yet profound, drawback of using (11).
The orthonormality constraints enforce orthonormal di-
rection vectors, but do not impose any orthogonality
relationships between the coordinate vectors. This might
result in highly correlated coordinate vectors, with the
ramification that some of them are superfluous and do
not add new information. Even worse, this behavior
is actually the one we would expect in large datasets,
since it is reasonable to be able to find two orthogonal
direction vectors that show approximately the same
projection of the data, both with maximal, or close to
maximal, values of the target function.

Consequently, we suggest replacing the normality con-
straints on the direction vectors by such constraints on the
coordinate vectors. As the columns of X are centered, so
are the coordinate vectors. Orthogonality constraint on the
latter, thus, means that they are uncorrelated (two centered
vectors are uncorrelated when they are orthogonal) and con-
sequently each axis conveys new information that does not
exist in the rest of the axes. Formally, the coordinate vectors
are Xv1, . . . ,Xvp ∈ R

n, and they would be orthonormal if
(Xvα)T Xvβ = δαβ for α,β = 1, . . . , p. This is the same as
writing (vα)T XT Xvβ = δαβ , which means that the direction
vectors are required to be XT X orthonormal. Consequently, we
may suggest the following dimensionality reduction scheme

max
v1,...,vp

∑i< j di j

(
distp

i j

)2

∑p
α=1(vα)T XT Xvα

subject to: (vα)T XT Xvβ = δαβ . α,β = 1, . . . , p.

(12)

From Lemma II.1, Theorem II.2 and Corollary II.1, the maxi-
mizer of this problem is the p highest generalized eigenvectors
of (XT LdX , XT X).

A demonstration of this scheme is given in Figure
5. The dataset comprises hand-written digits taken from
www.cs.toronto.edu/˜roweis/data.html. It con-
tains 39 samples per digit, with each sample being a 20×16
bitmap, resulting in 320(= 20 × 16) binary coordinates. In
Figure 5a we see a two-dimensional embedding of this 320-
dimensional dataset using the method we have described here.
Inter-cluster dissimilarities were all set to 1, whereas intra-
cluster dissimilarities were set to 0. The result reflects a
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Fig. 5. Hand-written digits dataset containing 390 samples in 320 dimensions.
(a) The two-dimensional embedding of our method, exhibiting good separa-
tion of clusters. (b) The two-dimensional embedding of PCA, exhibiting poor
cluster discrimination.

good separation between clusters, especially in light of the
comparison with PCA, whose two-dimensional projection is
shown in Figure 5b.

Another example is shown in Figure 6, drawing two-
dimensional embeddings of the Colas dataset, taken from [10].
These data were collected in an experiment aimed at compar-
ing tastes of ten colas as perceived by a human panel. Subjects
were asked to perform two tasks: to rate each individual cola
with regard to 13 flavor descriptors, and to rank the level of
dissimilarity between each pair of colas. At the end of the day,
the resulting dataset comprises a 10×13 coordinate matrix1, as
well as a 10×10 matrix of pairwise dissimilarities. Figure 6a
shows the two-dimensional projection computed by PCA. This
embedding reflects well the difference in the coordinates of the
ten colas, but cannot account for the measured dissimilarities.
The embedding produced by a nonlinear dimensionality reduc-

1Actually we could show, using PCA, that the true dimensionality is seven,
and therefore we have worked with the 10×7 coordinate matrix, obtained by
taking the projection of the data onto the space spanned by the first seven
principal components.
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Fig. 6. Three two-dimensional embeddings of the colas dataset. Each of ten colas is characterized by 13 coordinates reflecting its flavor as assessed by
human subjects. These subjects also produced pairwise dissimilarities between the different colas. (a) A PCA projection of the dataset accounting only for
the coordinates. (b) The (nonlinear) eigenprojection embedding, accounting only for the dissimilarities. (c) Our method, taking into account both coordinates
and dissimilarities.

tion technique, the eigenprojection method [8], [9], is shown
in Figure 6b. This method is capable of accounting for the
measured dissimilarities, but cannot consider the coordinates.
In Figure 6c, we use our method with the weights di j being
the measured dissimilarities, utilizing thereby all available
information — coordinates and dissimilarities. Comparison of
this embedding to the former two shows a clear resemblance
to the nonlinear eigenprojection embedding, validating our
success in incorporating the dissimilarities into the final result.
However, unlike the eigenprojection, here the direction vectors
are interpretable linear combinations of the original taste
descriptors, indicating which of them influence the way people
sense different colas.

B. Minimization of Weighted Pairwise Similarities

Working with ratios makes it feasible to handle pairwise
weights given in the form of similarities. We define the simi-
larities {si j}n

i, j=1 as a set of symmetric non-negative weights,
with si j measuring how important it is for us to place the data
elements i and j close to each other. By convention, si j = 0
for i = j. In analogy with (10) and (12), we can now define
the complementary minimization problem,

min
v1,...,vp

∑i< j si j

(
distp

i j

)2

∑p
α=1(vα)T XT Xvα

subject to: (vα)T XT Xvβ = δαβ , α,β = 1, . . . , p.

(13)

Here we strive to shorten the distance between highly similar
data elements. It is important to keep in mind that when
solving a minimization problem, the denominator is essential.
Otherwise, we could have minimized the numerator of (13)
by projecting the data along an uninteresting direction where
they have almost no variability.

By defining the Laplacian Ls as

Ls
i j =

{
∑n

j=1 si j i = j
−si j i �= j

and using Lemma II.1 and Theorem II.2, we can easily see
that (13) is solved by the p lowest generalized eigenvectors of
(XT LsX , XT X).

Similarity values appear frequently in data analysis. Two
simple ways of extracting them from the coordinates are by
using decreasing functions of the distances or by computing
correlation coefficients. Sometimes it is beneficial to zero low
similarity values, thus obtaining a sparse Laplacian with non-
zero entries only between close elements. In this case, it is
sometimes advisable to set all these non-zero entries to the
value 1, thus getting a binary similarity matrix.

The similarity-based approach can also be used for labeled
data. Here, we have to decay all the similarities between
elements from different clusters, using some decay factor
0 � t � 1,

slabeled
i j =

{
si j i and j have the same label
t · si j otherwise

Typically, we set t = 0, which means that we do not want the
low dimensional embedding to reflect any proximity relations
between elements from different clusters.

We cannot give a conclusive advice on whether to prefer
working with similarities or with dissimilarities. In general,
it depends on which kind of relationships is easier to be
measured on the specific data.

An example in which working with similarities is conve-
nient is the odors dataset, which comprises 30 volatile pure
chemicals that were chosen to represent a broad range of
smells. The odor emission of each sample was measured
using an electronic nose, resulting in a 16-dimensional vector
representing that sample. In total, we have performed 300 mea-
surements to yield a 300× 16 coordinate matrix, partitioned
into 30 clusters. In a separate work [4], we have developed
a technique to derive from the raw data pairwise similarity
values. Figure 7a shows a two-dimensional embedding of this
dataset using our method, where inter-cluster similarities were
set to zero. In general, the clusters, which are color-coded
in the figure, are well separated. For comparison, we show
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Fig. 7. The odors dataset containing 300 measurements classified into 30
clusters, shown in color-coding in the figure. (a) The embedding computed by
our method, clearly showing sharp separation between the clusters. (b) The
projection computed by PCA.

in Figure 7b the two-dimensional projection of this dataset
computed by PCA, clearly exhibiting a reduced ability to show
the separation between the different clusters.

C. Inter-cluster repulsion and intra-cluster attraction

Lemma III.1 shows that we may replace the matrix XT X
by the matrix XT LuX in the denominators of problems (12)
and (13). This suggests a generalization of these problems by
using a general Laplacian, rather than Lu, in the denominator.

Thus, if we are given pairwise similarities si j, as well as
pairwise dissimilarities di j, we may replace (13) by

min
v1,...,vp

∑i< j si j

(
distp

i j

)2

∑i< j di j

(
distp

i j

)2

subject to: (vα)T XT LdXvβ = δαβ α,β = 1, . . . , p ,

(14)

whose solution is given by the p lowest generalized eigen-
vectors of (XT LsX , XT LdX). Since(vα)T XT LdXvα = ∑n

i< j di j ·
((Xvα)i − (Xvα) j)2, the constraint states that the weighted
sum of squared distances should be uniform along all axes.
Minimizing this target function is achieved by simultaneously
minimizing the distances between highly similar elements
(to minimize the numerator) and maximizing the distances

between highly dissimilar elements (to maximize the denomi-
nator). For labeled data we may decay inter-cluster similarities
and intra-cluster dissimilarities, usually setting them to zero.
Consequently, in problem (14) we strive to minimize the
weighted sum of intra-cluster squared distances while max-
imizing the weighted sum of inter-cluster squared distances.

Similarly, we can generalize (12) by

max
v1,...,vp

∑i< j di j

(
distp

i j

)2

∑i< j si j

(
distp

i j

)2

subject to: (vα)T XT LsXvβ = δαβ α,β = 1, . . . , p.

(15)

Here, the solution is given by the p highest generalized
eigenvectors of (XT LdX , XT LsX).

Problems (14) and (15) allow for more degrees of freedom
than the previous methods discussed in this paper. They let
us use pairwise weights not only in the target function that
has to be maximized/minimized but also in the orthonormality
constraint. Therefore, they are very suitable for labeled data,
as they can induce “attraction” between elements of the same
cluster, and “repulsion” between elements of different clusters.
An important application of these methods is a robust form of
Fisher’s Linear Discriminant Analysis, to which we now turn.

D. Normalized LDA

We start by introducing some notations that are required for
this subsection. Let c be the total number of clusters, and let ni

be the number of data elements in the ith cluster. We use the
symbols µi and Si for the mean vector and biased covariance
matrix of the ith cluster. The matrix Sw = 1

n ∑c
i=1 niSi is called

the average intra-cluster covariance matrix. The inter-cluster
covariance matrix is defined as Sb = 1

n ∑c
i=1 niµiµT

i . For more
details on these magnitudes see, e.g., [12].

It was Fisher [6] who first suggested maximizing what is
now known as the Fisher criterion (vT Sbv)/(vT Swv), where
v is some direction vector. Here, the ratio is again used for
achieving a balance — to maximally separate between the
clusters (the role of the numerator), and at the same time
to keep the clusters as compact as possible (the role of the
denominator). It can be proved that the maximizer of the Fisher
criterion is the same as the maximizer of

vT Sbv
vT Sv

.

Since S and XT X are identical up to a constant (n), this last
form of the Fisher criterion bears much resemblance to the
scheme (12), implying a profound connection between them.
To see this connection, we will show how the Fisher criterion
can be rewritten in the form of (12). To show it explicitly, let
us define the inter-cluster Laplacian Lb as

Lb
i j =

{ −1+ n
ng

i, j are both in cluster g

−1 i, j are in different clusters .
(16)

Then, we may prove the following equivalent of Lemma III.1.

Lemma IV.1 The matrices XT LbX and Sb are identical up to
a positive multiplicative factor, XT LbX = n2 ·Sb.
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Proof: Let us define the n× c matrix G such that Gi j is
one when the ith data element belongs to the jth cluster, and
zero otherwise. From Lemma III.1, the Laplacian associated
with Sg (the biased covariance matrix of the gth cluster) is

L
Sg
i j = GigGjg

(
1
ng

δi j − 1
n2

g

)
.

Since the clusters are disjoint, the Laplacian associated with
Sw is just LSw = 1

n ∑c
g=1 ngLSg , namely

LSw
i j =

1
n

c

∑
g=1

GigGjg

(
δi j − 1

ng

)
.

Based on the relation Sb = S− Sw, and using again Lemma
III.1, the Laplacian associated with Sb can be written as

LSb
i j =

1
n2 Lu

i j −LSw
i j =

1
n

δi j − 1
n2 − 1

n

c

∑
g=1

GigGjg

(
δi j − 1

ng

)
.

But, ∑g GigGjgδi j = δi j, and therefore

LSb
i j = − 1

n2 +
1
n

c

∑
g=1

1
ng

GigGjg.

Multiplying it by n2, we immediately obtain (16).
The Fisher criterion can therefore be written as
(vT XT LbXv)/(vT XT LuXv).

Fisher, however, was interested only in finding a single
direction vector. Later, several alternatives were suggested
how to extend his idea for finding a series of direction
vectors. The most popular technique is known as Fisher’s
linear discriminant analysis (LDA), which poses the following
maximization problem

max
v1,...,vp

∑p
α=1(v

α)T Sbvα

∑p
α=1(vα)T Svα (17)

subject to: (vα)T Svβ = δαβ α,β = 1, . . . , p.

This is a classical problem, and the reader is referred to, e.g.,
[5], [12] for more details. Despite its usefulness, we can point
out two drawbacks of LDA:

1) A simple maximization of the inter-cluster variance is
sensitive to outliers, reflected in the tendency of LDA to
prefer showing a few remotely located clusters at the ex-
pense of masking closer clusters. To illuminate this point
we have generated a synthetic two-dimensional dataset,
shown in Figure 8, comprising 10 clusters, each with 100
elements. Two of the clusters are placed distantly from
the rest. As can be seen, the one-dimensional projection
computed by LDA emphasizes the two outlying clusters,
but completely masks the other eight clusters, which
might be the more fundamental portion of the data.

2) When used for visualization, the attempt to minimize the
variance of a cluster does not take into consideration the
shape and size of this cluster. No matter if the cluster
is dense or heterogeneous, or if the cluster is elongated
or spherical, LDA strives to embed it as a small sphere.
This may be desired for classification, but prevents a re-
liable visual assessment of the cluster properties. Again,
we shall make this claim more tangible by showing a

synthetic example. Figure 9 shows a two-dimensional
dataset comprising two normally-distributed clusters,
each with 200 elements. One cluster is symmetric having
the same variance along both axes, whereas the other
cluster is elliptic, and its variance along the x-axis is 10
times larger than the variance along the y-axis. As can be
seen in the figure, one-dimensional projection computed
by the LDA makes the two clusters of approximately
the same scatter. Consequently, the heterogeneity of the
elliptic cluster cannot be discerned.

In order to overcome these drawbacks, we may be aided
by our previous observation that the scheme (12) (and of
course (15)), is a generalization of LDA. LDA is restored if we
choose the dissimilarities in (12) as dictated by (16). Similarly
to our proof of Theorem III.1, it can be shown that LDA
strives to maximize the ratio between inter-cluster pairwise
squared distances and intra-cluster pairwise squared distances.
Consequently, it is mainly concerned with the larger pairwise
distances. We claim that we can remedy the two aforemen-
tioned shortcomings of LDA by an appropriate choice of the
pairwise weights in (14) or (15) which reduce the dominance
of large distances. Here we would like to suggest a particular
weighting scheme, which we call normalized LDA,

di j =

{
0 i and j have the same label
1

disti j
otherwise

si j =

{
1

disti j
i and j have the same label

0 otherwise

Normalized LDA is far more robust with respect to a few
outlying clusters, corresponding to large distances from the
rest of the data. Such distances will have smaller impact as
their weights (the respective values of the di j’s) are reduced.
This is beautifully demonstrated in Figure 8 where the one-
dimensional projection of normalized LDA captures well the
eight clusters in a row, reflecting the main trend in the data.
Similarly, it is not very important for normalized LDA to place
distant elements of the same cluster in close proximity, as their
respective weights (the respective values of the si j’s) are small.
This can be seen in the normalized LDA one-dimensional
projection in Figure 9, where the different structure of the
clusters is preserved, without ruining their separation.

V. CONCLUSIONS

We propose a novel family of linear transformations to
achieve low dimensional embedding of multivariate data.
These transformations have a significant advantage over other
techniques in their ability to simultaneously account for many
properties of the data such as coordinates, pairwise similarities,
pairwise dissimilarities, and their clustering decomposition.
Therefore, we exhaust all kinds of available information so as
to make an instructive and reliable low dimensional embed-
ding. In fact, the derivation of these transformations integrates
two apparently very different approaches — those that are
coordinate-based and those that are weight-based. This reveals
interesting relationships between the linear PCA and LDA and
the nonlinear eigenprojection and MDS.
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Fig. 8. Two one-dimensional projections of two-dimensional data composed
of ten clusters, two of them are outliers. The LDA projection, striving to
maximize the inter-cluster variance, emphasizes only the outlying clusters.
However, the normalized LDA separates those eight clusters that form the
main trend of the data.
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Fig. 9. Two one-dimensional projections of two-dimensional data composed
of two clusters of very different shapes. The LDA projection, striving to
diminish the intra-cluster variance, produces very similar projections for both
clusters. However, the normalized LDA succeeds in showing the different
intra-structure of the clusters.

Our methods contain PCA and LDA as special cases, but
offer more powerful and robust variants that can better capture
the essence of the data under inspection. Such two interesting
variants, which address several shortcomings of PCA and
LDA, are normalized PCA and normalized LDA. One of their
advantages is an improved robustness towards the presence of
outliers, samples or clusters, in the data.

All formulations lead to optimal solutions that can be
directly computed by eigenvector decomposition of m × m
matrices, where m is the dimensionality of the data. This
is also the case in PCA and LDA. However, the power of
our formulations lies in the fact that these m×m matrices
are derived by matrix multiplications that involve an n× n
Laplacian matrix, where n is the number of data elements
(typically, n >> m). Therefore, we fine-tune the m×m matrix
by appropriately altering the n× n entries of the Laplacian,
and so the pairwise relationships between data elements are
directly reflected in the m×m matrix.

One of the most important properties of our methods is that

they can adequately address labeled data by capturing well the
inter-cluster structure of the data, as well as the cluster shapes.
This is naturally highly beneficial when we are interested in
data exploration.
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