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ABSTRACT - Cluster analysis plays an important role for understanding
various phenomena and exploring the nature of obtained data. A remarkable
diversity of ideas, in a wide range of disciplines, has been applied to clustering
research. Here, we survey clustering algorithms in computational intelligence,
particularly based on neural networks and kernel-based learning. We further
illustrate their applications in five real world problems.

1 Introduction

Clustering, in contrast to supervised classification, involves problems where no
labeled data are available [18], [22], [28], [45]. The goal is to separate a finite
unlabeled data set into a finite and discrete set of “natural”, hidden data
structures, rather than provide an accurate characterization of unobserved
samples generated from the same probability distribution [4], [18]. One of
the important properties of clustering is the subjectivity, which precludes an
absolute judgment as to the relative efficacy of all clustering algorithms [4],
[46].

Clustering algorithms partition data into a certain number of clusters
(groups, subsets, or categories). There is no universally agreed upon definition
[28]. Most researchers describe a cluster by considering the internal homogene-
ity and the external separation [34], [40], [45], i.e., patterns in the same cluster
should be similar to each other, while patterns in different clusters should not.
Both the similarity and the dissimilarity should be examinable in a clear and
meaningful way. Here, we give the simple mathematical descriptions of parti-
tional clustering and hierarchical clustering, based on [40].
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Given a set of N input patterns X = {x1, . . . ,xj , . . . ,xN}, where xj =
(xj1, xj2, . . . , xjd)T ∈ <d and each xji measure is said to be a feature (at-
tribute, dimension, or variable),

• (Hard) partitional clustering attempts to seek a K-partition of X, C =
{C1, . . . , CK}(K ≤ N), such that
- Ci 6= φ, i = 1, . . . , K;
-

⋃K
i=1 Ci = X;

- Ci ∩ Cj = φ, i, j = 1, . . . , K and i 6= j.
• Hierarchical clustering attempts to construct a tree-like nested structure

partition of X, H = {H1, . . . , HQ}(Q ≤ N), such that Ci ∈ Hm, Cj ∈ Hl,
and m > l imply Ci ∈ Cj or Ci ∩ Cj = φ for all i, j 6= i,m, l = 1, . . . , Q.

Clustering consists of four basic steps:

1. Feature selection or extraction. As pointed out in [9] and [46], feature
selection chooses distinguishing features from a set of candidates, while
feature extraction utilizes some transformations to generate useful and
novel features.

2. Clustering algorithm design or selection. The step is usually combined
with the proximity measure selection and the criterion function construc-
tion. The proximity measure directly affects the formation of the resulting
clusters. Once it is chosen, the clustering criterion construction makes the
partition of clusters an optimization problem, which is well defined math-
ematically.

3. Cluster validation. Effective evaluation standards and criteria are impor-
tant to provide the users with a degree of confidence for the clustering
results derived from the used algorithms.

4. Results interpretation. Experts in the relevant fields interpret the data
partition. Further analysis, even experiments, may be required to guaran-
tee the reliability of extracted knowledge.

The remainder of the paper is organized as follows. In Sect. 2, we briefly
review major clustering techniques rooted in machine learning, computer sci-
ence, and statistics. More discussions on computational intelligence technolo-
gies based clustering are given in Sect. 3 and 4. We illustrate five important
applications of the clustering algorithms in Sect. 5. We conclude the paper
and summarize the potential challenges in Sect. 6.

2 Clustering Algorithms

Different objects and criteria usually lead to different taxonomies of clustering
algorithms [28], [40], [45], [46]. A rough but widely agreed frame is to classify
clustering techniques as hierarchical clustering and partitional clustering [28],
[46], as described in Sec. 1.
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Hierarchical clustering (HC) algorithms organize data objects with a se-
quence of partitions, either from singleton clusters to a cluster including all
individuals or vice versa [28]. The results of HC are usually depicted by a
binary tree or dendrogram. The root node of the dendrogram represents the
whole data set and each leaf node is regarded as a data object. The intermedi-
ate nodes thus describe the extent that the objects are proximal to each other;
and the height of the dendrogram usually expresses the distance between each
pair of objects or clusters, or an object and a cluster. The ultimate cluster-
ing results can be obtained by cutting the dendrogram at different levels. This
representation provides very informative descriptions and visualization for the
potential data clustering structures, especially when real hierarchical relations
exist in the data. However, classical HC algorithms lack robustness and are
sensitive to noise and outliers. The computational complexity for most of HC
algorithms is at least O(N2) and this high cost limits their application in
large-scale data.

In contrast to hierarchical clustering, partitional clustering assigns a set of
objects into a pre-specified K clusters without a hierarchical structure. The
principally optimal partition is infeasible in practice, due to the expensive
computation [28]. Therefore, heuristic algorithms have been developed in or-
der to seek approximate solutions. One of the important factors in partitional
clustering is the criterion function [40], and the sum of squared error function
is one of the most widely used, which aims to minimize the cost function.
The K-means algorithm is the best-known squared error-based clustering al-
gorithm, which is very simple and can be easily implemented in solving many
practical problems [54]. It can work very well for compact and hyperspher-
ical clusters. The time complexity of K-means is O(NKd), which makes it
scale well for large data sets. The major disadvantages of K-means lie in its
dependence on the initial partitions and the identification of the number of
clusters, the convergence problem, and the sensitivity to noise. Many variants
of K-means have been proposed to address these problems, as summarized
in [87]. Particularly, the stochastic optimization methods, such as the genetic
algorithms, can explore the solution space more flexibly and efficiently and
find the approximate global optimum [38]. However, the potential price are
the difficulty of parameter selection and expensive computational complexity
[87].

Hard or crisp clustering only assigns an object to one cluster. However, a
pattern may also be allowed to belong to all clusters with a degree of member-
ship, ui,j ∈ [0, 1], which represents the jth membership coefficient of the ith ob-
ject in the cluster and satisfies the following two constraints:

∑c
i=1 ui,j = 1,∀j

and
∑N

j=1 ui,j < N, ∀i, as introduced in fuzzy set theory [89]. This is particu-
larly useful when the boundaries among the clusters are not well separated and
ambiguous. Moreover, the memberships may help us discover more sophisti-
cated relations between a given object and the disclosed clusters. The typical
example is Fuzzy c-Means algorithm, together with its numerous variants [8],
[43], [87].
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In the probabilistic view, data points in different clusters are assumed
to be generated according to different probability distributions. The mix-
ture probability density for the whole data set is expressed as p(x|η) =∑K

i=1 p(x|Ci, ηi)P (Ci), where η = (η1, . . . , ηK) is the parameter vector, P (Ci)
is the prior probability and

∑K
i=1 P (Ci) = 1, and p(x|Ci, ηi) is the conditional

probability density. The component density can be different types of functions,
or the same family, but with different parameters. If these distributions are
known, finding the clusters of a given data set is equivalent to estimating the
parameters of several underlying models, where Maximum Likelihood (ML) es-
timation can be used [22]. In the case that the solutions of the likelihood equa-
tions of ML cannot be obtained analytically, the Expectation-Maximization
(EM) algorithm can be utilized to approximate the ML estimates through an
iterative procedure [56]. As long as the parameter vector is decided, the poste-
rior probability for assigning a data point to a cluster can be easily calculated
with Bayes’s theorem.

3 Neural Networks-Based Clustering

In competitive neural networks, active neurons reinforce their neighborhood
within certain regions, while suppressing the activities of other neurons (so-
called on-center/off-surround competition). Typical examples include Learn-
ing Vector Quantization (LVQ) and Self-Organizing Feature Maps (SOFM)
[48], [49]. Intrinsically, LVQ performs supervised learning, and is not catego-
rized as a clustering algorithm [49], [61]. But its learning properties provide an
insight to describe the potential data structure using the prototype vectors in
the competitive layer. By pointing out the limitations of LVQ, including sen-
sitivity to initiation and lack of a definite clustering object, Pal, Bezdek and
Tsao proposed a general LVQ algorithm for clustering, known as GLVQ [61].
They constructed the clustering problem as an optimization process based
on minimizing a loss function, which is defined on the locally weighted error
between the input pattern and the winning prototype. They also showed the
relations between LVQ and the online K-means algorithm.

The objective of SOFM is to represent high-dimensional input patterns
with prototype vectors that can be visualized in a usually two-dimensional
lattice structure [48], [49]. Each unit in the lattice is called a neuron, and
adjacent neurons are connected to each other, which gives the clear topology
of how the network fits itself to the input space. Input patterns are fully con-
nected to all neurons via adaptable weights, and during the training process,
neighboring input patterns are projected into the lattice, corresponding to
adjacent neurons. In this sense, some authors prefer to think of SOFM as a
method to displaying latent data structure in a visual way rather than a clus-
tering approach [61]. Basic SOFM training goes through the following steps
and a variety of variants of SOFM can be found in [49].
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1. Define the topology of the SOFM; Initialize the prototype vectors mi(0), i =
1, . . . , K randomly;

2. Present an input pattern x to the network; Choose the winning node J
that is closest to x, i.e. J = arg minj{‖x−mj‖};

3. Update prototype vectors mi(t + 1) = mi(t) + hci(t)[x − mi(t)], where
hci(t) is the neighborhood function that is often defined as hci(t) =
α(t) exp(−‖rc−ri‖2

2σ2(t) ), where α(t) is the monotonically decreasing learning
rate, r represents the position of corresponding neuron, and σ(t) is the
monotonically decreasing kernel width function, or

hci(t) =
{

α(t) if node c belongs to the neighborhood of the winning node J
0 otherwise

4. Repeat steps 2 and 3 until no change of neuron position that is more than
a small positive number is observed.

Adaptive resonance theory (ART) was developed, by Carpenter and Gross-
berg, as a solution to the plasticity and stability dilemma [11], [13]. ART can
learn arbitrary input patterns in a stable, fast and self-organizing way, thus
overcoming the effect of learning instability that plagues many other com-
petitive networks. ART is not, as is popularly imagined, a neural network
architecture. It is a learning theory, that resonance in neural circuits can trig-
ger fast learning. As such, it subsumes a large family of current and future
neural networks architectures, with many variants. ART1 is the first member,
which only deals with binary input patterns [11], although it can be extended
to arbitrary input patterns by a variety of coding mechanisms. ART2 extends
the applications to analog input patterns [12] and ART3 introduces a new
mechanism originating from elaborate biological processes to achieve more
efficient parallel search in hierarchical structures [14]. By incorporating two
ART modules, which receive input patterns (ARTa) and corresponding labels
(ARTb) respectively, with an inter-ART module, the resulting ARTMAP sys-
tem can be used for supervised classifications [15]. The match tracking strat-
egy ensures the consistency of category prediction between two ART modules
by dynamically adjusting the vigilance parameter of ARTa. A similar idea,
omitting the inter-ART module, is known as LAPART [42].

The basic ART1 architecture consists of two-layer nodes (see Fig. 1), the
feature representation field F1 and the category representation field F2. They
are connected by adaptive weights, bottom-up weight matrix W12 and top-
down weight matrix W21. The prototypes of clusters are stored in layer F2.
After it is activated according to the winner-takes-all competition, an expec-
tation is reflected in layer F1, and compared with the input pattern. The
orienting subsystem with the specified vigilance parameter ρ(0 ≤ ρ ≤ 1) de-
termines whether the expectation and the input are closely matched, and
therefore controls the generation of new clusters. It is clear that the larger
ρ is, the more clusters are generated. Once weight adaptation occurs, both
bottom-up and top-down weights are updated simultaneously. This is called
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Fig. 1. ART1 Architecture.

resonance, from which the name comes. The ART1 algorithm can be described
as follows:

1. Initialize weight matrices W12 and W21 as W 12
ij = αj , where αj are sorted

in a descending order and satisfies 0 < αj < 1/(β + |x|) for β > 0 and any
binary input pattern x, and W 21

ji = 1;
2. For a new pattern x, calculate the input from layer F1 to layer F2 as

Tj =
d∑

i=1

W 12
ij xi =

{ |x|αj if j is uncommitted (first activated)
|x∩W21

j |
β+|W21

j
| if j is committed ,

where ∩ represents the logic AND operation.
3. Activate layer F2 by choosing node J with the winner-takes-all rule TJ =

maxj{Tj};
4. Compare the expectation from layer F2 with the input pattern. If ρ ≤

|x∩W21
J |

|x| , go to step 5a, otherwise go to step 5b.
5. a Update the corresponding weights for the active node as W12

J (new) =
|x∩W21

J (old)|
β+|W21

J
(old)| and W21

J (new) = x ∩W21
J (old);

b Send a reset signal to disable the current active node by the orienting
subsystem and return to step 3;

6. Present another input pattern, return to step 2 until all patterns are
processed.

Note the relation between ART network and other clustering algorithms
described in traditional and statistical language. Moore used several clustering
algorithms to explain the clustering behaviors of ART1 and therefore induced
and proved a number of important properties of ART1, notably its equiva-
lence to varying K-means clustering [57]. She also showed how to adapt these
algorithms under the ART1 framework. In [83] and [84], the ease with which
ART may be used for hierarchical clustering is also discussed.

Fuzzy ART (FA) benefits the incorporation of fuzzy set theory and ART
[16]. FA maintains similar operations to ART1 and uses the fuzzy set oper-
ators to replace the binary operators, so that it can work for all real data
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sets. FA exhibits many desirable characteristics such as fast and stable learn-
ing and atypical pattern detection. The criticisms for FA are mostly focused
on its inefficiency in handling noise and the deficiency of hyperrectangular
representation for clusters [4], [5], [81]. Williamson described Gaussian ART
(GA) to overcome these shortcomings, in which each cluster is modeled with
Gaussian distribution and represented as a hyperellipsoid geometrically [81].
GA does not inherit the offline fast learning property of FA, as indicated by
Anagnostopoulos et al. [3], who proposed Ellipsoid ART (EA) for hyperel-
lipsoidal clusters to explore a more efficient representation of clusters, while
keeping important properties of FA [3]. Baraldi and Alpaydin proposed Sim-
plified ART (SART) following their general ART clustering networks frame,
which is described through a feed-forward architecture combined with a match
comparison mechanism [4]. As specific examples, they illustrated Symmetric
Fuzzy ART (SFART) and Fully Self-Organizing SART (FOSART) networks.
These networks outperform ART1 and FA according to their empirical studies
[4].

Like ART family, there are other neural network-based constructive clus-
tering algorithms that can adaptively and dynamically adjust the number of
clusters rather than use a pre-specified and fixed number, as K-means and
SOFM require [26], [62], [65], [90].

4 Kernel-Based Clustering

Kernel-based learning algorithms [60], [71], [80] are based on Cover’s theo-
rem. By nonlinearly transforming a set of complex and nonlinearly separable
patterns into a higher-dimensional feature space, we can obtain the possibil-
ity to separate these patterns linearly [41]. The difficulty of curse of dimen-
sionality can be overcome by the kernel trick, arising from Mercer’s theorem
[41]. By designing and calculating an inner-product kernel, we can avoid the
time-consuming, sometimes even infeasible process, to explicitly describe the
nonlinear mapping and compute the corresponding points in the transformed
space.

In [72], Schölkopf, Smola and Müller depicted a kernel-K-means algorithm
in the online mode. Suppose we have a set of patterns xj ∈ <d, j = 1, . . . , N ,
and a nonlinear map Φ : <d → F . Here, F represents a feature space with
arbitrarily high dimensionality. The object of the algorithm is to find K cen-
ters so that we can minimize the distance between the mapped patterns and
their closest center ‖Φ(x) − ml‖2 = ‖Φ(x) − ∑N

j=1 τljΦ(xj)‖2 = k(x,x) −
2

∑N
j=1 τljk(x,xj) +

∑N
i,j=1 τliτljk(xi,xj), where ml is the center for the lth

cluster and lies in a span of Φ(x1), . . . , Φ(xN ), and k(x,xj) = Φ(x) · Φ(xj) is
the inner-product kernel.

Define the cluster assignment variable Cjl =
{

1 if xj belongs to cluster l
0 otherwise ,

then the kernel-K-means algorithm can be formulated as below:
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1. Initialize the centers ml with the first i, (i ≥ K), observation patterns;
2. Take a new pattern xi+1 and calculate C(i+1)h as

C(i+1)h =
{

1 if ‖Φ(xi+1)−mh‖2 < ‖Φ(xi+1)−mj‖2,∀j 6= h
0 otherwise ;

3. Update the mean vector mh whose corresponding C(i+1)h is 1,

mnew
h = mold

h + ξ(Φ(xi+1)−mold
h ),

where ξ = C(i+1)h/
∑i+1

j=1 Cjh;
4. Adapt the coefficients τhj for each Φ(xj) as

τnew
hj =

{
τold
hj (1− ξ) for j 6= i + 1

ξ for j = i + 1
;

5. Repeat the steps 2-4 until convergence is achieved.

Two variants of kernel-K-means were introduced in [20], motivated by
SOFM and ART networks.

An alternative kernel-based clustering approach is in [30]. The problem
was formulated to determine an optimal partition Γ to minimize the trace of
within-group scatter matrix in the feature space,

Γ = arg min
Γ

Tr(SΦ
W )

= arg min
Γ

Tr{ 1
N

K∑

i=1

N∑

j=1

γij(Φ(xj)−mi)(Φ(xj)−mi)T }

= arg min
Γ

K∑

i=1

ξiR(x|Ci)

where ξi = Ni/N , R(x|Ci) = 1
N2

i

∑N
l=1

∑N
j=1 γilγijk(xl,xj), and Ni is the

total number of patterns in the ith cluster. The kernel function utilized in this
case is the radial basis function.

Ben-Hur et al. presented a new clustering algorithm, Support Vector Clus-
tering (SVC), in order to find a set of contours used as the cluster boundaries
in the original data space [6]. These contours can be formed by mapping back
the smallest enclosing sphere, which contains all the data points in the trans-
formed feature space. Chiang and Hao extended the idea by considering each
cluster corresponding to a sphere, instead of just one sphere in SVC [19]. They
adopted a mechanism similar to ART to dynamically generate clusters. When
an input is presented, clusters compete based on some pre-specified distance
function. A validation test is performed to ensure the eligibility of the cluster
to represent the input pattern. A new cluster is created as a result of the
failure of all clusters available to the vigilance test. Furthermore, the distance
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between the input pattern and the cluster center and the radius of the sphere
provide a way to calculate the fuzzy membership function.

Kernel-based clustering algorithms have many advantages:

1. It is more possible to obtain a linearly separable hyperplane in the high-
dimensional, or even infinite feature space;

2. They can form arbitrary clustering shapes other than hyperellipsoid and
hypersphere;

3. Kernel-based clustering algorithms, like SVC, have the capability of deal-
ing with noise and outliers;

4. For SVC, there is no requirement for prior knowledge to determine the
system topological structure. In [30], Girolami performed eigenvalue de-
composition on the kernel matrix in the high-dimensional feature space
and used the dominant K components in the decomposition summation
as an indication of the possible existence of K clusters.

5 Applications

Clustering has been applied in a wide variety of fields [28], [46]. We illustrate
the applications of clustering algorithms in five interesting and important
aspects, as described through Sect. 5.1 to 5.5.

5.1 Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is one of the most studied examples in
NP-complete problems. Given a complete undirected graph G = (V, E), where
V is a set of vertices and E is a set of edges with an associated non-negative
integer cost, the most general form of the TSP is equivalent to finding any
Hamiltonian cycle, which is a tour over G that begins and ends at the same
vertex and visits other vertices exactly once. The more common form of the
problem is the optimization problem of trying to find the shortest Hamiltonian
cycle, and in particular, the most common is the Euclidean version, where the
vertices and edges all lie in the plane. Mulder and Wunsch applied a divide-
and-conquer clustering technique, with ART networks, to scale the problem
to a million cities [59], and later, to 25 million cities [85]. The divide and
conquer paradigm gives the flexibility to hierarchically break large problems
into arbitrarily small clusters depending on what trade-off between accuracy
and speed is desired. In addition, the sub-problems provide an excellent op-
portunity to take advantage of parallel systems for further optimization. As
the first stage of the algorithm, ART is used to cluster the cities. The clusters
were then each passed to a version of the Lin-Kernighan algorithm. The last
step combines the subtours back into one complete tour. Tours with good
quality for up to 25 million cities were obtained within 13,500 seconds on a
2GHz AMD Athlon MP processor with 512M of DDR RAM.
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5.2 Bioinformatics - Gene Expression Data Analysis

Genome sequencing projects have achieved great advance in recent years. How-
ever, these successes can only be seen as the first step towards understand-
ing the functions of genes and proteins and the interactions among cellular
molecules. DNA microarray technologies provide an effective way to measure
expression levels of tens of thousands of genes simultaneously under different
conditions, which makes it possible to investigate gene activities of the whole
genome [24], [53]. We demonstrate the applications of clustering algorithms in
analyzing the explosively increasing gene expression data through both genes
and tissues clustering.

Cluster analysis, for grouping functionally similar genes, gradually became
popular after the successful application of the average linkage hierarchical
clustering algorithm for the expression data of budding yeast Saccharomyces
cerevisiae and reaction of human fibroblasts to serum by Eisen et al. [25]. They
used the Pearson correlation coefficient to measure the similarity between two
genes, and provided a very informative visualization of the clustering results.
Their results demonstrate that functionally similar genes tend to reside in
the same clusters formed by their expression pattern. Tomayo et al. made use
of SOFM to cluster gene expression data and its application in hematopoi-
etic differentiation provided new insight for further research [77]. Since many
genes usually display more than one function, fuzzy clustering may be more
effective in exposing these relations [21]. Gene expression data is also impor-
tant to elucidate the genetic regulation mechanism in a cell. Spellman et al.
clustered 800 genes according to their expression during the yeast cell cycle
[75]. Analyses of 8 major gene clusters unravel the connection between co-
expression and co-regulation. Tavazoie et al. partitioned 3,000 genes into 30
clusters with the K-means algorithm [78]. For each cluster, 600 base pairs
upstream sequences of the genes were searched for potential motifs. 18 mo-
tifs were found from 12 clusters in their experiments and 7 of them can be
verified according to previous empirical results. Fig. 2 (a) and (b) illustrate
the application of hierarchical clustering and SOFM for the small round blue-
cell tumors (SRBCTs) data set, which consists of the measurement of the
expression levels of 2,308 genes across 83 samples [47]. Hierarchical clustering
was performed by the program CLUSTER and the results were visualized by
the program TreeView, developed by Eisen in Stanford University. The soft-
ware package GeneCluster, developed by Whitehead Institute/MIT Center for
Genome Research, was used for SOFM analysis.

In addition to genes clustering, tissues clustering are valuable in identify-
ing samples that are in the different disease states, discovering or predicting
different cancer types, and evaluating the effects of novel drugs and therapies
[1], [31], [70]. Golub et al. described the restriction of traditional cancer classi-
fication methods and divided cancer classification as class discovery and class
prediction. They utilized SOFM to discriminate two types of human acute
leukemias: acute myeloid leukemia (AML) and acute lymphoblastic leukemia
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Fig. 2. Clustering for Gene Expression Data. (a) Hierarchical clustering result for
the 100 selected genes from the SRBCT data set. The gene expression matrix is
visualized through a color scale; (b) SOFM clustering result for all the 2308 genes
of SRBCT data set. A 5x5 SOFM is used and 25 clusters are formed. Each cluster
is represented by the average values; (c) EA clustering result for ALL/AML data
set. EA effectively separates the two ALL subsets.

(ALL) [31]. Two subsets of ALL, with quite different origin of lineage, can be
well separated. This result is also confirmed by the analysis with Ellipsoidal
ART network, as illustrated in Fig. 2 (c) [86]. Alizadeh et al. successfully
distinguished two molecularly distinct subtypes of diffuse large B-cell lym-
phoma, which cause high percentage failure in clinical treatment, based on
their gene expression profiles [1]. Scherf et al. constructed a gene expression
database to study the relationship between genes and drugs for 60 human
cancer cell lines, which provides an important criterion for therapy selection
and drug discovery [70]. Moreover, gene expression profiles are extended for
patient survival analysis. Rosenwald et al. used hierarchical clustering to di-
vide diffuse large-B-cell lymphoma, and the Kaplan-Meier estimates of the
survival probabilities for each group show significant difference [66].

Furthermore, bi-clustering concept has been raised, referring to the clus-
tering of both the genes (rows) and samples or conditions (columns) simulta-
neously [17]. Therefore, it is more effective in specifying a set of genes related
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to some certain experimental conditions or cellular processes. A good survey
paper on bi-clustering can be found in [55].

5.3 Bioinformatics - DNA or Protein Sequences Clustering

In recent decades, DNA and protein sequences grew explosively [23], [37]. For
example, the recent statistics released on June 15, 2005 (Release 148.0) shows
that there are 49,398,852,122 bases from 45,236,251 reported sequences in
GenBank database [29]. The information hidden in the sequences offers a cue
to identify functions of genes and proteins. In contrast to sequence comparison
and search, cluster analysis provides a more effective way to discover compli-
cated relations among these sequences. We summarize the following clustering
applications for DNA and protein sequences:

1. Function recognition of uncharacterized genes or proteins [36];
2. Structure identification of large-scale DNA or protein databases [69], [74];
3. Redundancy decrease of large-scale DNA or protein databases [52];
4. Domain identification [27], [35];
5. EST (Expressed Sequence Tag) clustering [10].

Since biology sequential data are expressed in an alphabetic form, con-
ventional measure methods are not appropriate. If a sequence comparison is
regarded as a process of transforming a given sequence to another with a se-
ries of substitution, insertion, and deletion operations, the distance between
the two sequences can be defined by virtue of the minimum number of re-
quired operations, known as edit distance [37], [68]. These edit operations are
weighted according to some prior domain knowledge and the distance herein is
equivalent to the minimum cost to complete the transformation. In this sense,
the similarity or distance between two sequences can be reformulated as an
optimal alignment problem, which fits well in the framework of dynamic pro-
gramming [23]. However, for the basic alignment algorithms, the computation
complexity is O(NM), which is incapable of dealing with tons of nucleic acids
and amino acids in the current DNA or protein databases [23]. In practice,
sequence comparison or proximity measure is achieved via some heuristics,
such as BLAST and FASTA with their variants [2], [63]. The key idea of these
methods is to identify regions that may have potentially high matches, with
a list of pre-specified high-scoring words, at an early stage. Therefore, fur-
ther search only needs to focus on these regions with expensive but accurate
algorithms.

Generally, there are three strategies for clustering DNA or protein se-
quence data. Clustering algorithms can either directly operate on a proximity
measure or are based on feature extraction. They also can be constructed
according to the statistical models to describe the dynamics of each group
of sequences. Somervuo and Kohonen illustrated an application of SOFM to
cluster protein sequences in SWISSPROT database [74]. FASTA was used to
calculate the sequence similarity. Based on the similarity measure of gapped
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Fig. 3. DNA or Protein Clustering with HMMs. The result shown here is the part of
the alignment of 9 globin sequences obtained from SWISS-PROT protein sequences
databank.

BLAST, Sasson et al. utilized an agglomerative hierarchical clustering para-
digm to cluster all protein sequences in SWISSPROT [69]. In contrast with
the proximity-based methods, Guralnik and Karypis transformed protein or
DNA sequences into a new feature space, based on the detected sub-patterns
working as the sequence features, and clustered with the K-means algorithm
[36]. The method is immune from all-against-all expensive sequence compari-
son. However, it is largely dependent on the feature selection process, which
may mislead the analysis. Krogh demonstrated the power of hidden Markov
models (HMMs) [64] in biological sequences modeling and clustering of pro-
tein families [51]. Fig. 3 depicts a typical clustering analysis of protein or
DNA sequences with HMMs, in which match states (M), insert states (I),
and delete states (D) are represented as rectangles, diamonds, and circles,
respectively [23], [51]. These states correspond to substitution, insertion, and
deletion in edit operations. For convenience, a begin state (B) and an end (E)
state are added to the model. Either 4-letter nucleotide alphabets or 20-letter
amino acid alphabets are generated from match and insert states according
to some emission probability distributions. Delete states do not produce any
symbols, and are used to skip the match states. K HMMs are required in
order to describe K clusters, or families (subfamilies), which are regarded as
a mixture model and proceeded with an EM learning algorithm. This para-
digm models clusters directly from original data without additional process
that may cause information loss. They provide more intuitive ways to capture
the dynamics of data and more flexible means to deal with variable length
sequences. However, determining the number of model components remains a
complicated and uncertain process [73]. Also, the model selected is required
to have sufficient complexity, in order to interpret the characteristics of data.
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5.4 Dimensionality Reduction - Human Face Expression
Recognition

Nowadays, it is more common to analyze data with very high dimensional-
ity, which causes the problem curse of dimensionality [7], [41]. Fortunately, in
practice, many high-dimensional data usually have an intrinsic dimensionality
that is much lower than the original dimension [18]. Although strictly speak-
ing, dimension reduction methods do not belong to clustering algorithms, they
are still very important in cluster analysis. Dimensionality reduction not only
reduces the computational cost and makes the high-dimensional data processi-
ble, but provides users with a clear picture and good visual examination of the
data of interest. However, dimensionality reduction methods inevitably cause
some information loss, and may damage the interpretability of the results,
even distort the real clusters.

Unlike the typical linear components extraction techniques, like principle
component analysis [22] and independent component analysis [44], Locally
Linear Embedding (LLE) algorithm focuses on nonlinear dimensionality re-
duction [67]. LLE emphasizes the local linearity of the manifold and assumes
that the local relations in the original data space (D-dimensional) are also
preserved in the projected low-dimensional space (L-dimensional). This is
represented through a weight matrix, describing how each point is related to
the reconstruction of another data point. Therefore, the procedure for dimen-
sional reduction can be constructed as the problem that finding L-dimensional
vectors yi so that the criterion function

∑
i |yi−

∑
j wijyj | is minimized. This

process makes LLE different from other nonlinear projection techniques, such
as Multidimensional Scaling (MDS) [88] and the isometric feature mapping
algorithm (ISOMAP), which extends MDS and aims to estimate the shortest
path between a pair of points on a manifold, by virtue of the measured input-
space distances [79]. It is worth mentioning another method, elastic maps,
which seek an optimal configuration of nodes, in a sense of minimum energy,
to approximate the data points [32],[33].

An application for human face expression recognition by LLE is illustrated
in [67]. The data set includes 2,000 face images from the same individual
with different expressions. Each input pattern is a 560-dimensional vector,
corresponding to the 20x28 grayscale of the images. The faces are mapped into
a two-dimensional space, consisting of the first two constructed coordinates
of LLE. The result shows that LLE can effectively find and capture the data
structure.

5.5 Document Clustering

Document clustering, particularly web document clustering over Internet, has
become more and more important as a result of the requirement for auto-
matic creation of documents hierarchy, information retrieval from documents
collections, and search engine results analysis. Steinbach et al. compared the
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performance of agglomerative hierarchical clustering and K-means clustering
(with one of its variants) on 8 document data sets [76]. Kohonen et al. demon-
strated the effectiveness of SOFM for clustering of a large set of documental
data, in which 6,840,568 patent abstracts were projected onto a SOFM with
1,002,240 nodes [50].

Different from methods based on individual words analysis, Hammouda
and Kamel proposed a phase-based incremental web document clustering sys-
tem [39]. Each document consists of a set of sentences, each of which includes a
sequence of words and is weighted based on the occurrence in the documents,
i.e., title, keywords, figure caption, etc., and is indexed through a Document
Index Graph (DIG) model. Each node in DIG corresponds to a unique word
and each directed edge between a pair of words indicates the order of their oc-
currence in the document. The similarity measure considers four components,
i.e., the number, length, frequencies, and weights of the matching phrases in
two documents. The online similarity histogram-based clustering algorithm
aims to maintain a high coherency in each cluster, based on the histogram
of the cluster’s document similarities. A new document is added into a clus-
ter only if it increases the calculated histogram ratio or does not cause a
significant decrease of the ratio while still above some minimum threshold.

6 Conclusions

As an important tool for data exploration, cluster analysis examines unlabeled
data and includes a series of steps. Clustering algorithms evolve from different
research communities, attempt to solve different problems, and have their own
pros and cons. Particularly, clustering algorithms, based on computational
intelligence technologies, play an important role and attract more intensive
efforts. However, there is no universal clustering algorithm that can be applied
to solve all problems. In this sense, it is not accurate to say ‘best’ in the
context of clustering algorithms and it is important to select the appropriate
methods based on the specific applications. Though we have already seen
many examples of successful applications of cluster analysis, there still remain
many open problems due to the existence of many inherent uncertain factors.
As a conclusion, we summarize the paper with a list of some important issues
and research trends for clustering algorithms, however, some more detailed
requirements for specific applications will affect these properties.

1. Generate arbitrary shapes of clusters rather than be confined to some
particular shape;

2. Handle large volume of data as well as high-dimensional features with
acceptable time and storage complexities;

3. Detect and remove possible outliers and noise;
4. Decrease the reliance of algorithms on users-dependent parameters;
5. Have the capability of dealing with newly occurring data without re-

learning from the scratch;
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6. Be immune to the effects of order of input patterns;
7. Provide some insight for the number of potential clusters without prior

knowledge;
8. Show good data visualization and provide users with results that can

simplify further analysis;
9. Be capable of handling both numerical and categorical data or be easily

adaptable to some other data type.
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