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Thesis Summary

This thesis describes the Generative Topographic Mapping �GTM� � a non�linear latent variable
model� intended for modelling continuous� intrinsically low�dimensional probability distributions� em�
bedded in high�dimensional spaces� It can be seen as a non�linear form of principal component analysis
or factor analysis� It also provides a principled alternative to the self�organizing map � a widely estab�
lished neural network model for unsupervised learning � resolving many of its associated theoretical
problems�
An important� potential application of the GTM is visualization of high�dimensional data� Since

the GTM is non�linear� the relationship between data and its visual representation may be far from
trivial� but a better understanding of this relationship can be gained by computing the so�called
magni�cation factor� In essence� the magni�cation factor relates the distances between data points�
as they appear when visualized� to the actual distances between those data points�
There are two principal limitations of the basic GTMmodel� The computational e	ort required will

grow exponentially with the intrinsic dimensionality of the density model� However� if the intended
application is visualization� this will typically not be a problem� The other limitation is the inherent
structure of the GTM� which makes it most suitable for modelling moderately curved probability
distributions of approximately rectangular shape� When the target distribution is very di	erent to
that� the aim of maintaining an 
interpretable� structure� suitable for visualizing data� may come in
con�ict with the aim of providing a good density model�
The fact that the GTM is a probabilistic model means that results from probability theory and

statistics can be used to address problems such as model complexity� Furthermore� this framework
provides solid ground for extending the GTM to wider contexts than that of this thesis�

Keywords� latent variable model� visualization� magni�cation factor� self�organizing map� principal
component analysis
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Chapter �

Introduction

The amount of data being recorded and stored throughout society is steadily growing� This is largely
due to the increased use of modern technology in general and computers in particular� Satellites in
orbit are generating vast amounts of data in terms of imagery and geodesic data� Transactions on the
global �nancial markets� via computerized systems� generate complex time series data� With increased
competition� companies are building sophisticated customer databases in attempts to analyze current
and future markets� In micro�biology� we now access the large quantity of data stored in the DNA of
living organisms�

However� without means and methods that can aid analysis� much data becomes useless� Human
observers often �nd it hard spotting regularities when looking at raw data� e�g� tables of numbers
and symbols or large numbers of similar images� We therefore need computers to aid us� not only
in the gathering and storing of data� but also in the analysis and processing of it� In particular� if
the computer can be used to summarize data visually� humans are often capable of interpreting such
graphical summaries intelligently�

��� Scope of this thesis

This thesis is concerned with computational methods for �nding 
interesting� structures in sets of data�
with little or no need of human intervention or guidance� A number of such methods has been known
for quite some time� A key feature of many of them is that they involve some sort of dimensionality
reduction� from the� typically high�dimensional� data space to a low�dimensional model space de�ned
by the method used� When visualization is the ultimate aim� the model space is typically chosen to
be two�dimensional� In this thesis� both the data space and the model space are taken to be subsets
of ��� Moreover� we will restrict our interest to global structures� i�e� continuous low�dimensional
manifolds embedded in high�dimensional continuous spaces� For a long time� models with this scope
were restricted to model only linear structures� i�e� hyper�planes� in the data space� We will direct our
interest to models where the relationship between model and data space is non�linear� as illustrated
in the right half of �gure ����

An important reason why the linear models for long were dominating is their computational e��
ciency� However� the arrival of fast� inexpensive computers has� in the last two decades� changed the
picture dramatically� This has combined with discoveries of new computational algorithms and today
we are tackling problems which twenty years ago would have been considered untractable� Many of
these new algorithms have been inspired by models of the processing going on in the human brain�
In particular� there has been a lot of interest in generic algorithms that can 
learn� an underlying
structure from a �nite set of examples� in a fashion similar to human learning� For many problems
this is highly desirable� since a human observer may easily discover regularities in a set of examples�
but will �nd it much harder to describe how he or she made this discovery� Consider� for example� the
set of points shown if �gure ���� most human observers would� when asked to comment on this data�
immediately point out that the points appear to be distributed� approximately� along a curved line�
However� it is unlikely that anyone of them would be able to provide a description of how they arrived
at this conclusion� which would be su�ciently exact to translate into computational algorithm�

This has motivated the development of algorithms that� to a certain extent� try to mimic the

�
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Figure ���� An example of data which� although living in a ��dimensional space� is approximately
��dimensional� Any good method for reducing the dimensionality of this data must be able to deal
with the fact that it is non�linearly embedded in the ��dimensional space�

processes that takes place in the human brain� in terms of discovering and exploiting underlying
structures of �nite data sets� These algorithms have become known under the common name of
neural networks �Haykin� ������ In parallel� similar algorithms have grown out of the research into
statistical pattern recognition �Duda and Hart� ����� and the strong links between these two �elds
are today widely appreciated �Bishop� ����� Ripley� ������

To return the focus to the problems we are interested in� our underlying assumption is that although
we observe a large number �D� of data variables� these are being generated from a smaller number �L�
of hidden� or latent� variables� as illustrated by �gure ���� Models based on this assumption are called
latent variable models �Bartholomew� ����� Everitt� ����� and have evolved� initially from psychology�
to become established statistical models for data analysis� When both latent and observed variables
are real valued and the relationship between them is linear� the resulting model is traditionally known
as factor analysis �Bartholomew� ����� Lawley and Maxwell� ����� and will be further discussed in
the next chapter� To allow the relationship between the latent and the data space to be non�linear�
we consider a non�linear� parameterized mapping from the latent space to the data space� This will
map every point in the latent space to a corresponding point in the data space� If we assume that
the mapping is smooth� these points will be con�ned to an L�dimensional� curved manifold in the
D�dimensional data space� If we then de�ne a distribution over the latent space� this will induce a
corresponding distribution over the manifold the data space� establishing a probabilistic relationship
between the two spaces� The challenge will be to adapt the parameterized mapping so as to �t the
density model in the data space to a set of training data�

Assuming we have been able to �t our model� we can then relate points in the data space to points
on the curved manifold� which in turn correspond to points in the latent space� This way� we can give
points in the high dimensional data space a representation in the low�dimensional latent space� and
provided the data space has no more than three dimensions� we can visualize this representation�

The introduction of non�linearity will o	er the possibility of modelling a much richer 
family� of
structures� compared to what we can achieve with linear models� However non�linearity also brings
potential problems� Since real data is typically corrupted by noise� there is a risk that a non�linear
model captures not only systematic non�linearities in a set of data� but also random artifacts due to
noise� Another problem� if we consider visualization of high�dimensional data� is that the relationship
between the data and its 
representation� in the model is not as straightforward when using a non�
linear model as when using a linear model� Although these potential problems should not stop us
from making use of non�linear models� we must be aware of their presence and try to resolve them�
as far as possible�
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Figure ���� A non�linear latent variable model� where the latent variables� x� and x� are mapped�
by the non�linear� parameterized mapping y�x�W�� to a low�dimensional� curved manifold� S� in the
data space de�ned by t�� t� and t��

��� Overview of this thesis

In chapter �� we review a number of models proposed for �nding and exploiting structure in high�
dimensional data sets� These models are divided into three categories�

� projection models� which are based on the notion of 
projecting� points in the data space onto
the model space�

� generative models� where points in the data space are considered to have been generated by
points in the model space� and

� other models� which do not belong to either of the above categories�
The most important of the projection models is linear principal component analysis �PCA� �Jolli	e�
������ the other models discussed in that category can all� in some sense� be regarded as non�linear
variants of PCA� Correspondingly� the section on generative models is headed by factor analysis �FA��
which� traditionally has been regarded as the generative counterpart of PCA� followed by non�linear
generative models� The �nal section on other models is primarily concerned with the self�organizing
map �SOM� �Kohonen� ������ a widely researched neural network model which is strongly related to
the generative topographic mapping �GTM�� introduced in chapter �
The chapter on the GTM describes its architecture� the associated training algorithm and how

it can be used for visualization of data� It goes on to discuss the relationship to some of the other
models from chapter �� in particular the SOM�
In chapter �� we try to investigate the relationship between latent space and data space� de�ned

by the nonlinear mapping� by evaluating the 
stretching� of the manifold forming the image of the
latent space in the data space� This will allow us to extract additional information from our model�
in terms of how points in the latent space are related to the corresponding points in the data space�
information which can be merged with visualized data� A method along these lines has been proposed
for the SOM� but has been restricted by the fact that the original SOM model does not de�ne an
explicit manifold in the data space� However� we will see how the method proposed can also be used
with certain� more recent versions of the SOM� provided certain conditions are met�
Chapter � addresses the issue of parameter selection and its relationship to model complexity�

Two principal methods for �nding suitable parameter values are discussed� cross�validation and ap�
proximate Bayesian maximum a�posteriori� the latter of which o	ers di	erent variants� While both
methods can be used o�ine� by simply evaluating the appropriate score for di	erent parameter values
and then choose those with the best score� the Bayesian methods can also� to some extent� be used
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in an online setting� where appropriate parameter values are found during training� thereby o	ering
dramatic savings in terms of computation� The methods are evaluated using synthetic data�
Directions for future work are suggested in chapter �� in some cases accompanied by some provi�

sional results� These include potential ways of dealing with known limitations of the GTM model as
it stands today� as well as possibilities for it to be used in contexts di	erent to that of this thesis� e�g�
data with categorical variables� incomplete data� and mixtures of GTM models� Finally� chapter �
gives a concluding discussion�
The reader who is only interested in the GTM model can skip chapter �� and go directly to

chapter � skipping section ��� Subsequent chapters are independent of each other� but assume that
the reader has read the chapter on the GTM� Section ��� discusses magni�cation factors for the
batch version of the SOM model �BSOM�� for readers unfamiliar with this model� it is described in
section ���� and further discussed in section �����

����� Publications on the GTM

This thesis gathers and complements the material in earlier publications on the GTM�

� EM Optimization of Latent�Variable Density Models� presented at Neural Information Processing
Systems �NIPS�� Denver� Colorado� ����� chapter �

� GTM� A Principled Alternative to the Self�Organizing Map� presented at the International Con�
ference on Arti�cial Neural Networks �ICANN�� Bochum� ����� chapter �

� GTM� A Principled Alternative to the Self�Organizing Map� presented at NIPS� ����� chapter �

� Magni�cation Factors for the SOM and GTM Algorithms� presented at the Workshop on Self�
Organizing Maps �WSOM�� Helsinki� ����� chapter ��

� Magni�cation Factors for the GTM Algorithm� presented at the IEE International Conference
on Arti�cial Neural Networks� Cambridge� ����� chapter ��

� GTM� The Generative Topographic Mapping� published in Neural Computation� ����� chapter �
and

� Developments of the GTM Algorithm� to appear in Neurocomputing� chapter ��

The chapter numbers given refer to the chapter of this thesis where the main content of the corre�
sponding paper can be found� These papers are all authored by C� M� Bishop� M� Svens�en and C� K�
I� Williams� and are also listed with further details in the bibliography�
Before moving on� we now introduce some notation and conventions used throughout the rest of

this thesis�

��� Notation and conventions

In the mathematical notation� the convention will be that an italic typeface indicates scalar values�
e�g� tnd� x� �� while bold typeface indicates vectors and matrices� the former using lower case symbols�
e�g� t��k� and the latter using upper case symbols� e�g� X��� Note� however� that exceptions to this
convention do appear�
Our aim is to build a model of a probability distribution in �D� based on a �nite set of inde�

pendently drawn samples from this distribution� t�� � � � � tn� � � � � tN � We will denote this data set T�
typically� we organize the samples into a N �D matrix� where row n contains sample tn� and T will
also be used to denote this matrix� Individual elements in this matrix or� equivalently� elements of
sample tn� will be denoted tnd� As we will see� a key assumption about T is that the samples are
independent� identically distributed� commonly abbreviated i�i�d�
Also in the low�dimensional model space ��L� we will be working with a �nite set of points�

x�� � � � �xk � � � � �xK � which may or may not be in one�to�one correspondence with the points in T� We
use X to denote this set of points as well as the corresponding K �L matrix� These points will map
to a corresponding set of points� y�� � � � �yk� � � � �yK in the data space� denoted Y� which also denotes
the corresponding K �D matrix�
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Thus� D denotes the dimensionality of the data space� L the dimensionality of the latent space�
N the number of data points and K the number of latent points� As far as it is possible� without
compromising clarity� matching indices will be used� so that d is used as index over the dimensions of
the data space� k is used as index over latent points� etc�
At various occasions we will make use of the identity matrix I �a diagonal� square matrix with ones

along diagonal and zeros elsewhere�� Normally� the size of I will be given implicitly by the context�
so in the equation

A  B! I

where A and B are M �M matrices� I is understood to also be M �M �
Unless indicated otherwise� summations will start from �� and we will use the abbreviation

N�KX
n�k

 

NX
n

KX
k

�

We will also use abbreviations ��D� ��D� etc� for ��dimensional� ��dimensional� etc�





Chapter �

Modelling Low�dimensional

Structure

The problem of �nding low�dimensional representations of high�dimensional data is not new and a
considerable number of models have been suggested in the literature� The rest of this chapter will
review some of those models� broadly categorized into

� projection models�

� generative models and

� other models�

Projection models are� loosely speaking� based on 
projecting� the data� e�g� by orthogonal pro�
jection� on the model � �tting those models corresponds to minimizing the distances between data
and its projection� Generative models try to model the distribution of the data� by de�ning a density
model with low intrinsic dimensionality in the data space� The borders between the three categories
are not clear cut and� as will be seen in the following sections� there are models that �t in more than
one category�

��� Projection models

The traditional meaning of projection is the orthogonal projection of a point in �D� onto a hyper�
plane� �L � �D � where L � D� This is also the method of projection used in principal components
analysis �PCA�� the most commonly used of the projection models described here� The fact that PCA
de�nes a linear� orthogonal model space gives it favourable computational properties� but it is also
its main limitation� Therefore� a number of models have been suggested that allow for non�linearity�
either by using a combination of locally linear models� which together form a non�linear structure�
or through the use of a globally non�linear model� However� before coming to these models we �rst
consider standard linear PCA�

����� Principal component analysis

Principal components analysis �Jolli	e� ����� takes a data set� ft�� t�� � � � � tNg� in a given orthonormal
basis in �D and �nds a new orthonormal basis� fu�� � � � �uDg� with its axes ordered� This new basis is
rotated in such a way that the �rst axis is oriented along the direction in which the data has its highest
variance� The second axis is oriented along the direction of maximal variance in the data� orthogonal
to the �rst axis� Similarly� subsequent axes are oriented so as to account for as much as possible
of the variance in the data� subject to the constraint that they must be orthogonal to preceeding
axes� Consequently� these axes have associated decreasing 
indices�� �d� d  �� � � � � D� corresponding
to the variance of the data set when projected on the axes� which we hence refer to as variances� The
principal components are the new basis vectors� ordered by their corresponding variances� with the

��
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Figure ���� The plot shows a data set of ��� points� plotted as shaded dots� � � drawn at random
from a correlated Gaussian distribution� The two arrows represent the principal components� scaled
by the square root of the corresponding variance times two � �ui

p
�i� i  �� �� in the terminology of

equation ������

vectors with the largest variance corresponding to the �rst principal component�� Figure ��� shows
an example for a ��dimensional data set�
By projecting the original data set on the L �rst principal components� with L 	 D� a new data

set with lower dimensionality can be obtained� If the principal components are �rst scaled by the
corresponding inverse variances� the variables of the new data set will all have unit variance � a
procedure known as whitening or sphering �Fukunaga� ����� Ripley� ������
The traditional way of computing the principal components is to compute the sample covariance

matrix of the data set�

S  
�

N � �
NX
n

�tn � t��tn � t�T� t  
�

N

NX
n

tn�

and then �nd its eigen�structure

SU  U�� �����

U is a D � D matrix which has the unit length eigenvectors� u�� � � � �uD� as its columns and � is
diagonal matrix with the corresponding eigenvalues� ��� � � � � �D � along the diagonal� The eigenvectors
are the principal components and the eigenvalues are the corresponding variances�
An alternative method for computing the principal components� which is claimed to be more robust

�Ripley� ������ is to compute the singular value decomposition �SVD� �Strang� ����� Press et al�� �����
of the N �D matrix� T� containing the data set� so that

T  V�UT� �����

where V is a N � D matrix with orthogonal columns� U is a D � D orthogonal matrix and � is a
diagonal matrix with the singular values of T along the diagonal� As the notation suggests� U and �
have the same values in ����� and ������

�There seems to be some disagreement regarding the terminology in the literature � sometimes it is the new variables
obtained by projecting the data set on the new �scaled� basis vectors that are referred to as the principal components�
and there are also examples where it is the variances�
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An important property of the principal components is that they constitute the unique set of vectors�
up to scaling� that minimizes the reconstruction error�

EL  

NX
n

ktTn � �tTn �UL��U
T
Lk�� ����

where �UL and �UL are D�L matrices with the �scaled� principal components u�� � � � �uL �� � L � D�
as their columns� such that �UT

L
�UL  I� EL is the sum of the squared distances between the data

points and their projections on the L principal components� summed over the data set� Thus� it is a
decreasing function of L� equal to zero when L  D� Under this formulation� PCA is known as the
Karuhnen�Lo�eve transform� and it suggests an alternative way of �nding the principal components�
by minimizing ����� This approach has formed the basis for non�linear extensions� known as auto�
associative networks or auto�encoders� discussed in section ���� below�

Mixtures of PCA

Since PCA only de�nes a linear subspace� it will be sub�optimal when the underlying structure in the
data is non�linear� However� even if we have reasons to assume that the data we are dealing with is
not overall linear� it may still be reasonable to assume that in local regions of the data space� a linear
approximation is su�cient� How good such an approximation will be� will depend how strong the non�
linearity in the data is and how small we choose our local regions� Based on this assumption� there has
been a number of suggestions for combining a number of local PCA models� to approximate a globally
non�linear structure� Kambhatla and Leen ������ partitions the data space using vector quantization
and then performs 
local� PCA on the data points assigned to each vector quantizer� Bregler and
Omohundro ������ takes a more elaborate approach� �nding an initial model using K�means and local
PCA� which is then re�ned using the EM�algorithm �Dempster et al�� ����� and gradient descent�
Hinton et al� �����a� suggest an iterative scheme where data points are assigned� initially e�g� by using
K�means� to the PCA component which reconstructs them best� local PCA is performed and then
points are re�assigned� This is repeated until no points have their assignment changed� They also
suggest a 
soft� version of this algorithm� further discussed in �Hinton et al�� ������ where data points
are 
softly� assigned to PCA components� based on the corresponding reconstruction errors� However�
all these algorithms have some degree of arbitrariness associated with them�
Recently� a new� probabilistic formulation of PCA has been proposed by Tipping and Bishop

�����a�� It derives PCA as a latent variable model� and can be regarded as a special case of factor
analysis� It de�nes a generative model� which allows for mixtures of PCA to be constructed with
in the framework of probability theory� Further discussion of this model is deferred to section ������
following the introduction of the factor analysis model�

����� Principal curves and surfaces

Principal curves and surfaces have been suggested as non�linear generalizations of principal component
analysis� In contrast to the mixture models discussed above� principal curves and surfaces represent
single� global models�

Principal curves

Intuitively� a principal curve �Hastie and Stuetzle� ����� Hastie� ����� is a smooth� one�dimensional
curve that passes through the 
middle� of a probability distribution� or a cloud of data points� in a
D�dimensional space� More formally� a principal curve is a parameterized curve� f�x�� that respects
the de�nition of self�consistency�

f�x�  E�tj�f �t�  x�� �����

where t is a random variable in the data space and �f �t� is the 
projection� of t on the curve de�ned by
f���� This says that for any point x� f�x� equals the average of the probability mass that is projected on
x under the projection index �f ���� which in the principal curve and surface models is the orthogonal
projection�
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For a �nite data set� this de�nition must be modi�ed� so Hastie and Stuetzle ������ use a scatter�
plot smoothing procedure� which replaces the averaging of continuous probability mass with a smooth�
ed average over data points projecting in the same region on f���� This leads to the following procedure
for �nding principal curves�

�� Set the initial principal curve� f � equal to the �rst principal component and for each data point�
tn� n  �� � � � � N � compute its orthogonal projection on f � xn�

�� Compute a new value for each point on the curve� f�xn�� by a smoothed average over data points
projecting in the neighbourhood of xn�

� Project the data points �numerically� on the new curve�

�� Repeat steps � and  until convergence�

As noted by Hastie and Stuetzle� the size of the neighbourhood used in step � can have a signi��
cant impact on the �nal shape of the curve� In essence� the size of the neighbourhood controls the
smoothness of the curve� Hastie and Stuetzle set the neighbourhood� measured by the number of
neighbouring data points it includes� to an initial size which is then gradually decreased during the
iterative �tting procedure until it reaches a desired value� Similar use of weighted averaging over a
shrinking neighbourhood appears in the �tting procedure for the self�organizing map� discussed in
section ����� The algorithm above is the �rst example of the iterative two�step �tting procedures
associated with many of the non�linear models that will be discussed below�

Hastie and Stuetzle ������ show that f���� restricted to come from a smooth class of curves� mini�
mizes

E�kt� �f �t�k���

which is the expected distance between t and its projection on the curve �f �t�� taken over the dis�
tribution of t� This is analogous with the property ���� of principal components� emphasizing the
relationship between the two models�

Webb ������ proposes an alternative model for doing non�linear PCA which is based on the self�
consistency condition ������ but where the orthogonal projection on the curve� has been replaced
by a more general mapping� Thus� this model forms a link between the principal curve model and
the auto�associative neural network model discussed in section ����� Tibshirani ������ proposed an
alternative de�nition of the principal curve� transforming it into a generative model� which will be
further discussed in section ������

Principal surfaces

Principal surfaces are discussed by Hastie and Stuetzle ������ as an extension of the principal curve�
which allows the model space to be two�dimensional� The de�nition is based on self�consistency�
analogous with the one for principal curves� and Hastie and Stuetzle ������ report that they have
implemented a corresponding principal surface algorithm� using two�dimensional surface�smoothers in
place of the scatter�plot smoothers� However� many of the theoretical results obtained for the principal
curve model no longer hold in the case of principal surfaces�

An alternative de�nition of principal surfaces is proposed by LeBlanc and Tibshirani ������� which
combines ideas of principal curves and multi�adaptive regression splines �MARS� �Friedman� ������
The resulting model de�nes a low�dimensional� piecewise linear structure� which is built in a incre�
mental fashion� An important di	erence compared to many of the other models considered here is
that dimensionality of the model is determined as part of the procedure �tting the model to data�
This is based on minimizing the distance between data points and their projections onto the principal
surface and consists of two main steps� the �rst which grows the model� the second which prunes it�
A part of both these steps is what LeBlanc and Tibshirani call model re��tting� which is similar to the
�tting procedure for principal curves� alternating between projection on and adaption of the surface�

�This model readily extends to more than one non�linear component� but for simplicity we refer to the resulting
low�dimensional structure as a curve�
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Figure ���� An auto�associative network that maps a D�dimensional input vector to itself� through a
L�dimensional bottleneck layer� L 	 D� possibly preceded and followed by layers of non�linear units�

����� Auto�associative feed�forward neural networks

An alternative and rather di	erent approach to non�linear PCA is the use of auto�associative networks
�Kramer� ������ also known as auto�encoders� These are feed�forward neural networks which are
trained to implement the identity function� i�e� to map a vector to itself� through a 
bottleneck��
encouraging it to �nd and exploit an underlying� simpler structure in the training data� Figure ���
shows a schematic picture of an auto�associative network� where a D�dimensional data vector is fed as
input and target� but the mapping goes via an L�dimensional space �the model space�� with L 	 D�
If all the units in this network are taken to be linear� in which case any intermediary layers between

inputs and targets and the bottleneck layer can be removed� and the network is trained using the sum�
of�squares error function� this training corresponds to the minimization of the reconstruction error in
equation ����� This will result in the network performing standard PCA with L principal components
�Baldi and Hornik� ������ In fact� it can be shown that this will also be the case for a network with
a single bottleneck layer of non�linear units �Bourlard and Kamp� ������ However� if we instead use a
network with intermediary layers of non�linear units before and after the bottleneck layer� this allows
the network to �nd non�linear structures in the data� which we can interpret as a form of non�linear
PCA� Another interesting implication is that if we allow the number of units in the intermediary layers
to exceed D� we could also consider letting L 
 D and �nd more principal components than there are
dimensions in the data�
Zemel and Hinton ������ develop an alternative formalism in the context of auto�encoders� where

each hidden unit instead represents a quantization vector� with the auto�encoder implementing a
vector quantizer� In this model� there are no intermediate layers between input and target layers and
the bottleneck layer� and the units in the bottleneck layer� of which there are typically many more
than there are inputs� form their activations as soft�max transformations �Bridle� ����� of their net
input� However� each hidden unit also has a adjustable location in a low�dimensional implicit space�
During training� the parameters of the model are adjusted to reconstruct the input vector on the
targets� while driving the activations of the hidden units towards forming a Gaussian bump in the
implicit space� This means adjusting the position of each hidden unit� both in the input space and in
the implicit space� so that units which have nearby locations in the implicit space respond to nearby
vectors in the input space�

����� Kernel based PCA

Kernel based methods� most prominently represented by the non�linear support vector machine �Cortes
and Vapnik� ������ o	er promise for non�linear extensions to many methods based on the inner product�
or dot product� of vectors� Using the kernel based methods� we can consider mapping two vectors in
the input space to a high �maybe even in�nite� dimensional feature space and then compute the inner
product of the resulting vectors in the feature space� The relationship between vectors in the input
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space and their images in the feature space need not be linear� The important point� however� is that
the image vectors are actually never computed explicitly� all that is computed is their inner product�
using a so�called kernel function�

Sch"olkopf et al� ������ describe a method for doing non�linear� kernel based PCA� It corresponds to
doing ordinary linear PCA� but doing it in the implicitly de�ned feature space� As with auto�encoders�
this has the interesting implication that we can �nd more principal components than observed vari�
ables� Another implication� which makes this method less interesting compared with the other models
discussed here� is that� in general� we cannot get hold of the actual principal components� We can
compute the projection of a new point in the data space onto the principal components� but it is di��
cult to explore the relationship in the other direction� i�e� how variance along the principal components
is re�ected in the input space�

��� Generative models

The projection models discussed in the previous section aim at �nding low�dimensional manifolds in
the space of the data� such that the distance between data and its projection on the manifold is small�
The generative models that are to be discussed in the sections to come� try to model the density
function that is assumed to have generated the data� under a set of constraints that restricts the set
of possible models to those with a low intrinsic dimensionality�

����� Factor analysis

Traditionally� factor analysis �FA� �Bartholomew� ����� Lawley and Maxwell� ����� has been the

generative cousin� of PCA� in fact� the two techniques are sometimes confused� The key di	erence is
that where PCA is focusing on variance� FA focus on covariance� Covariance between a set of observed
variables is seen as an indication that these variables are� if only to a certain extent� functions of a
common latent factor� The e	ect of this di	erence becomes apparent when the observed variables are
subject to signi�cantly di	erent noise levels� While PCA will try to capture all variance in the data�
including variance due to noise a	ecting only individual variables� FA will focus on the covariance�
regarding additional variability in the observed variables as noise� Figure �� illustrates this for a
two�dimensional data set�

FA has� just like PCA� a long history� dating back to the beginning of the century� It was devel�
oped by psychologists with the aim to explain results from cognitive tests in terms the underlying
organization of mental abilities� Since then� a number of variants have been suggested� di	ering pri�
marily in their estimation procedures for the model parameters� Due to this diversity� and maybe
also to its origin� FA was for a long time looked at with some scepticism� as lacking a solid statistical
foundation� A method for maximum likelihood estimation of the parameters in the FA model was
proposed by Lawley ������� but this method had a number of practical disadvantages and it was not
until when J"oreskog ������ proposed an alternative maximum likelihood method that FA got a wider
acknowledgment as a useful statistical tool�

Rubin and Thayer ������ developed an Expectation�Maximization �EM� algorithm �Dempster et al��
����� for parameter estimation in the FA model� and recently a variant of the Wake�Sleep algorithm
�Hinton et al�� ����b� Dayan et al�� ������ was proposed for FA �Neal and Dayan� ������ This algorithm�
which shares some features with the EM algorithm of Rubin and Thayer ������� is motivated by
localized learning� in turn motivated by neuro�biological considerations�

The factor analysis model

Factor analysis represents an observed D�dimensional continuous variable� t� as a linear function of
an L�dimensional continuous latent variable and an independent Gaussian noise process�

t  Wx! e! �� �����

Here W is a D�by�L matrix de�ning the linear function� e is a D�dimensional vector representing
the noise or individual variability associated with each of the D observed variables� and � is a D�
dimensional vector representing the mean of the distribution of t� To keep the notation simple we will
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Figure ��� The plot shows the data set from �gure ���� but here the noise on the horizontal variable
has been scaled up� Consequently� the the �rst principal component� shown as the lower grey arrow
with hollow head� is approaching the horizontal axis� while the vector corresponding to one�factor FA
model� although a	ected by the increasing noise� stay closer to the ���degree line� representing the
covariance between the data variables�

assume� without any loss of generality� that the data sets we consider have zero mean� so that � can
be omitted�
We also assume that x has a zero mean Gaussian distribution and� from the notational point

of view� it also is convenient to assume that the latent variables are all independent and have unit
variance�

p�x�  

�
�

��

�L��
exp

�
��
�
xTx

�
� �����

Finally also assuming that x and e are uncorrelated results in a conditional distribution over t which
is also Gaussian�

p�tjx�W���  

�
DY
d

��#dd

�����
exp

�
��
�
�t�Wx�T����t�Wx�

�
� �����

where� is aD�by�D diagonal matrix� with element #dd representing the variance of ed� the individual
variance of td�
From ����� and ����� follows that�

E�ttT�  WWT !�� �����

This manifests the fundamental assumption of many latent variable models� that the conditional
distribution of the observed variables given the latent variables is independent� i�e� the dependence on
the common latent variables explain all covariance between observed variables�
Equation ����� is the starting point for many of the algorithms proposed for parameter estimation

in the FA model� For a given set of training data� ft�� t�� � � � � tNg� we compute its sample covariance
matrix�

S  
�

N

NX
n

tnt
T
n � �����
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where we have assumed that the data set has zero mean� and then seek parameters�W and �� that
satisfy the equation

S  WWT !��

Here� however� we will review the EM algorithm of Rubin and Thayer ������� to make a connection
to the EM�algorithm derived for the non�linear generative model described in the next chapter�

An EM algorithm for factor analysis

The Expectation�Maximization �EM� algorithm �Dempster et al�� ����� is a general algorithm for
maximum likelihood estimation in parameterized models from incomplete data� It works in two steps�
in the E�step� it computes expected values of the missing parts of the data or the su�cient statistics
thereof� given the observed data and a current value of the model parameters� In the M�step� it uses
these expectations for the missing data to estimate new values for the parameters� It has been proved
that� alternating between these two steps is guaranteed to increase the likelihood unless already at a
�local� maximum �Dempster et al�� ����� Bishop� ������

In our case� we are given a set of observed data� ft�� t�� � � � � tNg� but we are missing the corre�
sponding fx��x�� � � � �xNg� from which the data set is assumed to have been generated by ������ if
these were known� estimation of W and � would be straightforward� However� by Bayes� theorem�
using ����� and ������ we can write the posterior distribution over x given a data point tn as

p�xjtn�W���  

�����L��jMj��� exp
�
��
�
�x�M��WT���tn�

TM�x�M��WT���tn�

�
� ������

which is an L�variate normal distribution with posterior covariance matrix

M��  �I!WT���W����

Now� assume for a moment that we know xn� n  �� � � � � N � and further that the data points in T
have been drawn independently� We can then write the complete�data log�likelihood� using ����� and
������ as

�  

NX
n

ln p�tn�xn�

 �N

�
ln j�j � �

�

NX
n

�tr�xnx
T
n � ! tr��

���ttT � �Wxnt
T !Wxnx

T
nW

T��� ! constant terms�

������

We do not know xn and xnx
T
n � but using ������ we can compute their corresponding expectations

�the E�step��

hxni  M��WT���tn and ������

hxnxTn i  M�� ! hxnihxniT� �����

resulting in an expected complete�data log�likelihood�

h�i  �N

�
ln j�j � �

�

NX
n

�tr�hxnxTn i� !

tr�����ttT � �WhxnitT !WhxnxTn iWT��� ! constant terms� ������

The hxni� n  �� � � � � N � are referred to as factor scores� although there also other de�nitions of this
term �Mardia et al�� ������
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We can maximise h�i with respect to W and � �the M�step� by computing the corresponding
derivatives� using results on matrix derivatives �Fukunaga� ����� appendix A�� and substituting for
hxni and hxnxTn i� yielding the update formulaefW  S���W�I!WT���S���WM����� and ������e�  diag�S� fWM��WT���S�� ������

where S is de�ned in ������ Note that we use the old values�W and �� to compute hxni and hxnxTn i�
while we use the updated value� fW� in ������� when deriving �������
If we study ������� we see that it can be re�written as follows�

fW  S���W�I!WT���S���WM�����

 
�

N
TTT���WM���M�� !M��WT���S���WM�����

 
�

N
ThXiThXXTi��� ������

where T is a D �N matrix containing the data points tn� n  �� � � � � N � as its columns� hXi is the
L�N matrix containing the corresponding posterior mean estimates from ������� and

hXXTi  �

N

NX
n

hxnxTn i�

with hxnxTn i de�ned in ������
We can compare ������ with the least squares solution of the linear equations

fWhXi  T

for fW�

fW  ThXiT�hXihXiT����
This solution ignores the covariance structure of the posterior distribution over x and is therefore
incorrect� but it highlights the intuitive idea� We are alternating between estimating posterior mean

points� for a givenW� and then estimating fW to map these back to the corresponding data points�

����� Principal components revisited

Recently� Tipping and Bishop �����b� proposed a probabilistic formulation of PCA �PPCA�� in the
form of a FA model with an isotropic noise model� i�e� �  ��I� They formulate an EM algorithm�
similar to the one of reviewed above� and show that the maximum�likelihood estimate of W corre�
sponds to �an arbitrary permutation of� the L principal eigenvectors of the covariance matrix� S�
scaled by their corresponding eigenvalues�

This brings PCA into the family of generative models� which in turn opens up a whole range of
possibilities� In particular� Tipping and Bishop �����a� show how to construct mixtures of principal
component analyzers� which are �tted to data using a simple extension of the EM algorithm for basic
probabilistic PCA�

����� Non�linear factor analysis

In some sense� all generative non�linear models presented in the following sections can be seen as
variants of non�linear factor analysis� However� it is only the model by Etezadi�Amoli and McDonald
����� which is explicitly proposed as a non�linear factor analysis model� it follows earlier models by
McDonald ������ ������

�To be precise� they show that W � UL��L � ��I����R� where �L is a diagonal matrix containing the L largest
eigenvalues of the sample covariance matrix S� UL contains the corresponding eigenvectors and R is an arbitrary L�L

orthogonal rotation matrix�
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Figure ���� The solid curve represent a generating curve which is convolved with a Gaussian noise
distribution� represented by the circle� which has its mean on the curve� represented by �� The dashed
curve represents the corresponding principal curve� which falls outside the generating curve�

This model treats the observed variables as lower order polynomial functions of the latent variables�

T  ��X�W !E�

where X is an N � L matrix which rows corresponds to factor scores� W is an L � D matrix of
adaptable weight parameters� E is an N �D matrix of residuals� and� for a two�factor model �L  ��
using second order polynomial�

�n  �xn�� xn�� x
�
n�� x

�
n�� xn�xn���

where �n denotes the nth row of ��X� � this can be extended to more factors and higher order
polynomials�

As with the EM algorithm for FA presented in section ������ computing W and E would be
straightforward if the elements ofX where known� As this is not the case� McDonald ������ also adopts
an iterative scheme� which is a direct extension of a �tting method for linear factor analysis �McDonald�
������ alternating between estimatingW and E and adapting elements of X� using gradient descent�
However� Etezadi�Amoli and McDonald does not de�ne any prior or posterior distribution over x at
any stage so this is not generative model�

����� Principal curves revisited

There also exists a generative variant of the principal curve model �Tibshirani� ������ which was
motivated by the observation of Hastie and Stuetzle ������ that the original principal curve model is
not a generative model� in the sense that if

t  f�x� ! e�

where e represents Gaussian noise and x is uniform on some closed interval� then f��� is generally not
a principal curve for p�t�� The reason for this becomes clear from the illustration in �gure ��� � the
original principal curve should pass through middle of the data that projects orthogonally onto it� but
when the generating curve is bent� the corresponding probability mass �shaded in the �gure� is going
be greater on the outside than the inside of the generative curve� so the resulting principal curve ends
up with a wider radius than the generating curve�
Tibshirani de�nes a principal curve as a triplet hp�x�� p�tjx�� f�x�i� where R p�tjx�p�x�dx  p�t��

and f�x� is a curve� parameterized over a closed interval� which satis�es the self�consistency property�
������ p�tjx� is de�ned N �f�x����x���� where ��x� is aD�dimensional vector representing independent
variances� whereas p�x� is left unspeci�ed� Given a set of i�i�d� data points� the resulting log�likelihood

�To be precise� Tibshirani de	nes p�tjx� to come from a parametric family� but only discusses the concrete case
where it is Gaussian� which is also the case which is relevant in the context of this thesis�
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function becomes

�  
NX
n

log

Z
p�tnjx�p�x� dx� ������

Drawing on a theorem by Lindsay ������ Tibshirani states that� with f�x� and ��x� kept �xed�
the maximum likelihood estimate for the mixing density p�x� is discrete with at most N points of
support� we denote these points� x�� x�� � � � � xK � with K � N � Then� ������ becomes

�  

NX
n

log

KX
k

p�tnjx��k � ������

where �k  p�xk�� This is just the log�likelihood function for a Gaussian mixture with centres f�xk��
variances �dk  �d�xk� and mixing coe�cients �k� k  �� � � � �K� which can be maximized using �e�g��
the EM algorithm� As noted by Tibshirani ������� this function has its maxima� equal to in�nity�
when there is a one to one matching between centres and data point and the variances are driven to
zero� moreover� any curve passing through all data points will reach this maximum� and hence there
is a uniqueness problem�
To force the centres of the Gaussian mixture to follow a smooth ��dimensional curve� Tibshirani

introduces a cubic spline smoother� which plays the role of a regularizer of the log�likelihood function�

�  

NX
n

log

KX
k

p�tnjx��k ! �

Z
�f ���xk��

� dx� ������

The resulting model is a regularized Gaussian mixture� where � controls the degree of regularization�
which can be trained using the EM algorithm� with a modi�ed M�step� This will also have to involve
�nding new positions for the support points of the discrete mixing distribution� x�� x�� � � � � xK � for
which Tibshirani uses a one�step Newton�Raphson procedure� This will not maximise� but increase
the log�likelihood� and so it corresponds to a generalised EM �GEM� algorithm �Dempster et al�� ������

����� Density networks


Density Networks� �MacKay and Gibbs� ����� MacKay� ����� is the label attached to a fairly general
framework� proposed to extend the applicability of feed�forward neural networks �Bishop� ������ such
as the multi�layer perceptron� to the domain of unconditional density modelling� These have already
proved highly successful for conditional density modelling� e�g� in pattern classi�ers and non�linear
regression models� As such� they have been trained using methods known as 
supervised learning��
where data is split into inputs and targets� for each input datum there is a corresponding target that
the model should try to match� In unconditional density modelling� there is no such division of data
� the model tries to model the joint distribution of all data variables and must by itself discover any
structure in the data that can aid the modelling� The associated training procedures are therefore
know as unsupervised learning�
MacKay ������ merges the theory of feed�forward neural networks with that of latent variable

models by regarding the inputs of the network� x� as latent variables� for which he prescribes a prior
distribution p�x�� This results in a corresponding distribution over the outputs of the network� the
nature of which depends on the network� With a simple linear network with linear outputs� a Gaussian
distribution over the latent variables and an axis�aligned Gaussian noise model in the target space�
this simply becomes a factor analysis model� If the outputs are fed through a soft�max function� in
which case the resulting variables can be interpreted as conditional probabilities of class membership�
we have obtained what is known as a latent trait model �Lazarsfeld and Henry� ������ It captures
the idea of a sparse distribution in a categorical space dependent on a continuous underlying variable�
which is manifested in correlations between the categorical variables� MacKay ������ ����� shows how
such models can be used for discovering structure in protein data� Using more complex networks in
these models� with non�linear units between inputs and outputs� will allow more complex structures
to be discovered�
To �t these models to data� MacKay ������ employs a conjugate�gradient optimization routine �see

e�g� Press et al�� ������ where the gradient is computed by averaging over the posterior distribution
over the latent space given the data�
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Figure ���� The right half of the �gure shows a schematic illustration of an elastic net model� drawn
as a dashed loop with � representing the points yk� and data points �
cities�� tn� plotted as �� To
the left is a blow�up� where arrows represent the forces acting on the yk�points� which arises from the
prior p�Y� ������ and likelihood p�TjY� �������

����� The Elastic net

The elastic net algorithm was originally proposed by Durbin and Willshaw ������ as a heuristic method
for �nding good approximate solutions to the travelling salesman problem �TSP�� The TSP consists
of �nding a tour of minimal length that makes a single visit to each of the cities in a given set� it is
known to be NP�complete �see e�g� Papadimitriou and Steiglitz� ������ The elastic net algorithm takes
a geometrical approach� starting with a set of points� Y  fykg� k  �� � � � �K� distributed evenly on a
loop� initially shaped as a circle and centered on the mean of the set of points� T  tn� n  �� � � � � N �
representing the cities under consideration� The points on the loop are then moved in steps towards

cities� to which they are close� while trying to minimize the distances to their nearest neighbours on
the circle� as illustrated in �gure ���� Gradually� the trade�o	 between these two forces is shifted so
that closeness of some point on the loop to each point representing a city becomes dominating�

Durbin et al� ������ reformulated the algorithm and showed that it can be interpreted as amaximum
a posteriori �MAP� estimate over the distribution of possible tours� speci�ed by a prior favouring short
tours�

p�Y�  
KY
k

exp
n
� �

V
kyk � yk��k�

o
� ������

where the indices of the y�points are counted modulo K� and a likelihood factor computed from the
data�

p�TjY�  
NY
n

�

K

KX
k

�
�

��V �

�D��
exp

�
� �

�V �
ktn � ykk�

�
� ������

The prior� ������� is a K�dimensional� correlated Gaussian� encouraging the points in Y to follow a
locally ��D structure� The likelihood factor� ������� is a product of N independent distributions� each
consisting of a mixture of K Gaussians� with centres yk and common variance V � �� in ������� controls
the trade�o	 between the prior and likelihood factors�

Utsugi ������ ����� discusses a generalization of the elastic net model� with a prior that imposes
a ��D structure on the Gaussian mixture model� and relates it to the self�organizing map� discussed
below� This model has some similarities with the model proposed in the next chapter� and will be
further discussed there �section ������
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Figure ���� A schematic illustration of the self�organizing map � the lower part of the �gure shows the
nodes� drawn as circles� arranged in a rectangular ��D lattice� Each node is mapped to a corresponding
reference vector in the data space� illustrated as black discs in the upper part of the �gure� As
indicated� the ordering of the reference vectors should re�ect the ordering of the nodes�

��� Other models

����� The Self�organizing map

The Self�Organizing Map �SOM� �Kohonen� ����� is a neural network architecture for unsupervised
learning which shares many features with the models discussed so far� despite having rather di	erent
motivation� Since it was proposed by Kohonen ������� it has had considerable success in a wide range
of applications� and has been the subject of signi�cant research e	orts� Nevertheless� the SOM is still
lacking a sound theoretical foundation and is generally motivated by heuristic arguments�
The inspiration for the SOM came from observations of self�organization taking place in the sensory

cortex of the human brain� Bilateral connections between nearby neurons encourage spatial ordering
of sensory input to be re�ected in the ��D spatial ordering of neurons � neighbouring neurons will
typically be activated by similar stimuli� A typical SOM model is depicted in �gure ���� it consists of
a set of nodes �sometimes referred to as 
neurons�� arranged in a regular lattice in a �typically� ��D
space� associated with each node� k� is a so called reference vector� wk� which lives in a D�dimensional
space� Given a D�dimensional set of data� the SOM is trained using the following algorithm�

�� Initialize the reference vectors� w�
k� e�g� setting them equal to random samples drawn from the

data�

�� For each iteration� i� select a data point� tn� either at random or cycling through the data points�
and �nd the node with the closest reference vector� that is� �nd node kn such that

kn  argmin
k

ktn �w
�i��	
k k��
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Figure ���� The left and right plots show a Gaussian and 
top hat� neighbourhood function� respec�
tively� for a ��D SOM� Nodes are plotted as �� except for the node on which the neighbourhood
function is centred �kn�� which is plotted as 	�

� Update the reference vectors so that

w
�i	
k  w

�i��	
k ! �i	h�i	�k� kn��tn �w

�i��	
kn

�

where �i	 is a learning rate and h�i	��� is the neighbourhood function�

�� Repeat step � and  while decreasing the value of  and the width of the neighbourhood function�

The neighbourhood function h�i	�k� kn� typically take values between � and �� is unimodal� sym�
metric and centred on kn� common choices are the unnormalized Gaussian and the 
top�hat� function


�
illustrated in �gure ���� The intended e	ect of the neighbourhood function is encourage the reference
vectors of nodes which are near each other on the map� to be near each other in the data space� As the
width of the neighbourhood function gradually decreases� so does the in�uence nodes have on their
neighbours�
There is no theoretical framework for how to choose starting values and decrementing schedules

for �i	 and h�i	���� but there are simple rules of thumb which usually give reasonable results �Kohonen
et al�� ������

The Batch SOM

Most of the training algorithms discussed so far are batch algorithms� meaning that each update of the
model parameters is based on all data points� whereas the original version of the SOM is a so called
online algorithm� which makes a separate update for each data point� taken one at a time� There is
also a batch version of the SOM algorithm �BSOM��

Initialize the reference vectors� wk e�g� using random samples from the data�
repeat
for each data point� tn� do
Find node kn such that kn  argmin

k
ktn �wkk��

end for
Update all the reference vectors using�

w
�i	
k  

NX
n

h�i	�k� kn�tnPN
n� h�i	�k� kn��

� �����

until convergence

Note that the learning rate parameter  is no longer present� Obviously� the for�loop and the
subsequent update in the batch algorithm will be computationally more intensive than their online
counterparts� steps � and � but this is usually compensated by a much faster convergence� counted
in number of iterations�

�Also called the 
bubble� neighbourhood function�
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Problems with the SOM

Although the SOM has been subject of a considerable amount of research and applied to a wide range
of tasks� there are still a number of problems that remain unresolved �Kohonen� ������

�� The SOM does not de�ne a density model in the data space� Attempts has been made to
formalize the relationship between the distribution of reference vectors and the distribution of
the data� but has only succeeded under very restricted conditions �Ritter and Schulten� �����
������

�� The training algorithm does not optimize an objective function � in fact� it has been proved
�Erwin et al�� ����� that such an objective function cannot exist�

� There is no general guarantee the training algorithm will converge�

�� There is no theoretical framework based on which appropriate values for the model parameters
can be chosen� e�g� initial value for the learning rate and width of the neighbourhood functions�
and subsequent rate of decrease and shrinkage� respectively�

�� It is not obvious how SOM models should be compared to other SOM models or to models with
di	erent architectures�

�� The mapping from the topographic space to the data space in the original SOM is only de�ned
at the locations of the nodes�

Probabilistic versions of the SOM

Points ��� above� all stem from the �rst point and would largely be resolved in a probabilistic setting�
This has inspired the search for re�formulations of the SOM within the framework of probability theory
and statistics� Indeed� the model presented in the next chapter has been proposed as a principled
alternative to the SOM �Bishop et al�� ����b� ����b�� and a related model based on the elastic net
has also been proposed along those lines �Utsugi� ����� ������ A rather di	erent approach is taken by
Luttrell ������� who derives the SOM as a special case in a more general framework based on folded
Markov chains�
Here we review a latent variable based approximation to the SOM� developed for modelling radar

range pro�le data �Luttrell� ������ The data is assumed to follow a low�dimensional manifold ���D for
radar range pro�le data�� so Luttrell devises the following probabilistic model�

p�t�  

Z
p�tjy�x��p�x� dx� ������

where p�tjy�x�� is assumed to be Gaussian with mean y�x� and the prior distribution over the latent
variable� p�x�� is assumed to be uniform over a �nite interval X �
The model is �tted using maximum�likelihood� by gradient ascent� The gradient of the log�

likelihood function involves the term� p�xjt�� which� using Bayes� theorem� can be written as

p�xjt�  p�tjy�x��p�x�
p�t�

� ������

Luttrell approximates ������ by the formula

p�xjt� 
 ��x� x�t���

where x�t� is the point on X minimizing kt�y�x�k �c�f� the projection index of principal curves� and
���� is chosen based on prior knowledge of the data�
He then suggests the following training algorithm�

�� Select a random data point� tn� and �nd the value x�tn� that minimizes ktn � y�x�k
�� Adjust y�x� so that

y�x� � y�x� ! ��x � x�t���tn � y�x���
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� Repeat step � and � till convergence�

Since the necessary calculations cannot be done analytically� x is quantized into a discrete set of
non�overlapping 
bins� over the interval X � each with its own y�x�� Following this 
discretization��
steps � and � above will correspond approximately to steps � and  of the SOM algorithm� with
��x� x�t�� playing the role of the neighbourhood function� Thus� the training algorithm of the SOM
can be seen as an approximation to maximum�likelihood training of a latent variable model�

����� Multidimensional scaling

Given an N�N matrix of 
distances�� D� between N points� multidimensional scaling �MDS� �Mardia
et al�� ����� Ripley� ����� gives a corresponding set of N points� X  fx��x�� � � � �xNg� in an L�
dimensional space� such that the distances between points inX re�ect those given inD� The 
distances�
need not be Euclidean distances� but can be more general� e�g� distance measures for categorical
variables or subjective measures of similarity� in which case they are often called dissimilarities�
These dissimilarities are the only information about the data that is required� so indeed the data does
not even need to have an explicit form� However� in the context that we are interested in� where the
data has an explicit representation as a set of points in �D� for which the Euclidean distance is the
obvious dissimilarity measure� it can be shown that MDS corresponds to PCA� More precisely� the set
of points found by MDS� X� corresponds �up to scaling and rotation� to the projection of the data on
its �rst L principal components� In this form� MDS is known as principal coordinate analysis�

The Sammon mapping

The Sammon mapping �Sammon� ����� represents a particular form of MDS �Ripley� ����� � the
basic idea is the same� but the Sammon mapping pays more attention to smaller distances� thereby
achieving a varying resolution in the new representation of the data� Regions with a dense population
of data points� between which distances are small� will be 
magni�ed� in the new representation� To
formalize� given a set of 
distances� between N data points�� the Sammon mapping tries to �nd the
set of points fxng� n  �� � � � � N � in �L that minimizes

NX
j�i

 

�
dtij � dxij

	�
dtij

� ������

where dtij denotes the distance between ti and tj and d
x
ij is the distance between xi and xj � This is

a non�linear problem so iterative� numerical optimizations schemes must be used�
The name 
mapping� is somewhat misleading� since the Sammon mapping does not provide any

mapping that can be utilized to �nd a point in the model space corresponding to a new point in the
data space� This has led to the use of parametric neural network models to learn the mapping from
the data space to the low�dimensional space� using ������ as an error function �Lowe and Tipping�
����� Kraaijveld et al�� ������

��� Discussion

This chapter has reviewed a number of models intended for capturing low�dimensional structure in
data living in high�dimensional spaces� or at least provide a low�dimensional representation of this
data� A striking fact is that three of the 
non�generative� models that we have considered � PCA and
the original versions of the principal curve and the SOM � has been re�interpreted or reformulated
for the purpose of bringing them into the family of generative models� The attraction of this type of
model stems from the fact it �ts into the much wider framework of probability theory and statistics�
They can therefore directly make use well�founded theory for �tting models to data� combining models�
treatment of incomplete data� etc�
In the next chapter we propose a generative latent variable model for modelling non�linear� contin�

uous probability distributions with low intrinsic dimensionality� embedded in high�dimensional spaces�
Although similar models have been discussed in this chapter� these di	er in scope or su	er practical
or theoretical limitations�

�We assume that these distances are symmetric and that the distance from a point to itself is zero�
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� In the generative principal curve model� the number of latent points� K� depends on the number
of points in the data set used for training� N � in practice� it will almost always be the case
that K  N � This is likely to cause computational di�culties when tackling larger data sets�
Moreover� it is di�cult to see how this model could be extended to online learning�

� The density network model has been proposed in fairly general terms� but in practice it has so
far only been applied to categorical data�

� The original elastic net model was proposed for �nding good� heuristic solutions to the travelling
salesman problem� This is re�ected in the structure of the model and that there are typically
many more mixture components than there are data points �
cities��� The data is assumed to
be free of noise and so� in a successfully trained model� there is a mixture component positioned
at each data point� A generalised elastic net model will be discussed in the next chapter�

� In the latent variable model proposed by Luttrell ������ to give a probabilistic interpretation
of the self�organizing map� the posterior distribution over the latent variables is approximated
using a function which is based on prior knowledge of the data� but such prior knowledge may
not always be available� As we will see� this approximation is in fact not necessary�





Chapter �

The Generative Topographic

Mapping

This chapter presents the generative topographic mapping �GTM� � a novel non�linear latent variable
model � along with examples that illustrate how the GTM works and its potential applications� There
is also a discussion on the relationship between GTM and some of models presented in the previous
chapter� in particular the self�organizing map�
The underlying idea of the GTM is the same as that of factor analysis and probabilistic PCA �

we are seeking an 
explanation� to the behaviour of a number of observed variables �data variables��
in terms of a smaller number of hidden� or latent� variables� In contrast to FA and PPCA� the GTM
allows for a non�linear relationship between latent and observed variables�

��� The GTM Model

The GTM de�nes a non�linear� parametric mapping y�x�W� from an L�dimensional latent space
�x � �L� to a D�dimensional data space �y � �D� where normally L 	 D� y�x�W� could e�g� be
a multi�layer perceptron �Bishop� ������ in which case W would denote its weights and biases� as
we shall see later� by making a careful choice of how we implement y�x�W�� signi�cant savings can
be made in terms of computation� For now� we just de�ne it to be continuous and di	erentiable�
y�x�W� maps every point in the latent space to a point in the data space� Since the latent space
is L�dimensional� these points will be con�ned to an L�dimensional manifold non�linearly embedded
in the D�dimensional data space� Figure ��� showed a schematic illustration where a ��dimensional
latent space was mapped to a �dimensional data space�
If we de�ne a probability distribution over the latent space� p�x�� this will induce a corresponding

probability distribution in the data space� Strictly con�ned to the L�dimensional manifold� this
distribution would be singular� so we convolve it with an isotropic Gaussian noise distribution� given
by

p�tjx�W� ��  N �y�x�W�� ��

 

�
�

��

��D��
exp



��

�

DX
d

�td � yd�x�W���

�
����

where t is a point in the data space and ��� denotes the noise variance� This can be thought of
as smearing out the manifold� giving it a bit of volume� and corresponds to the residual variance of
the PPCA model �section ������ � it allows for some variance in the observed variables that is not
explained by the latent variables�
By integrating out the latent variable� we get the probability distribution in the data space ex�

pressed as a function of the parameters � andW�

p�tjW� ��  

Z
p�tjx�W� �� p�x� dx� ����

�



� CHAPTER �� THE GENERATIVE TOPOGRAPHIC MAPPING

y x W( ; )y x W( ; )

x1x1

x2x2

t1t1

t3t3

t2t2

Figure ��� The basic idea of the GTM � points on a regular grid in the low�dimensional latent space
�left� are mapped� using a parameterised� non�linear mapping y�x�W�� to corresponding centres of
Gaussians �right�� These centres will lie in the low�dimensional manifold� de�ned by the mapping
y�x�W�� embedded in the �potentially� high�dimensional data space�

This integral is generally not analytically tractable� However� by choosing p�x� to have a particular
form� a set of K equally weighted delta functions on a regular grid�

p�x�  
�

K

KX
k

��x � xk�� ���

the integral in ���� turns into a sum�

p�tjW� ��  
�

K

KX
k

p�tjxk�W� ��� ����

An alternative approach� used by Bishop et al� �����a� and MacKay ������� is to approximate p�x�
with a Monte Carlo sample� If p�x� is taken to be uniform over a �nite interval� this becomes similar
to �����
Now we have a model where each delta function centre �we will from now on refer to these as

latent points� maps to the centre of a Gaussian which lies in the manifold embedded in the data
space� as illustrated in �gure ��� Note that as long as y�x�W� is continuous� the ordering of the
latent points will be re�ected in the ordering of the centres of Gaussians in the data space� What we
have is a constrained mixture of Gaussians �Hinton et al�� ����� Williams� ������ since the centres of
the mixture components can not move independently of each other� but all depend on the mapping
y�x�W�� Moreover� all components of the mixture share the same variance� ���� and the mixing
coe�cients are all �xed to ��K�
Given a �nite set of i�i�d� data points� ft�� � � � � tNg� we can write down the likelihood function for

this model�

L  
NY
n

p�tjW� ��  

NY
n

�
�

K

KX
k

p�tnjxk�W� ��


� ����

and maximise it with respect toW and �� However� it is normally more convenient to work with the
log�likelihood function�

�  

NX
n

ln

�
�

K

KX
k

p�tnjxk�W� ��

�
� ����
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We could employ any standard non�linear optimization technique �see e�g� Press et al�� ����� for
the maximization� but having noted that we are working with a mixture of Gaussians� we may instead
use the EM algorithm �Dempster et al�� ����� Bishop� ������ In the last chapter� section ������ we
saw how an EM�algorithm could be used to �t a factor analysis model to a data set� where the key
step was to compute the expectations of su�cient statistics of the latent variables� the values of which
were missing� When �tting a mixture of Gaussians� which is maybe the most common example of
the application of the EM�algorithm �see e�g� Bishop� ������ the problem would be easily solved if we
knew which data point was generated by which mixture component� unfortunately� this is usually not
the case and so we treat these 
labels� as missing variables�

��� An EM algorithm for the GTM

Given some initial values forW and �� the E�step for the GTM is the same as for a general Gaussian
mixture model� computing the responsibilities�

rkn  p�xkjtn�W� ��  
p�tnjxk�W� ��p�xk�P
k� p�tnjxk� �W� ��p�xk� �

� ����

assumed by the kth component of the Gaussian mixture for the nth data point� for each possible
pair of k and n� rkn corresponds to the posterior probability that the nth data point was generated
by the kth component� As the prior probabilities� p�xk�� were de�ned to be �xed and equal ���K�
in ���� these will cancel in ����� Note that� since the mixture components correspond to points
in the latent space� the distribution of responsibilities over mixture components correspond to a
distribution over the latent space� forming a connection to the EM�algorithm for FA� In the M�step�
these responsibilities will act as weights in the update equations forW and �� In essence� we will try
to move each component of the mixture towards data points for which it is most responsible�
So far� we have not speci�ed the form for y�x�W�� but only stated that it could be any parametric�

non�linear model� For the GTM� we normally choose a generalised linear regression model� where y
is a linear combination of a set of �xed basis functions�

yd�x�W�  
MX
m

�m�x�wmd� ����

We could consider a wide range of basis function� but for the rest of this thesis� we will use a combi�
nation of

� MNL non�linear basis functions� in the form of non�normalised� Gaussian basis functions�

� L linear basis functions� for capturing linear trends in the data� and

� one �xed basis function� that allows the corresponding weights to act as biases�
Thus� we get

�m�x�  

�����
exp

n
�kx��mk

�

���

o
if m �MNL�

xl if m  MNL ! l� l  �� � � � � L
� if m  MNL ! L! �  M �

����

where �m� m  �� � � � �MNL� denotes the centres of the Gaussian basis functions and � their common
width� and xl denotes the lth element of x� Note that� throughout the rest of the this thesis� the
GTM models used in experiments are understood to have linear and bias basis functions� and these
will not be explicitly mentioned� It will be convenient to write ���� in matrix form as

Y  �W� �����

where Y is a K � D matrix of mixture component centres� � is a K �M matrix with elements
$km  �m�xk�� andW is a M �D matrix containing the weight and bias parameters�
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We now derive the M�step for this model as follows� using ����� ���� and ����� we can calculate
the derivatives of ���� with respect to wmd� yielding

��

wmd
 

N�KX
n�k

rkn�

�
MX
m�

�m��xk�wm�d � tnd

�
�m�xk�� �����

where rkn are the responsibilities computed in the preceding E�step� and setting these derivatives to
zero we obtain an update formula for W� A detailed derivation is found in appendix A� Similarly�
calculating the derivatives of ���� with respect to � and setting these to zero� we obtain

�

�
 

�

ND

NX
n

KX
k

rknky�xk �fW�� tnk�� �����

Here� fW corresponds to the updated weights� which means that we must �rst maximise with respect
to the weights� then with respect to �� The update formula for � is the same as for general Gaussian
mixtures and has an intuitive meaning� We set ���� which is the common variance of the Gaussian
mixture� to the average weighted distance between mixture components and data points� where the
weights are given by the responsibilities�
Using ������ the M�step forW can be written on matrix form as

�TG�W  �TRT ����

where T is the N �D matrix containing the data points� R is the K �N responsibility matrix with
elements de�ned in ����� and G is an K �K diagonal matrix with entries

gkk  
NX
n

rkn� �����

���� can be seen as a form of generalised least squares �Mardia et al�� ������ To draw the parallel with
the M�step for the factor analysis model in ������� we are settingW to map the weighted� non�linear
representation of the latent variables� G�� to the targets formed by the weighted combination of data
points� RT�
We can now also see the advantages of having chosen a generalized linear regression model� as

this part of the M�step is reduced to a matrix inversion and a few matrix multiplications� A di	erent
model� where the log�likelihood depended non�quadratically on the adjustable parameters� would have
required non�linear� iterative maximization� at each iteration computing a new log�likelihood� which
is generally the most costly part of the algorithm�� Note that� since �TG� is symmetric and often
positive de�nite� we can utilize fast Cholesky decomposition for the matrix inversion� with the option
of resorting to singular value decomposition �SVD� �Press et al�� ����� Strang� ������ if the matrix
proves to be singular� There are two possible ways this can happen� G may contain one or more zeros
along its diagonal� which means that the corresponding mixture components take no responsibility at
all� This is very unlikely to happen as long there are signi�cantly less mixture components than data
points� The second possible cause is rank de�ciency in �� which may occur if we choose the basis
functions very broad or very narrow� or use more basis functions than latent points� Normally� there
will be no di�culty avoiding such choices of basis functions and the rank of � can be checked prior
to �tting the GTM to data�
In addition� we could impose a degree of weight regularization� leading to the equation

��TG�! �I�W  �TRT �����

where � is the regularization parameter and I is an identity matrix of the same dimensions as �TG��
This correspond to specifying an isotropic Gaussian prior distribution overW�

p�W�  
� �

��

�W��

exp
�
��

�
kWk�

�
� �����

�In such a case it might be better to only a partial M�step� increasing� but not necessarily maximising the likelihood�
corresponding to a generalised EM �GEM� algorithm �Dempster et al�� ����
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with zero mean and variance ���� where W denotes the total number of elements inW� From �����
and ������ it follows that �  ���� Apart from ensuring a fast matrix inversion� the use of weight
regularization gives us one handle on the model complexity through the real valued parameter �� The
issue of model complexity and parameter selection will be further discussed in chapter ��

����� Initialization

The only remaining issue is to choose appropriate initial values forW and �� ForW� one possibility
is to use random samples drawn from a Gaussian distribution� N ��� ��� where � is chosen so that
the expected variance over y equals the variance of the training data� An alternative� which is often
better� is to initialize the weights so that the L latent variables map to the L�dimensional hyper�
plane spanned by the L �rst principal components of the data set we are trying to model� A PCA
initialization only requires the weight of the linear basis functions� so weights of the non�linear basis
functions can be set to zero� or alternatively� to very small random values� resulting in a 
semi�random�
initialization� Whether we use random or PCA�based initialization� it is reasonable to initialize the
weight vector corresponding to the bias basis function so as to match the mean of the training data�
For �� our choice to some extent depends on how we choose W� If W is initialized randomly � is
set to the reciprocal of the average squared distance between the centres of the resulting Gaussian
mixture and the points in our data set� which correspond to the update formula in ����� with all
responsibilities being equal� If� on the other hand� W is initialized using PCA� � is set so that its
inverse �the variance in the data space� equals the larger of

� the length of the �L ! ��th principal component� i�e� the largest variance orthogonal to the
L�dimensional hyper�plane to which the Gaussian mixture is initially mapped�

� half the average minimal distance between the mixture components�

This is motivated by the idea that the initial � should be small enough to explain the variance
orthogonal to� as well as the variance within� the initial manifold�

����� Summary of the GTM algorithm

We now summarize the sequence of steps for constructing a GTM model�

Generate the grid of latent points fxkg� k  �� � � � �K�
Generate the grid of basis function centres f�mg� m  �� � � � �M �
Select the basis function width ��
Compute the matrix of basis function activations� �� from �����
InitializeW� randomly or using PCA�
Initialize ��
If desired� select a value for ��
Compute �� %kn  ktn ��kWk��
repeat

Compute R from ���� using � and ��
Compute G from ����� using R�

�
E � step

W  ��TG�! �I����TRT� where � may be zero�
Compute �� %kn  ktn ��kWk��
Update � according to ������ using R and ��

���M � step

until convergence

Note how the squared distances required to update � in the M�step gets 
re�used� when calculating
the responsibilities in the following E�step� Next� we look at an example of how this algorithm works�

Example ��� �Curved line in ��D� Figure ��� shows how a GTM with a ��dimensional latent
variable �learns	 to model a data set which is intrinsically ��dimensional but has been non�linearly
embedded in a ��dimensional data space� The data set was generated by picking 
� equidistant points
in the interval ������ ���� as the x�coordinates� The y�coordinates were then computed as the function
y  x! ���� sin��x�� Finally� spherical Gaussian noise with standard deviation ��� was added to the
data� As can be seen in gure ���� this results in a data set with a distribution which is more dense
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around the bends of the curve and sparser towards the ends� as expected� The initial conguration
for the GTM was found using principal components�

��� Visualization

An important potential application for the GTM is visualization� To see how this works� note that a
GTM� for which we have found suitable parameter values W� and ��� by ���� and ���� de�nes a
probability distribution in the data space conditioned on the latent variable� p�tjxk�� k  �� � � � �K�
We can therefore use Bayes� theorem� in conjunction with the prior distribution over latent variable�
p�x�� given in ���� to compute the corresponding posterior distribution in latent space for any given
point in data space� t� as

p�xk jt�  p�tjxk �W�� ���p�xk�P
k� p�tnjxk� �W�� ���p�xk� �

�

As can be seen� this is exactly the calculation of responsibilities in ����� where again the p�xk� cancel�
Provided that the latent space has no more than two� or possibly three� dimensions� we can plot

p�xk jt� against xk� If we want to visualize whole sets of data� we must resort to less rich descriptions�
Two possibilities are� for each data point tn� to plot

� the mode of the posterior distribution in latent space�
xmoden  argmax

xk

p�xkjtn��

which we call the posterior�mode projection� or

� the mean of the posterior distribution in latent space�

xmeann  

KX
k

xkp�xkjtn��

consequently called the posterior�mean projection�

Whatever we choose� we must bear in mind that summarizing descriptors� such as the mode and the
mean� can give misleading results� e�g� in case the posterior distribution is multi�modal� A schematic
illustration of how such a situation may arise is given in �gure �� for a ��D GTM� In fact� plotting
both the mean and the mode and comparing them can give an indication of multi�modality� Our
second example demonstrates how the GTM can be used for visualization of data�

Example ��� ���phase pipe �ow data� In this example we use synthetically generated data� sim�
ulating non�intrusive measurements by gamma�densitometry� from a pipeline transporting a mixture
of gas� oil and water �Bishop and James� ������ The fractions of gas� water and oil vary� and the �ow
in the pipe takes one of three possible congurations�

The construction for data collection is illustrated in gure ���� Six pairs of ��beams� where the two
beams in each pair have di�erent wave length� are sent through the pipe� and from measurements of
their attenuation� the path lengths through water and oil can be computed� With six pairs of beams�
this data set is twelve�dimensional� However� for any given �ow�conguration� there are only two
degrees of freedom in the data� the fractions of oil and water �the fraction of gas being redundant� as
the three fractions must sum to one�� Hence� even if this data lives in a twelve�dimensional space� it
is really conned to a two�dimensional subspace�

The existence of multi�phase �ow congurations complicate matters somewhat� The three di�erent
congurations of �ow are illustrated in gure ��
� For the homogeneous �ow� which is simply a
homogeneous mix of oil� water and gas� only one ��beam would be required to determine the fractions
of oil and water � data points collected for this conguration all lives �approximately� in a two�
dimensional plane in the data space� and hence the measurements from the di�erent ��beams provide
the same information� For the annular conguration� the relationship between the measurements and
the fractions of water and oil is no longer linear� but all data points taken from this �ow conguration
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Figure ��� The GTM learning process � the plots show the density model in data space at iteration
� �the initial con�guration�� �� �� �� � and ��� The data points are plotted as � while the centres of
the Gaussian mixture are plotted as �!�� The centres are joined by a line according to their ordering
in the latent space� The discs surrounding each �!��sign represent two standard deviations� width of
the noise model ��

p
����� Note that the �nal density model re�ects the distribution of the training

data�



�� CHAPTER �� THE GENERATIVE TOPOGRAPHIC MAPPING

*

Figure �� The �gure shows a schematic illustration of a ��D GTM in a ��D data space� together with
a data point� plotted as �� The manifold of the GTM is bent� so that the two mixture components
that are closest to the data point are not close to each other on the manifold� This result in bi�modal
distribution of responsibilities over the mixture components� illustrated in the �gure with a shading
of mixture components 
proportional� to the responsibility they take�

γ γ γ

γ

γ

γ

23

4
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6

1

Figure ��� A cross�section of the pipe� showing the location of the ��beams used for collecting the
measurements in the �phase data� Note that the vertical beams are displaced relative to the centre
of the pipe� because all con�gurations considered are left�right symmetrical� �see �gure ����
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oil homogeneous mixgaswater

Figure ��� A cross�section view of the three di	erent con�gurations of �ow in the pipe� showing� left
to right� homogeneous� annular and strati�ed �ow�

still lives on a single curved manifold� This not the case with the stratied �or laminar� conguration�
as the three fractions change� the vertical ��beams change from passing only through oil to passing only
through water �say�� This cause discontinuities� and consequently data points from this conguration
are spread over a number of separate two�dimensional manifolds� The three classes join at the three
points� corresponding to pure �ows of oil� water or gas�

The data generating model includes a noise process� modelling errors in the measurements arising
from photon statistics� In a real setting� the noise level would be governed by the time spent to
collect each data point� called the integration time� The data set discussed here was generated so as
to correspond to an integration time of �� seconds�

A GTM model was tted to a set containing samples from all three classes� It had a ���by���
square grid of latent points in two�dimensional space� It utilized� apart from bias and linear basis
functions� �� Gaussian basis functions with their centres located on a ��by�� square grid in the latent
space� Both grids were centred on the origin in the latent space� The basis functions had a common
width of � times the shortest distance between two neighbouring basis functions� The model was
initialized using PCA and trained for �� iterations of the training algorithm� imposing a Gaussian
prior on the weights with inverse variance �  ����

The left panel in gure ��� shows the posterior�mean projection of the training data in the latent
space with the initial conguration found using PCA� the middle panel shows the corresponding plot
after training� The separation of the three di�erent classes has increased� in particular� the data points
belonging to the laminar class has been distributed over a number of distinct clusters� The right panel
shows a plot of posterior�mean and �mode for a few of the data points� with the mean and mode
corresponding to the same data point connected by a line� The rather large distances between mean
and mode in some cases suggest that the corresponding distributions may be multi�modal� or at least
skewed� This is not completely unexpected� as the GTM is modelling a rather complex distribution
spread over a number of separated two�dimensional manifolds� some of which are curved� using a
single �elastic	 manifold�

��� Relationship to other models

In the previous chapter we discussed a number of models which all have a similar aim to the GTM�
In this section we discuss the relationship between the GTM and some of these models� giving special
attention to the relationship to the Self�Organizing Map� which has a long�standing position in the
area of unsupervised neural networks�

����� The Self�organizing map

Since the GTM de�nes a density model in the the data space� many of the problems associated with
the SOM� which were discussed in section ����� are automatically solved �Bishop et al�� ����b� ����b�
����b��
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Figure ��� Shown� left to right� are the posterior�mean projection of the data in the latent space of the
PCA�initialised GTM� prior to training� the corresponding plot after having trained the GTM� and�
rightmost� pairs or posterior�mean and �mode projections for the trained GTM� joined by lines� for
��� randomly drawn data points� The three di	erent types of �ow are plotted as ! �homogeneous��
� �annular� and � �strati�ed�� In all the plots� latent points are plotted as shaded �� In left plot� 
represent posterior mode points� with the class label given by the connected posterior mean point�

� The GTM is trained by optimizing an objective function� namely the log�likelihood function in
�����

� The EM�algorithm is guaranteed to converge to a �local� maxima of the log�likelihood function
�Dempster et al�� ����� Bishop� ������ By appealing to the Robbins�Monro theorem �Robbins
and Monro� ����� Fukunaga� ������ sequential maximization schemes could also be guaranteed
to converge� or we could consider using an online EM�algorithm �Titterington et al�� ������

� We can invoke the machinery of Bayesian statistics to derive methods for treating the parameters
of the model� as will be described in chapter ��

� The likelihood provides a measure based on which a GTM model can be compared to other
generative models�

Another important feature of the GTM is that� if the mapping from the latent space to the
data space is taken to be smooth� the topographic ordering in the latent space will be preserved
on the manifold in the data space�� This is a direct consequence of the fact the GTM de�nes a
continuous manifold in the data space� which is not the case with the original SOM model� To this
end� Ritter ����� suggested the parameterized SOM �PSOM� model� where a parametric 
surface�
is constructed that passes through the reference vectors of a �tted SOM model� by associating a
basis function with each node�reference vector pair� A more elegant solution� however� is the kernel�
smoothed interpretation of the BSOM� by Mulier and Cherkassky ������� which is discussed further in
the section on kernel smoothing below� However� both these models still su	er many of the problems
of the original version of the SOM� stemming from the fact that they do not de�ne generative models�
We now investigate the relationship between the GTM and the SOM in a little bit more detail�

Soft vs� hard assignment

If we study the training algorithms for the GTM and the SOM� we can discover both similarities and
di	erences� An important dividing line is the way the two models handle the assignment of data points
to mixture components or reference vectors� The SOM assigns each data point to a single reference
vector� corresponding to 
the winning node�� whereas the GTM distributes the responsibility for a
data point over a number of mixture components� This di	erence is analogous to that between the K�
means algorithm �Linde et al�� ����� and the EM�algorithm for a conventional�K�component Gaussian
mixture� A K�means model represents a data set using K mean points� �k� which are �tted to given
a data set of N data points� ftng� using the following algorithm��

�Note that this does not imply that the GTM is guaranteed to reveal any topographic ordering present in the data�
�Note here the similarities with the training algorithm for the batch version of the SOM� discussed in section �����
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initialize ��� � � � ��K � e�g� using K randomly drawn points from the data set
repeat
for each data point� tn� do
Find k such that k  argmin

k�

ktn � �k�k� and assign tn to �k � tn � Tk�
end for
re�estimate the the mean points so that

�k  
�

Nk

X
t�Tk

t� where Nk in the number of elements in Tk

until no data point has its assignment changed�

The assignment of data points to mean points can be seen as a special case of the E�step in �����
where � � � and all responsibility is assigned to a single mixture component� The re�estimation of
the mean points correspond exactly to the M�step for updating a mixture of Gaussians � each mean
point or mixture component is set equal to a weighted combination of the data points assigned to it�
The di	erence lies in the weights of this combination� In the K�means case� each data point assigned
to �k gets weight ��Nk in the update formula� while all other data points get weight zero� For the
Gaussian mixture� the weights are given by the responsibilities� which are typically greater than zero�
The GTM and the SOM di	er in exactly the same way� in terms of assignment of data points to

latent points or nodes� In terms of the update� however� both the GTM and the SOM di	er from
the simple weighted averaging used by K�means and Gaussian mixtures� as well as from each other�
As already pointed out� the GTM de�nes a constrained Gaussian mixture in the data space� so even
though it has the same weighted average of data points used for the general Gaussian mixture as
target for its update� it can only try to �t this target as well as possible� while maintaining its overall
smooth� low�dimensional structure� The SOM uses the neighbourhood function to allow nodes to
in�uence each other in the update of their corresponding reference vectors � in e	ect� each node
is incorporating data points assigned to other nodes in the weighted average update of its reference
vector� The weights assigned to data points of other nodes depends on the distances between the
nodes in the latent space� and will usually di	er from the responsibilities used to calculate the update
target for the GTM� which are based on the distances between mixture components and data points
in the data space� From this perspective� the use of the neighbourhood function in the SOM model
can be seen as a way of trying to smooth or distribute the hard assignments of data points to reference
vectors� In the GTM� there is no need for such arbitrary smoothing� since it uses soft assignments �
responsibilities � calculated under a probabilistic model� Further insights can be gained by studying
how the distribution of responsibilities evolve during training of a GTM model� Figure �� shows grey�
scale plots of the responsibility distribution over the latent space during di	erent stages of training�
for a particular data point� The responsibility distribution starts o	 being rather wide� to then
gradually narrow with training� The e	ect of this process is similar to that achieved by shrinking the
neighbourhood in the SOM model� The important di	erence is that in the GTM� this results as an
automatic consequence of the gradually improved �t of the model to the data� whereas the shrinking
of the neighbourhood in the SOM model has to be done 
by hand�� by the user�
When comparing the GTM and the SOM� it is di�cult to describe the precise e	ects of these

di	erent strategies of assignment� as they depend on many factors� only some of which are under the
control of the user� Figure �� shows the same plot as in �gure ��� but for a di	erent data point� From
initially having the same characteristics as the distribution in �gure ��� instead of getting narrower
the single mode here splits into two� Whereas in the unimodal case� the hard assignment of the SOM
combined with neighbourhood smoothing could possibly be regarded as a reasonable approximation�
it is clearly inappropriate in this bi�modal case�

Kernel regression

A di	erent framework in which the relationship between the GTM and the SOM can be analyzed is
that of kernel regression� As noted by Haan and Egecioglu ������� the update formula for the batch
version of the SOM �BSOM��

wk  

NX
n

h�k� kn�tnPN
n� h�k� kn��

� �����
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Figure ��� The four plots show the distribution of responsibilities over the latent space for a particular
data point from the pipe��ow data set described in example ��� at the initial con�guration� found by
PCA� and then after �� � and �� iterations of training�

Figure ��� The four plots correspond to those shown in �gure ��� showing the distribution of re�
sponsibilities over the latent space at di	erent stages of training� but for a di	erent data point� where
the distribution eventually splits over two modes�

�where we here have dropped the time�step index �i�� can be written as

wk  

PK
k� Nk�h�k� k��mk�PK

j Njh�k� j�
�

where

mk  
�

Nk

X
t�Tk

t� �����

is the mean of the set of data points assigned to reference vector k� denoted by Tk� and Nk denotes
the number of data points in Tk�
Mulier and Cherkassky ������ used this to show that� at any given iteration of the training algo�

rithm� the BSOM model can be expressed using a kernel regression formula

y�x�  

KX
k

F �x�xk�mk �����

with mk de�ned as in ����� and

F �x�xk�  
Nkh�x�xk�P
j Njh�x�xj�

� �����

is the kernel function of node xk � and we have made the neighbourhood functions dependency on
location in the topographic space explicit�
Also the GTM model can� at any given iteration of the training algorithm� be written on the form

in ������ with the kernel functions

F �x�xk�  ��x���TG������xk�
Tgkk� �����
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Figure ��� The four plots show �right�left� top�down� the kernel ������ evaluated over the latent grid
after � �PCA initialisation�� �� �� and �� iterations of training� using the data set from example ���
with the centre of the kernel located approximately at the centre of the latent space�

where ��x� is a ��M vector with elements �m�x�� G and gkk are de�ned in ������ and

mk  g��kkRkT� �����

where Rk is the kth row of R � the responsibility matrix with elements de�ned in ����� Figure ��
shows examples of this kernel� approximately centred in the latent space� during di	erent stages of
training� Note that both kernel functions � ����� and ����� � sum to one� For ����� this follows
directly from the formula� while for ������ it is easy to see that F�  �� where F  �F �xi�xj���
i� j  �� � � � �K� the result then follows from the fact the Mth column of $� which corresponds to the
bias basis function� contains only ones ���s��
Formulae ����� and ����� again re�ects the di	erence between the hard assignment of the SOM

and the soft assignment of the GTM� If we study the kernel functions in ����� and ������ we see
that the SOM kernel will gradually get narrower during training� as a consequence of the shrinking
neighbourhood function� The GTM kernel� on the other hand� varies only with G� and typically
retains its width during training� although peaks and troughs tend to become more pronounced�
This is illustrated in �gure ��� and is a consequence of another important di	erence between the
SOM and the GTM� For the GTM� the sti	ness of the manifold� which primarily depends upon the
width of the non�linear basis functions� does not change during training� For the SOM model� the

manifold� starts o	 being rather sti	�� to then gradually become more �exible as the neighbourhood
function shrinks� This gradual softening� which is essential for the learning in the SOM� unfortunately
makes the relationship between the user controlled parameters �e�g� the initial and �nal width of the

�As have already been mentioned� the original SOM model does not de	ne a continuous manifold in the data space�
but thinking of the reference vectors as spanning an elastic manifold helps the understanding�
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Figure ���� Sample manifolds of increasing sti	ness� These manifolds were generated by �rst selecting
the relative width for the non�linear basis functions� � � ���� ��� and ��� for the left� middle and right
panel� respectively � and then draw weight parameters randomly from the prior ������

neighbourhood� rate of shrinking� etc�� and a priori expectations about the resulting model rather
obscure� In the GTM� user controlled parameters are de�coupled from the learning process� and
their impact on the �nal model is therefore easier to understand� Figure ��� shows examples of ��D
manifolds embedded in a �D space� generated from a GTM with a ��D latent space� by randomly
sampling weight parameters from the prior ������ The three plots correspond to increasing values
of �� � will only a	ect the overall scale of the manifold� although we could consider allowing greater
variance for the weights of the linear basis functions� which would then consequently result in more

linear� manifolds�

Computational considerations

Although the rapid development of computer technology has to some extent altered our perception
of computational complexity� this issue cannot be ignored� To simplify the comparison� we here only
consider the batch version of the SOM �BSOM��
If we study the steps for computing the statistics necessary to update the parameters �winning

nodes or responsibilities�� we see that the distance calculation between data points and mixture
components of reference vectors� respectively� is identical in both training algorithms� On top of that�
the GTM has the additional cost of computing the responsibilities from these distances� but as the
the dimensionality of the data space increases� the proportional cost of this extra step decreases�
When updating the parameters� the GTM requires a matrix inversion of anM �M matrix� where

M is the number of basis functions� followed by a set of matrix multiplications� The matrix inversion
scales as O�M��� while the matrix multiplications scales as O�KND�
� The update of the SOM
depends on the form of the neighbourhood function� If it is continuous on the latent space� then
every node will potentially be in�uenced by all other nodes and so the update will require O�K�ND�
operations� Every time the width neighbourhood changes� determining the cross�in�uence between
nodes will require another O�K�� operations� If� on the other hand� the top�hat neighbourhood
function is used� each node will only in�uence nodes which are within the width of the neighbourhood
function� which can result in dramatic savings� especially when the neighbourhood is small� However�
updates using the top�hat neighbourhood function is typically much less smooth than those obtained
when using e�g� a Gaussian neighbourhood function�

Assuming that the BSOM is using a continuous neighbourhood function� the cost ratio for the
respective update calculations will largely depend on the ratio between K and M � Normally� the
number of basis functions in the GTM will be much smaller than the number of latent points� When
applied to the data used in example ��� a BSOM model with a corresponding grid of ��� �� nodes
and a Gaussian neighbourhood function converged in roughly the same time as the GTM used in the
example� However� using the top�hat neighbourhood function� the same BSOM model converged to a

�To be exact� the matrix multiplications scales as O�KMD �KND�� but normally the number of data points� N �
exceeds the number of basis functions� M �
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comparable� solution �as judged by visually inspecting the resulting winning node plot for the data�
in less than a third of that time� An additional factor that must be considered is the number of trials
required to �nd suitable parameter values� and to which extent such trials can be run and assessed
without human supervision� As described in chapter �� there are principled ways in which this can be
done automatically for the GTM�
Various techniques could be used in both models to speed up the computations� One potential

such technique for the GTM� which retains all its desirable properties� is discussed in section ����
To summarize� with a top�hat neighbourhood function� a BSOM model will normally converge

more quickly than the corresponding GTM model �i�e� the number of latent points equals the number
of nodes�� However� using a Gaussian neighbourhood function with the BSOM model� which typically
gives a smoother convergence� the di	erence in speed of convergence will depend on the ratio between
K and M � In practice� we normally chose M 	 K�� for the GTM� in which case the convergence
rates are similar�

����� A Generalised elastic net model

Recently� a generalization of the elastic net model was proposed by Utsugi ������ ����� as a probabilis�
tic formulation of the SOM� a model which is closely related to the GTM� Recall that the elastic net
model� as proposed by Durbin et al� ������ �see section ������� is a Gaussian mixture with a prior that
encourages the mixture components to follow a locally ��D� globally cyclic structure� This prior can
be extended to more general forms� Utsugi uses a discretized Laplacian smoothing prior �O�Sullivan�
����� that encourage the mixture components to follow a low�dimensional� rectangular structure� and
which can relatively easily be modi�ed to more complex priors� e�g� to allow for �partial� 
cuts� or

tears� in the manifold �Utsugi� ������ To formalize this� the model consists of a K�component Gaus�
sian mixture with centres� wk� a common variance �

�� and equal mixing coe�cients �xed to ��K�
For the centres we de�ne the prior

p�Wj��  
DY
d

� �

��

�j��
�j�T�j����� exp

�
��

�
k�bwdk�

�
�

where W is the K �D matrix holding the centres� wk� as its rows� bwd is the dth column of W� �
is a matrix representing a discretized smoothing operator on the latent �topological� space� j�T�j�
denotes the product of the j positive eigenvalues of �T�� and � controls the degree of smoothing
imposed� Utsugi gives examples using a second order smoother discretized on a lattice in a ��D latent
space�

%ij  

���
�� if j�i� j� ! �j  ��
� if j�i� j� ! �j  ��
� otherwise�

i  �� � � � � �K � ��� j  �� � � � �K�

Given a data set� ft�� � � � � tNg� we can write the penalized log�likelihood function as�

�  

NX
n

ln p�tnjW� �� ! ln p�Wj��

We can maximise this using an EM�algorithm� where the E�step is identical to that of the GTM� while
in the M�step� we are solving �

G!
�

�
�T�

�
W  RT�

for W� where G� R and T are de�ned as for the GTM� equation ����� Comparing these two
equations highlights the key di	erence between the two models� The GTM consists of a constrained�
rather than a regularized� Gaussian mixture� Alternatively� regularization can be seen as imposing
soft constraints on the mixture components� in contrast to the hard constraints enforced by the GTM�
Another important di	erence� is that this elastic net model� due to its use of a discretized smoother�
does not de�ne a mapping from the latent space to the data� and hence no explicit manifold in the
data space� A new point in the latent space which does not coincide with any point in the lattice
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of the smoother can therefore not be mapped to the data space� as is the case with the GTM� In
section ��� we discuss an alternative way of de�ning the mapping from latent to data space in the
GTM� which imposes soft constraints on the mixture components� using a Gaussian process prior�
The relationship of the generalised elastic net to the SOM is largely analogous with that of the

GTM� discussed in the previous paragraphs� Utsugi ������ shows how the Laplacian smoother alter�
natively can be written in the form of a �discretized� kernel smoother�

����� Principal curves

The original principal curve algorithm� discussed in section ������ is in some ways closer to the SOM
than the GTM� in that

� each data point is associated with a single point on the curve� namely its projection on the
curve� and

� for �nite data sets� the conditional estimates of the curve are smoothed over a neighbourhood
de�ned in the parameter space of the curve� corresponding to the neighbourhood function of the
SOM�

Note that the projections onto the curve change on a continuous scale in the parameter spaces� as
the curve adapts� The re�assignment of data points to the static nodes in the SOM can be seen as a
discretization of this process�
The revisited version of the principal curve� discussed in section ������ is closer to the GTM and the

elastic net model discussed in the previous section� It also generates a regularized Gaussian mixture�
but uses a cubic spline smoother� and the number of components in the mixture equals the number of
data points� Tibshirani ������ suggests the possible extension of the revisited principal curve model
to structures of higher dimensionality� but goes no further�

����� Density networks

The density networks model �MacKay and Gibbs� ����� MacKay� ����� is fairly general and the
GTM model proposed here can be seen as a particular instance� with a particular form for the prior
distribution in the latent space� given in ���� and the mapping from latent to data space being
implemented using a generalised linear regression model which is optimized using the EM algorithm�
As mentioned at the end of section ������ MacKay and Gibbs use a conjugate gradient routine for the
optimization� The gradient is computed by averaging over the posterior distribution over the latent
variables and since MacKay and Gibbs approximates this distribution over a �nite sample of points
in the latent space� the computation of this distribution will be equivalent to the computation of
responsibilities in the GTM�
MacKay and Gibbs ������ also discuss a hybrid Monte�Carlo approach �Neal� ����� for modelling

the posterior distribution� which holds potential to resolve problems that arise as the dimensionality
of the latent space increase�

����� Auto�associative networks

The most important di	erence between the auto�encoder and the GTM is that the former does not
de�ne a distribution over the latent space �the space of the hidden units� and hence it is not a
generative model� However� the auto�encoder has the advantage of e	ectively dealing with latent
spaces of higher dimension� since the E�step of the generative models� which computes a �discretized�
distribution over the whole of the latent space� is replaced by a straightforward 
projection� in the
latent space �the space of activations from the bottleneck layer�� which is a single point� computed
by the forward propagation from the input layer to the bottleneck layer� These projections are then
mapped� by the second half of the auto�encoder �bottleneck to targets�� which corresponds to the
mapping from latent to data space in the GTM�
This ��stage view of the auto�encoder has provided inspiration for developments of generative latent

variable models� in which a recognition model� analogous with the input�to�bottleneck mapping� is used
to �approximately� model the conditional distribution over a set of latent variables� given a data set�
This distribution is then mapped to the data space� in analogy with the bottleneck�to�targets mapping�
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Figure ���� A toy data set consisting of ���� data points drawn at random from a distribution de�ned
by two correlated Gaussians in ��D�

resulting in a generative model in the data space� These ideas were �rst developed for latent class
models� where the observed data consist of binary vectors� e�g� binary images �Dayan et al�� ������
More recently� also models for non�linear factor analysis and topographic maps have been suggested
within this framework �Ghahramani and Hinton� ����� Hinton and Ghahramani� ������

��� Discussion

This chapter has introduced the basic GTM model� There are a number of ways in which this model
can be generalized� extended or adapted� The important point� however� is that any such future
developments can be carried out within the framework of probability theory� We have in this chapter
left a number of parameters of the GTM model unspeci�ed � in chapter �� we will see how we can
�nd suitable values for these using Bayesian methods� In chapter � several other suggestions will be
given on how the GTM model can be extended in a principled manner� providing further evidence of
the bene�ts of using a generative� probabilistic model�
We have also seen how the GTM can be used for visualization of data from the modelled distribu�

tion� based on the posterior distribution over the latent space induced by a point in the data space�
In chapter �� we will see how we can use the fact that the GTM de�nes a continuous manifold in the
data space to further enhance its capabilities for visualization by the introduction of the magni�cation
factor�
A potential problem with the GTM as presented in this chapter� is that it will be best suited to

model continuous� low�dimensional distributions of roughly square shape� When this is not the case�
the non�linear mapping will try to adapt in order to match the data as well as possible� but that may
in turn raise a con�ict between the interpretability and the quality of the density model�

Example ��� �� Gaussians in ��D� Consider the data set shown in gure ����� consisting of two
correlated Gaussians in ��D� Two GTM models were tted to this data set� both having a ����� grid
of latent points� but one had a rather �exible mapping� with a �� � grid of basis functions� whereas
the other had a minimal �� � grid of basis functions� both had �  ����

Both models were trained using �� iterations of EM� the rst without using any weight regular�
ization� the second using �  ���� and the resulting manifolds are shown in the top left and right
panels of gure ����� note that these have been plotted using a �� � grid of latent points� In the
bottom panels the corresponding density models are illustrated� together with a test set consisting of
���� points drawn independently from the same distribution as the training data� The more �exible
manifold has been curled up and folded as the training algorithm has tried to achieve an optimal t
to the training data� The sti�er manifold has been too sti� to bend or fold and� as a consequence� the
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Figure ���� The left and right column shows the manifolds �top� and density models �bottom� of the
more �exible and the more sti	 GTM models� respectively� The manifolds has been plotted using a
� � � grid of latent points� The density model plots shows contours of constant density� together
with a set of independent test data points� plotted as � �

resulting density model is clearly inferior� The log�likelihood scores for the two models are shown in
table ����

It should be noted that the experiment in example � was designed to demonstrate a point� The
data consists of two separated clusters with ellipsoid shapes� and since we are �tting a ��D model to
��D data� the non�linearity in the GTM will be used entirely to squeeze the single� inherently square
shaped manifold to �t two ellipsoid clusters� In this situation� warping the manifold as in the top�left
panel of �gure ��� appears to be the most 
pro�table� alternative for the training algorithm� in terms
of the trade�o	 between likelihood and the degrees of freedom available� A second important point to
note is that a more �exible model will always �t better to training data� compared to a less �exible
one� but this will not necessary generalise to independent test data� a problem known as over�tting�
which will be further discussed in section ���� Indeed� if the �exible model in the example had been
even more �exible� or if the training data set had been smaller� the scores in the test data column of
table �� may have been reversed�
A potential solution to problems arising from the �xed� square shaped distribution is to relax the

constraint of �xed mixing coe�cients� and instead estimating these as part of the training procedure�
The training algorithm could then� within given limits� choose the distribution of mixing coe�cients
that gives the best �t to data� in e	ect choosing the distribution over the latent space� However�
this is likely to have a signi�cant impact on the GTM as a model for visualization� The data in
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Data Set
Model Training Test
Flexible ����� �����
Sti	 ���� ����

Table ��� Log�likelihood scores on training and test data� for the �exible and sti	 GTM models
discussed in example �� Both training and test set contained ���� data points�

example �� may in such a model project only on the two opposite edges of the latent space� The
�xed mixing coe�cients� on the other hand� are encouraging the training algorithm to make use of as
many mixture components as possible� given the constraints on the �exibility of the mapping�
If the ultimate goal is density modelling and a �single� GTM model indicates clusters in the data�

it may be that a better density model can be obtained by using a mixture model� which may have a
GTM as one or more of its components�





Chapter �

Magni�cation Factors

The concept of magni�cation factors initially arose in studies of the formation of topological maps
in the visual� auditory and somatosensory regions of the cortex of mammalian brains �see e�g� Suga�
����� Kaas et al�� ������ It refers to how a region in a sensory space �e�g� a region of the retina in the
eye� is being mapped to a� proportionally� much larger region of the cortex� the region in the sensory
space is said to be 
magni�ed�� It was naturally carried over to the biologically inspired SOM model�
where it came to represent how the topological map was being �locally� stretched and compressed
when embedded in the data space� in order to make the density of reference vectors 
match� the
density of the training data� More precisely� Kohonen ������ uses the term 
magni�cation factor�
to mean &the inverse of the point density' of the reference vectors� and theoretical analysis of the
magni�cation factor� in this sense� was carried out by Ritter and Schulten ������ ������ We will use
the term 
magni�cation factor� to refer to the stretching and compression of the manifold representing
the latent space� when embedded in the data space� Since the GTM density model consists of a set
of equally weighted Gaussians with a common noise model� which corresponds to the regular grid
of points in the latent space� the stretching and compression of the manifold will be driven by the
objective of the training algorithm� to make density model match the distribution of the training data�

Since for the original version of the SOM� the topological map is represented in the data space only
in term of a discrete set of reference vectors� the magni�cation factor� according to the de�nition used
here� will only be available in a discretized form� as the ratio of distances between reference vectors
in the data space and distances between the corresponding distances between nodes on the map� A
method� called the U�matrix method� was proposed by Ultsch and Siemon ������� which visualizes
distances between reference vectors on the topological map� this method will be further discussed in
section ����

The GTM� by contrast� de�nes a continuous manifold embedded in the data space� which allows us
to derive methods for computing the magni�cation factor as a continuous function over manifold �and
hence over the latent space�� as will be discussed in section ��� As will be described in section ����
this method is also applicable to the batch version of the SOM� provided certain conditions are met�
First� however� we give further motivation for the use of magni�cation factors�

��� Motivation

What does the locations of two points in the latent space tell us about the locations of the corre�
sponding two points in the data space( Given the discussion in the previous chapter on the topology
preserving properties of the the GTM� the answer may seem obvious� nearby points in the latent space
map to nearby points in the data space� But how near is 
nearby� and will this value be constant
over the latent space( The answer to this last question is generally no� Since the mapping between
the latent space and the data space is non�linear� what is nearby will vary over the latent space� In
fact� we have already seen an example of this � the toy data set used to demonstrate learning in
the GTM in example �� is not uniformly distributed over the curve that it follows� Consequently�
the GTM trained on this data will stretch the manifold in regions of low data density and compress
it in regions of high density� This is re�ected in the bottom right plot of of �gure ��� showing the
converged model� the mixture components� that correspond to a uniform grid in the ��D latent space�

��
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Figure ���� An illustration of the U�matrix method� To the left is the topographic map� where the
circles represents nodes and the �D bars represent the distances between the corresponding reference
vectors� shown as circles in the data space to the right�

are spread out towards the end of the manifold and compressed together in the bends�

Thus� it is clear that 
nearby� is something relative which varies over the latent space� and this can
have important implications on how data is visualized in our model� Clusters of data which are well
separated in the data space may appear much closer in when visualized in the latent space� However�
if we �nd out how the manifold in the data space is being stretched or compressed� locally� that
should give an idea of what nearby means at di	erent positions in the latent space� This could reveal
boundaries between clusters as regions where the manifold in the data space undergoes high stretch�

��� The U�matrix method

The uni�ed distance matrix �U�matrix� method �Ultsch and Siemon� ����� Ultsch� ���� provides an
estimate of the magni�cation factor for the SOM by visualizing the distances between reference vectors
in the data space on the topographic map� The method is illustrated in �gure ���� the dx bar on the
map represents the square distance between reference vectors a and b� similarly� the dy bar represents
the square distance between reference vectors a and c� the dxy bar� �nally� represents the averaged
squared distances between reference vector pairs a�d and b�c� Instead of using �D bars� distances
can be visualized using grey�scale or colour coding� as will be shown in the examples in section ����

��� Continuous magni�cation factors

We introduce the method for computing the magni�cation factor as a continuous function over latent
space by �rst looking at the special case were the latent space is two�dimensional� This is partly
because this is the by far most common case� especially when the ultimate aim is visualization of
data� More importantly� the two�dimensional case provides an intuitive understanding of the general
treatment�

We are interested in how a region in the latent space is being stretched �or compressed� when
mapped into the data space� More precisely� we want to �nd the areal ratio between an in�nitesimal
rectangle in the latent space with area Ax� and its 
image� in the data space with area Ay� as shown
in �gure ����

As the %x�s in the latent space go to zero� we can treat the mapping as linear around the point of
interest� and we get the ��D vectors %y� and %y� in terms of the partial derivatives of the mapping
with respect to the �rst and second dimension of the latent space� respectively�
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Figure ���� An illustration of the magni�cation factor for a ��D latent space � the vectors %x�

and %x�� forming a rectangle in the latent space �left� with area Ax� are mapped to %y
� and %y��

respectively� forming a parallelogram with area Ay in the data space �right�
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By standard geometrical arguments� the square of the area Ay can be written as

A�
y  k%y�k�k%y�k� � �%y�%y�T�� ����

The last term in ���� expresses the fact that we must consider the correlation in direction between
%y� and %y� � if they were orthogonal to each other� this term would be zero� whereas if they were
parallel� it would equal the �rst term and Ay would be zero �the parallelogram folding to a line��
Now� by using ����� and ������ and after some re�arranging� we get the magni�cation factor as

dAy
dAx
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��
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The partial derivatives of the mapping y�x�W�� with respect to the latent variable� x� are easily
obtained from ����� yielding

�y

�xl
 �lW �����

where �l is an ��M vector� containing the partial derivatives of the basis functions with respect
to xl� which we get from ���� as

�lm  

��� ��m�x��xl � �lm��
�� if m �MNL�

� if m  MNL ! l�
� otherwise�

�����
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Figure ��� An L�dimensional �L  � parallelepiped whose sides� %y�� � � � �%yL� are given by the
partial derivatives of the mapping from latent to data space� with respect to the latent variables�

����� The General case

The results obtained in the ��D case can be extended to latent spaces of higher dimensionality� by
considering the volumetric ratio between an in�nitesimal� L�dimensional hypercuboid in the latent
space� with volume Vx� and its image in the data space� with volume Vy� Again� with the sides of
the hypercuboid in the latent space going to zero� we can regard the manifold embedded in the data
space as locally linear� and so Vy is contained in an L�dimensional parallelepiped� as illustrated in
�gure ��� the volume of which is given by the determinant of the matrix containing the sides of the
parallelepiped as its rows� This matrix� which we denote with J� is the Jacobian of the mapping
y�x�W�� i�e� the partial derivatives of y with respect to x�

Jld  
�yd

�xl
�����

Using ����� and ������ we can write J as

J  �W� �����

where � is an L�M matrix with elements �lm� as de�ned in ������
In general� J is not square but L�D� re�ecting the fact that the L�dimensional parallelepiped lies

embedded in the D�dimensional data space� In this form� the determinant of J is unde�ned� but we

can resolve this by �nding� a D � L matrix� cM� with orthonormal columns that span the row�space
of J and then compute bJ  JcM�

Since the columns of cM are orthonormal and span the row�space of J� the lengths of and angles
between the row vectors of J and bJ are identical� and thus we would get the volume Vy by computing
the determinant of bJ� which is L� L�
Eventually� we can compute this volume in a more e�cient way� since lengths and mutual angles

of the row vectors in J and bJ would be identical� it follows thatbJbJT  JJT�
�Using Gram�Schmidt orthogonalization �see e�g� Strang� ����
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From this and the properties of the determinant� we have

�det�bJ���  det�bJ� det�bJ�
 det�bJ� det�bJT�
 det�bJbJT�
 det�JJT��

and thus

dVy
dVx

 
q
det�JJT�  

q
det��WWT�T�� ������

It is easy to verify that this formula equals ����� if L  ��

An alternative derivation

These results can alternatively be derived using the theory of di	erential geometry �Bishop et al��
����c�d�� Throughout this section� we will adopt the convention from di	erential geometry of summing
over repeated raised and lowered indices� In this approach� we regard the Cartesian coordinate system
de�ned on the latent space� xi� to be mapped to a corresponding curvilinear coordinate system� �i�
de�ned on the manifold embedded in the data space� We then consider the transformation from �i�
at a point Py in the manifold� to an L�dimensional Cartesian coordinate system� ��  ������ The
squared length element in these coordinates is then given by

ds�  ���d�
�d��

 ���
���

��i
���

��j
d�id�j

 gijd�
id�j �

where we have introduced the metric tensor� g� whose components are given by

gij  ���
���

��i
���

��j
� ������

The volume element dVx in the latent space can be related to the corresponding element in the
data space dVy� through the determinant of the Jacobian of the transformation � � ��

dVy  
LY
�

d��  det�bJ� LY
i

d�i

 det�bJ� LY
i

dxi  det�bJ�dVx� ������

where the Jacobian� bJ� is given by
bJ�i  ���

��i
� �����

If we study ������ and ������ we see that

g  bJbJT�
so by the properties of the determinant�

det�bJ�  pdet�g��
and� from �������

dVy
dVx

 
p
det�g� ������
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We therefore seek an an expression for the metric tensor� in terms of the non�linear mapping
from latent to data space� Again we consider the squared length element ds� but this time in the
D�dimensional Cartesian coordinate system of the data space� where we get

ds�  �pqdy
pdyq

 �pq
�yp

�xi
�dyq

�xj
dxidxj

 gijdx
idxj �

and so we get the metric tensor g as

gij  �pq
�yp

�xi
�dyq

�xj
�

Using this� ������ and ������ we get

dVy
dVx

 
p
det�g�

 det

�
�pq

�yp

�xi
�dyq

�xj

����
 
q
det�JJT��

and so we have recovered �������

����� The Direction of stretch

So far� we have only considered how to compute the areal� magni�cation factor over the embedded
manifold� However� when the manifold is more than one dimensional� stretching in one direction can
be o	set by compression in another direction � a ��by�� rectangle has an area of �� but then so has a
��by�� rectangle� We would therefore like to �nd not only the degree of areal magni�cation� but also
the direction of any compression or stretching�
Intuitively� we want to decompose the stretching of the manifold into its 
principal directions�� as

illustrated in �gure ���� This involves �nding the single direction in the latent space along which we
�nd the largest magnitude of the partial derivatives� and then repeat this procedure until we have
spanned the latent space� with the additional constraint that each new direction must be orthogonal
to all directions found so far�
Put more formally� to �nd the directions of stretch at a point Py in the manifold� corresponding to

the point Px in the latent space� we want to �nd the eigenvalues and eigenvectors of the outer product
matrix of �y��x�jPy � � � � � �y��xLjPy � de�ned as

LX
l

�y

�xl

����T
Py

�y

�xl

����
Py

�

Note that this a D�D matrix� but it has rank L� All subsequent calculations in this sub�section are
understood to be relative to the points Py and Px� so in the interest of clarity these indices will be
dropped�
As discussed in the previous section� the Jacobian J� de�ned in ������ has �y��x�� � � � � �y��xL as

it rows� so our desired outer product matrix can be expressed as JTJ� We can identify eigenvectors
)yl and eigenvalues �l� l  �� �� � � � � L� such that

)ylJTJ  �l)y
l� ������

However� what we are really interested in are the corresponding vectors in the latent space� but since
y  xJ around the point of interest� we can write ������ as

)xlJJTJ  �l)x
lJ� ������

�We will keep using terms like 
area� and 
areal�� since a ��D latent space is by far the most common case� However�
the technique described also applies to cases where L � ��
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x^ 2 y(x,W)
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1y^

Figure ���� A ��D illustration of the directions of stretch� given by vectors )y� and )y� in the data space
�right�� with corresponding vectors )x� and )x� in the latent space �left��

and since J is L�D and has rank L� it has got a right�inverse� and hence

)xlJJT  �l)x
l� ������

Thus we have identi�ed the directions and magnitudes of stretch in the latent space with the eigen�
vectors and eigenvalues of JJT or� equivalently� the metric tensor g�

��� Magni�cation factors for the BSOM

The techniques presented in the previous sections can also be applied to the batch version of the
self�organizing map �BSOM�� provided that the neighbourhood function used is continuous over the
topographic space� As discussed in section ����� the update formula for the reference vectors in the
training algorithm for the BSOM can be re�written as a kernel regression formula

yk
�

 

KX
k

F �xk� �xk�mk �����

where

mk  
�

Nk

X
t�Tk

t� �����

and

F �x�xk�  
Nkh�x�xk�P
j Njh�x�xj�

� �����

If the neighbourhood function� h���� is de�ned to be continuously di	erentiable � the non�normalized
Gaussian�

h�x�xk�  exp

�
�kx� xkk�

���

�
� ������

will be used in the examples presented below � formulae ����������� de�ne a continuous mapping
from the topographic space to the data space� The BSOM model therefore� just like the GTM� de�nes
a continuous manifold in the data space� and thus we can apply the techniques described in section ��
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xy

z

Figure ���� Toy data generated from a regular grid in ��D which is then fed through a tanh�function
along the x�direction� The plot shows the data generating manifold plotted in grey and the data
points plotted as � �

also to the BSOM model� The only di	erence compared to the GTM� is in the computation of the
partial derivatives with respect to the topographic variables� which we get� using ����� and ������� as

�y

�xl
 
X
k

�F

�xl
mk

 
X
k

xl � xlk
��

�F �x�xk�
� � F �x�xk��mk� ������

��� Examples

We now look at two examples of the techniques discussed in this chapter� which illustrate how they
can be used� and we compare them to the U�matrix technique�

Example 	�� �A ridge in ��D� The rst example uses a toy data set� consisting of ��� data points
distributed over a ��D ridge shaped surface in ��D� shown in gure ��
� The data was generated from
a regular� square grid in ���� ���� which gave the x� and y�coordinates� whereas z  tanh��x�� Finally�
Gaussian spherical noise with standard deviation ��� was added� As can be seen in gure ��
� this
results in the data set being �stretched	 over the tanh�function�

A GTM with a �� � �� latent grid and � � � basis functions and a BSOM with �� � �� grid of
nodes were tted to this data and magnication factors and the U�matrix were evaluated� The results�
which largely agree with what we would expect from this data� are shown in gures �������� Figure ���
shows grey�scale plots of the logarithm of the areal magnication factor for the GTM and BSOM�
with darker areas corresponding to regions of high stretch �low magnication�� Note that although
the grid of latent points or nodes is ��� ��� the magnication factor has been evaluated on a ��� ��
grid in the latent space � in principle� this grid could have arbitrarily ne resolution� Overlayed on
the GTM plot is the posterior mean plot of the data� correspondingly� in the BSOM plot� each node
has been labelled with the number of data points won by that node� whenever that number exceeds
zero� In gure ���� ellipses show the magnitude and direction of stretch� evaluated at the positions
of the latent points�nodes for the GTM and BSOM� here the scale is linear and the plots have been
individually scaled to avoid overlap between ellipses� Also this plot could be done at a ner resolution
if desired� Figure ���� nally� shows the U�matrix for the BSOM model�
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Figure ���� Plot of the magni�cation factor for a GTM �left� and a BSOM �right�� trained on the toy
data shown in �gure ���� Overlayed on the GTM plot is the posterior mean plot of the data� while on
the BSOM plot� each node has been labelled with the number of data points it 
won��

Figure ���� Plots showing the direction of stretch for the GTM �left� and the BSOM �right�� corre�
sponding respectively to the left and right plots in �gure ����

Figure ���� The U�matrix plot of for the BSOM model trained on the toy data shown in �gure ����
for which the corresponding magni�cation factor is shown in the right panel of �gure ����
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Figure ���� Plot of the magni�cation factor for the GTM �left� and the BSOM �right�� trained on the
crabs data� Overlayed on the GTM plot is the posterior mean plot of the data� while in the BSOM
plot� each node has been labelled according to the dominating class among the data points assigned
to them� O denotes blue male� M denotes blue female� C denotes orange female and� �nally� B denotes
orange male

Example 	�� �Leptograpsus Crabs� In the second example� we will look at a data set containing
physical measurements from two species of Leptograpsus rock crabs� � blue and orange� This set was
compiled in order to provide a statistical sample based on which preserved specimen �which have lost
their colour� could be classied� There are 
� male and 
� female of each of the two species� so in all
there are ��� samples�

The data set is ve dimensional� the measurements of each data vector correspond to the length of
the frontal lip� rear width� length along mid�line� maximum width of carapace and body length� These
measurements are all strongly correlated with the overall size of the crab� so the dominant underlying
variable of this data set is size� To remove this e�ect� each data vector �sample� is normalized to
unit mean� This seems reasonable if we assume that there are large and small specimens of males and
females in both of the species� We must be aware� however� that there is a risk that this transformation
may remove a feature which could be relevant in distinguishing �e�g�� males from females� if on average�
there is a di�erence in size between males and females� After having normalized the individual data
vectors� the variables of the data set are normalized to zero mean and unit variance�

As in the previous example� a GTM with �� � �� latent points and � � � basis functions and a
BSOM with ����� nodes were tted to this data� The results are shown in gures ��������� following
the same �line of presentation	 as in previous example� Figure ��� shows a grey�scale plot of the
logarithm of the areal magnication factor for the GTM and BSOM� again evaluated on a �� � ��
grid in the latent space� The GTM plot again shows the posterior mean projection of the data� while
in the BSOM plot� nodes has been labelled according to the dominating class among the data points
assigned to them� Figure ���� shows ellipse�plots of the magnitude and direction of stretch� evaluated
at the positions of the latent points�nodes for the GTM and BSOM� Figure ����� nally� shows the
U�matrix for the BSOM model� with nodes labelled as in gure ����

��	 Discussion

The examples given in the previous section suggests the magni�cation factor can indeed provide useful
information� such as regions of stretch in the manifold which separates di	erent regions in the data
space� However� if the manifold takes a complex shape in the data space� the resulting magni�cation
factor plot may be rather di�cult to interpret�
Recall the data set from example �� which consisted of two Gaussians in ��D � the manifold of

one of the two GTM models �tted to this data ended up having a rather complex shape� shown in

�This data set was obtained from Prof� Brian Ripley�s homepage� http���www�stats�ox�ac�uk��ripley�
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Figure ����� Plots showing the direction of stretch for the GTM �left� and the BSOM �right�� corre�
sponding respectively to the left and right plots in �gure ����

Figure ����� The U�matrix plot of for the BSOM model trained on the crabs data� for which the
corresponding magni�cation factor is shown in the right panel of �gure ���� the nodes has been
labelled as in �gure ����
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Figure ����� The plot shows the magni�cation factor� plotted on a log�scale for the more �exible GTM
model discussed in example ��

the top�left panel of �gure ���� Figure ���� shows the corresponding magni�cation factor� computed
over a �� � grid in the latent space�
One may ask the question whether the magni�cation factor can be used to detect a severely

warped manifold� Certainly� when the data lives in ��D and has been normalized� a magni�cation
factor ranging from �� to � on a log�scale is an indication that 
something might be wrong�� but
this probably does not generalize to less extreme examples� Another potential indicator may be to
compute the inner product of the vector )y� representing the principal direction of stretch at some point
Py in the manifold� and the corresponding vectors at other points in the neighbourhood of Py on the
manifold� For a smooth manifold we would expect this inner product to be positive and signi�cant
close to Py� However this indicator may raise false alarms in regions of uniform stretch� which is why
one would also have to consider the ratios of magnitudes of stretch in the di	erent directions�
In section ��� the introduction of adaptable mixing coe�cients was suggested as a potential

solution to problems linked to the inherent square shape of the distribution of mixture components�
It was then pointed out that this could a	ect GTM as a model for visualization� and this will also
include the results can expect from the use of magni�cation factors� If density mass can be shifted
between regions on the manifold� the training algorithm will not have to stretch manifold as much as
would have been the case with �xed �xing coe�cients�



Chapter �

Parameter Selection

As is the case with all parametric models� constructing a GTM model will require us to choose
values for a number of parameters� such as the number of latent points� the number and form of basis
functions and the regularization coe�cient� and this choice is likely to have a signi�cant impact on the
�nal model� Common sense will rule out certain combination of parameter values and intuition may
provide additional 
rules of thumb�� but nevertheless it would be desirable to have principled methods
for making these choices� In this chapter we try to address this problem� at least partially� by looking
at methods for �nding suitable values for �� � and �� These methods could also� in principle� be used
to choose values for other parameters in the model� such as the number of basis functions� We will
�rst look at the roles of the parameters we are about consider and try to understand how di	erent
choices a	ect the model�

��� Roles of di
erent parameters

The parameters we concentrate on in this chapter are�

� � � the inverse noise variance�

� � � the inverse variance of the prior over the weights�� and

� � � the common width of the Gaussian basis functions ����

In the approach discussed so far� � is estimated together withW� using maximum�likelihood� while
� and � are set prior to training� essentially by rules of thumb� and then kept �xed�
WhereasW explicitly de�nes the shape of the manifold embedded in the data space� �� � and �

will have an implicit e	ect� by a	ecting the way the parameters inW are adapted during the training�
we therefore sometimes refer to these as hyper�parameters� In this chapter we will normally use the
shorter 
parameters� to refer to �� � and �� while the elements in W will normally be referred to as

weights��
During training� � will a	ect the smoothness of the manifold at a local level� by de�ning how much

noise or independent variability is associated with the observed variables� As � increases� the variance
decreases and so we expect more of the variability in the data to be explained by the variability
in the manifold� If � decreases on the other hand� corresponding to an increasing noise� more and
more of the variance in the data will be regarded as noise� which will result in a smoother manifold�
Eventually� if � becomes small enough� the manifold will simply collapse to a point at the sample mean
of the data� with all the variance in the data being regarded as noise� The EM algorithm provides
a maximum likelihood estimate of �� but these estimates can be overly optimistic� in the sense that
they underestimate the noise level� and alternative estimates are discussed below�

� controls the global smoothness of the manifold� since as the radially symmetric basis function
gets broader� they also get more correlated in their responses to points in the latent space� Nearby
points in latent space will therefore map to increasingly nearby points in the space of basis function

�In this chapter we only consider an isotropic prior over the weights� i�e� � is a scalar� but the methods described
can also be extended to deal with more general cases�

��
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activations� and consequently to increasingly nearby points in the data space� resulting in increasingly
sti	er manifolds� an example of this was shown in �gure ���� It will also be re�ected in the fact
that� as � increases� at some point the matrix � become rank de�cient� taken to extreme� we end
up with the same case as with small �� with the manifold collapsing to a point or� if we have also
incorporated linear basis functions� a PCA�like solution� At the other extreme� as � gets small�
the basis functions eventually become �numerically� completely uncorrelated� and the smooth non�
linearity in the manifold 
falls apart�� if � keeps decreasing the non�linearities may vanish� unless basis
function centres coincide with latent points�

�� �nally� controls the magnitude of the weights and hence the scale of the manifold� One could
argue that constraining the weights would seem unnecessary� since a model that did not get the overall
scale right would not be a good model anyway� However� since we are working with �nite data sets�
degrees of freedom that are not spent on capturing the underlying distribution will be used to �t noise
on the data�

��� Parameter selection and generalization

When we are trying to train a model on a data set� we are normally not interested in �nding a model
that perfectly �ts the data� but rather one that �ts the underlying distribution from which the data
was generated� Assuming we are successful� we would expect this model to also �t well to other data
sets drawn from the same distribution � we say that the model has good generalization capabilities
�Bishop� ������

The issue of generalization is directly related to parameter selection� since our choice of parameters
controls the �exibility of the model� A su�ciently �exible model will be able to �t any �nite data
set perfectly� a GTM with su�ciently many latent points �K � N� and �exible enough mapping will
place a mixture component at each data point and set the common variance to zero yielding an in�nite
likelihood� For all other data sets� however� the likelihood under such a model will be zero� Since
we assume that our data is generated from a systematic component and a random noise component�
independently collected data sets are not expected to be identical� The perfect �t to training data
is obviously an extreme example� but it highlights an important problem� a too �exible model will
not capture the underlying distribution of a data set� but rather the structure of that particular data
set� with its associated noise and artifacts� This phenomenon is known as over�tting� On the other
hand� if the model is not �exible enough� it may not be able to successfully model the underlying
distribution � a situation correspondingly known as under�tting� In either case� the resulting model
is poor� so the challenge� within the framework we have worked in so far� would be to �nd a model
which is �exible enough to capture the overall structure in the training data set� but not so �exible
that it also catches on to features speci�c to that particular set of data� Since the �exibility of the
model is controlled by the parameters� this corresponds to �nding suitable values for these�

A di	erent approach to learning is taken in Bayesian statistics� The Bayesian viewpoint is that�
rather than trying to �nd a single set of parameter values� we should work with a distribution over
possible values� Before we have seen any data� this distribution is speci�ed entirely from whatever prior
knowledge is available� and is therefore called a prior distribution� or just prior� Once data arrives�
we combine the likelihood of the data with our prior� using Bayes� theorem� to yield a posterior
distribution over parameter values� Typically� this posterior distribution will be narrower than the
prior� since in the light of the data� certain parameter values will appear more likely than others� This
treatment applies to all parameters � 
ordinary� parameters� such as the elements ofW in the GTM�
as well as hyper�parameters� such as �� � and � � and the Bayesian framework naturally formalizes
the relationship between di	erent kinds of parameters through conditional probability distributions�
thus we will see in the next section how the regularised log�likelihood function emerges from the
conditional probability distribution overW� given �� �� � and the set of training data� We will also
see how we can use the Bayesian machinery to infer suitable values for �� � and �� but �rst we consider
more traditional methods�

One method for parameter selection which we can use� provided we have su�cient amounts of data�
is to partition the data available into one set that we use for �tting� or training� the model� called the
training set� and one set that we use to evaluate the performance of the trained model� which we call
a validation set� By training and evaluating models over a range of parameter values� we can �nd the
parameter values that result in the best performance on the validation set� This is motivated by the
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Figure ���� A pictorial illustration of cross�validation� Each row correspond to a di	erent division of
the data into validation set �shaded� and training set �others��

belief that this model is �exible enough to model the common structure of the training and validation
set� but not so �exible that it also �ts noise and features speci�c to the training set� There are two
obvious drawbacks with this approach�

� it relies on the availability of a su�ciently large set of data and

� it requires signi�cant amounts of computation� which grows exponentially with the number of
parameters�

What 
su�cient� amounts of data of data is of course varies with the problem� in general� the more
complex the underlying structure is� the more �exible our model must be and� hence� the more data
is required� One way to address a possible shortage of data is to use cross�validation�

����� Cross�validation

If we have only limited amounts of data at our disposal� setting aside parts of that data as a validation
set might be considered too costly � we would like to be able to use all data available for training�
Cross�validation �Stone� ����� Bishop� ����� allows us to do just this� at the expense of increased
amounts of computation� The �rst step is to divide the data set into S disjoint� equally sized�
subsets�� We set aside one of those subsets as a validation set and train the model on the union of the
remaining S � � subsets and once trained we evaluate its performance using the validation set� This
procedure is repeated another S � � times� every time using a di	erent subset as validation set� as
illustrated in �gure ���� In the end� we have S validation error measurements and by averaging over
these� we get the S�fold cross�validation error�

As we increase S� our con�dence in the obtained error measure increases� since the trained models
have been trained using larger amounts of training data� Obviously though� the amount of computation
required also increases with S� so there must be a judged trade�o	 between the con�dence we require
and the computational e	ort we can a	ord� Once we have found the parameter values that give
optimum performance on independent �validation� data� we can re�train our model on all the data�
using these values� For models where the dependency of the objective function on the adjustable
parameters is non�quadratic� the use of cross�validation becomes somewhat questionable� since models
trained on di	erent fractions of the data may converge to very di	erent local maxima�� It is then not
clear that averaging these di	erent likelihood scores will actually tell us anything about the expected
performance of models with the corresponding parameter setting�

�Actually� the subsets need not be equally sized� but normally they are chosen to be of roughly equal size� when the
sets di�er in size� this should be corrected for when averaging the validation errors�

�Note that this is the case for all the parameters in the GTM� the dependency of � on W is only quadratic given
the temporarily 	xed responsibilities �which depend on W��
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��� A Bayesian approach

We now return to the Bayesian methods which were brie�y discussed in the previous section� Our
primary objective will be to derive an alternative method for estimating suitable values for the hyper�
parameters �� � and �� but Bayesian methods can also be applied for discriminating between di	erent
models in a wider sense� and could therefore be used e�g� to select the number of basis functions�
The Bayesian methodology was introduced in the �eld of neural computing by MacKay ������ ������
The presentation in this section largely follows the review of Bayesian methods in Bishop ������
�sections ���� and ������
So far� we have regarded the training algorithm for the GTM as a maximization procedure� aimed

at �nding the 
best� single matrix of weights� Taking the Bayesian perspective� it instead becomes
a part in a machinery for statistical inference� which produces a distribution over possible weight
matrices� This distribution will depend on the data we use for training� and so we write it p�wjT��
which� using Bayes� theorem can be expressed as

p�wjT�  p�Tjw�p�w�
p�T�

� �����

where w denotes a vector of all the elements in W� p�Tjw� is the likelihood for w� in this context
sometimes also called the evidence� and de�nes a probability distribution over the space of the data
set T� conditioned on w� p�w� is the prior distribution over the weights� before having seen any data�
and p�T� is a normalization constant that ensures that the posterior distribution over the weights
integrates to one�

p�T�  

Z
p�Tjw�p�w� dw� �����

From chapter � we know that the density function de�ned in the data space is a Gaussian mixture
with isotropic components� furthermore� one of our fundamental assumptions is that the data sets we
use for training consists of independently drawn points� Thus we can write
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The reason for introducing the form in ����� will soon be clear� From ����� we can calculate the
normalization constant� ZT� as

ZT  

Z NY
n

KX
k

exp

�
��

�
ktn � y�xk �w�k�

�
dT

 

Z KX
k�

� � �

KX
kN

NY
n

exp

�
��

�
ktn � y�xkn �w�k�

�
dT

 

KX
k�

� � �

KX
kN

Z
exp



�

NX
n

�

�
ktn � y�xkn �w�k�

�
dT

 KN

�
��

�

�ND��
�����

where dT stands for dt�dt� � � � dtN � After having written the product of sums as a sum of products
we use the fact the exponential is strictly positive� in order to swap the order of integration and
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summation� This gives us a sum ofKN ND�dimensional� independent Gaussian distributions� yielding
����� �see e�g� Bishop� ����� appendix B�� For the time being� we assume that � is �xed at a known
value�
Our choice of prior distribution over the weights� p�w�� should re�ect any prior knowledge we might

have regarding the distribution of the data we are trying to model� Most of the time� we have little
such prior knowledge� but we normally assume that the mapping from latent to data space should
be smooth� As discussed above� the most important parameter for controlling the smoothness of the
mapping is �� but because of �nite�size e	ects� the magnitude of the weights should be constrained� to
maintain the smoothness imposed by �� Here we follow MacKay ������ and use a spherical Gaussian
which� as well as constraining the weights as desired� has favourable analytical properties� thus

p�w�  
�

ZW
expf�Sw�w� ��g� �����

where

Sw�w� ��  
�

�

WX
i

w�
i �����

and hence

Zw  

Z
p�w� dw  

�
��

�

�W��

� �����

Just as for �� we will assume for now that we know the value for ��
Since the denominator in ����� is independent of w� we see from ������ ������ ����� and ����� that

�nding the mode of p�wjT� corresponds to the maximization of the regularized log�likelihood function�
as described in the previous chapter� However� if we want to make use of p�wjT� for further statistical
inference �such as inferring the distributions of �� � and ��� we must also compute the normalization
constant p�T�� Unfortunately� the integration in ����� is not analytically tractable� so in order to make
progress we must make some approximations� Again we will follow MacKay ������ and approximate
p�wjT� with a Gaussian distribution� which makes it easy to integrate� Some justi�cation for this
approximation with the GTM can be found in the fact that if for each data point� there was a single
mixture component taking all the responsibility for that data point� this approximation would be
exact� It is commonly the case for trained GTM models� that almost all the responsibility for a single
data point rests with a single mixture component� although a counter�example was shown in �gure ���
To obtain the Gaussian approximation we �rst note that the maximization of the regularized

log�likelihood is equivalent to minimizing the error function

S�w� �� ��  ST�w� �� ! Sw�w� ��� ������

From ����� we see that Sw is quadratic in w� while ST� de�ned in ������ will also be approximately
quadratic inw� if we assume that� for each data point� tn� the sum over k is dominated by a single term�
this would consequently result in the corresponding mixture component taking all the responsibility
for that data point� as discussed above� We therefore approximate S�w� �� �� by its second order
Taylor expansion in w� around its minimum� wMP� yielding

S�wMP� �� �� !
�

�
%wTH%w�

where %w  wMP �w and H is the matrix of second derivatives�

Hij  
��S�w� �� ��

�wi�wj

����
wMP

�

also known as the Hessian matrix� The linear term of the expansion vanishes since we are expanding
around a minimum�
The Hessian is the the sum of two matrices� HT and Hw� resulting from ST and Sw� respectively�

It is easily seen from ����� that

Hw  �I� ������
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where I is a W �W identity matrix� In appendix A� we derive two formulae for HT� one which is
exact but computationally rather expensive� while the second is an approximation which is cheap to
compute� We then get the Gaussian approximation as

p�wjT�  �

Z
exp

�
�S�wMP� �� ��� �

�
%wTH%w

�
� ������

where the normalization constant can be evaluated �Bishop� ����� appendix B� as

Z  expf�S�wMP� �� ��g����W��jHj����� �����

����� Estimation of �	 � and �

In ����� we omitted the dependencies on �� � and �� and in the discussion that followed � and � were
assumed to be known wherever they appeared� We now make these dependencies explicit and re�write
����� as

p�wjT� �� �� ��  p�Tjw� �� ��p�w� ��
p�Tj�� �� �� � ������

Here we have used the fact that the evidence factor is independent of �� while the prior is independent
of � and �� Normally� we will only have a very vague idea about what values that would be suitable
for �� � and �� and the correct way of treating such unknown parameters in a Bayesian framework is
to integrate them out� so that

p�wjT�  
ZZZ

p�wjT� �� �� ��p��� �� �jT� d� d� d��

We therefore seek an expression for p��� �� �jT� and using Bayes� theorem we get

p��� �� �jT�  p�Tj�� �� ��p��� �� ��
p�T�

� ������

Here the normalization constant from ������ plays the role of the evidence factor and again we must
specify a prior� this time for �� � and �� computing the the normalization constant� p�T�� now involves
integration over �� � and ��
As with p�wjT� in equation ������ �nding the mode of p��� �� �jT� only involves the prior and

the evidence factors� Therefore� one approach would be to try to �nd the mode� corresponding to
the most probable values for �� � and �� and then use these values� This can be motivated by an
assumption that p��� �� �jT� is sharply peaked around the mode� so that

p�wjT�  
ZZZ

p�wjT� �� ��p�w� ��p��� �� �jT� d� d� d�


 p�wjT� �MP� �MP�p�w� �MP�

ZZZ
p��� �� �jT� d� d� d�

 p�wjT� �MP� �MP�p�w� �MP�

If we take p��� �� �� to be uniform� on the positive region of ��� �nding the mode of p��� �� �jT�
will correspond to maximising the evidence factor� p�Tj�� �� ��� which we can re�write in terms of
quantities we have already evaluated�

p�Tj�� �� ��  
Z

p�Tjw� �� ��p�w� �� dw

 
�

ZT

�

Zw

Z
expf�S�w� �� �� ��g dw

 
Z

ZTZw
������

�Such a prior is called an improper prior �Bishop� ����� since it cannot be normalized� This would cause di�culties
if we wanted to compute p�T� in ������
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From ������� ������ ������� ����� and ������ we can write the logarithm of the evidence for �� � and �
as

ln p�Tj�� �� ��  �ST�wMP� �� ��� Sw�wMP� ��� �
�
ln�jHj�

!
W

�
ln��� !

ND

�
ln��� � ND

�
ln�����N ln�K�� ������

One obvious approach for �nding the mode of p��� �� �jT�� is simply to evaluate ������ over a grid
of points in ������space� Although such a simplistic approach will be computationally demanding�
it may still be more e�cient than cross�validation� and may also give clearer results� However� an
almost certainly more e�cient approach would be to incorporate the parameter estimation as part of
the training algorithm� by maximising ������ with respect to �� � and � during training�

Online estimation of �� � and �

We �rst consider maximization of ������ with respect to �� and so we want to evaluate the corre�
sponding derivative� We start by re�writing the term involving the Hessian as

ln jHj  ln
WY
i

��i ! ��  

WX
i

ln��i ! ��� ������

where �i are the eigenvalues of HT� From ������ and ������ we then get

d ln p�Tj�� �� ��
d�

 ��
�

WX
i

w�
i !

W

�

�

�
� �
�

WX
i

�

�i ! �
� ������

which we can set to zero and then solve for �� yielding

�  
�PW
i w�

i

� ������

where

�  

WX
i

�i
�i ! �

� ������

If we assume that all �i are positive� the terms of this sum lies between � and �� and the terms where
�� �i will dominate� These terms correspond to directions in the weight space where the weights are
relatively tightly constrained by the data� so � can be interpreted as the number of well�determined
weights �Gull� ����� Bishop� ������ The result in ������ is actually only approximate� since it has been
derived under the implicit assumption that the eigenvalues �i are independent of �� which generally
is not true� since H is evaluated at wMP� which depends on ��
Next� we turn our attention to � and now we must decide which of two forms of HT we choose to

work with� For the online estimation� we choose the approximate form� which is derived in appendix A
as a block�diagonal matrix with identical building blocks

��TG�� �A����

where G is de�ned in ������ This decision based on the following grounds�

� the exact form of HT� given in �A��� is expensive to compute� which makes it unattractive to
use for online parameter estimation� the approximate form we compute anyway� as a step in the
normal training algorithm�

� as can be seen from �A����� the approximate form of HT depends linearly on �� which allows
for an update formula for � in closed form� This would not be the case if we choose to work
with the exact form �A���� and hence we would be forced to either make other approximations
�e�g� assume that the dependency of the exact HT on � is approximately linear� or use costly
numerical optimization to update ��
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Using the approximate form of the Hessian we get

d�i
d�

 
�i
�

������

and hence� using �������

d ln jHj
d�

 
�

�

WX
i

�i
�i ! �

� �����

and so� setting the derivatives of ������ with respect to � to zero� using ����� and ����� we get

�  
ND � �PN�K

n�k rknktn � ykk�
� ������

When � is zero this equals the EM�update for �� which would correspond to a case where no weights
are well�determined by the data� This uncertainty in the weight could then be taken to account for
some of the discrepancy between the data and the model� As � increases� however� an increasing
fraction of any remaining deviation must be attributed to inherent noise on the data� as re�ected by
a decreasing ��
For � we are unfortunately unable to derive as elegant a solution� but since we are now down to a

single variable� we can a	ord searching over a grid of ��values� evaluating ������ at each point
� after
having trained the GTM model� re�estimating � and � online�
For the practical implementation� we follow the approach taken by MacKay ������ in applying

Bayesian techniques to feed�forward neural networks� periodically re�estimating � and � during the
training ofW� More precisely� we take a three�level approach� as follows�

for i  � to I do
initialize GTM using �i
repeat
repeat
optimizeW by EM� with � and � kept �xed

until stop criterionW for is met
re�estimate � and �� using ������ and ������� respectively

until stop criterion for � and � is met
record the log�evidence for �i

end for

The stop criteria are typically chosen to be a threshold for the change in log�likelihood� combined
with a maximum number of iterations allowed at each level� After we have found the value of �
which gives the highest log�evidence� we simply use that to train our model� again estimating � and
� online� By adopting this hierarchical scheme� �rst optimizing with respect toW� we hope that the
approximations we have used to derive the update formulae for � and � will be reasonable by the
time we start to apply them� This assumes thatW will then be close to its optimum � the mean of
the posterior ofW � given the current values for �� � and �� and that most of the responsibility for
any data point is assigned to a single mixture component�

��� An Experimental evaluation

In this section we investigate empirically the selection of parameters by cross�validation and o�ine
and online Bayesian methods� The data used was generated from a ��� �� regular grid of points on
a curved ��D surface in a �D space� generated by the function

z  ����x� � x� ! ���� cos��y��

x and y had a range of ���� �� and ���� ��� respectively� giving one of the variables signi�cantly larger
range was a deliberate choice that ensured that the PCA initialization would provide a reasonably

�Numerical maximization of ����� with respect to � was also considered� but was empirically found to be unaccept�
ably ine�cient�
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good starting point for the GTM models to be trained� �� training data sets were generated by adding
random spherical Gaussian noise with standard deviation ��� �corresponding to �  �����  ��� to
the grid points� A sample data set is shown� together with the data generating manifold� in the top�left
panel of �gure ���� A separate test data set was created from a � � � grid on the same surface�
again adding random noise�

����� O
ine estimation of �	 � and �

For each of the �� training data sets� a GTM with a �� � �� grid of latent points and a � � � grid
basis functions was initialized using PCA� trained with � and � kept �xed and then evaluated using

� log�likelihood of the training set� measured by ���fold cross�validation�

� the log�evidence of the training set� ������� using either

� the exact �given by �A��� and ������� or

� the approximate �given by �A���� and �������

form of the Hessian� and

� log�likelihood of the test set�

This procedure was repeated for all possible combinations of

� �  ��i� i  ������ � � � � ��

� �  �j � j  �� �� � � � � ��� and

� �  �k� k  ������ � � � � ��

For �� this range was assumed to be su�cient and the empirical results supports this� For �� the lower
limit was given by the variance in the data� whereas the upper limit was assumed to be high enough�
The limits of � were given by the fact that for smaller or larger values� the matrix of activations of
the given basis functions� �� became rank de�cient and hence deteriorated towards a PCA solution�
As will be seen� the empirical evidence suggests that also these limits were su�ciently wide�

Figure ��� show surfaces of constant log�likelihood on validation and test data� and constant log�
evidence computed using the exact and the approximate form of the Hessian� The log�likelihood
score computed by cross�validation appears to be very �at around the maximum in the ����plane�
and selects rather narrow basis functions combined with a higher degree of weight regularization and
greater noise variance� The log�likelihood score computed over the test set prefers the least regularized
con�guration� whereas the log�evidence computed using the approximate form of the Hessian choose
the highest degree of weight regularization� The log�evidence scores appears to shun low�� regions�
except at the extremes of �� where the � matrix tends towards rank de�ciency � this tendency does
not show for the log�likelihood scores� Figure �� give an alternative view of the results� including
histogram�indicators of the maxima found for the di	erent data sets� The �atness of the log�likelihood
score computed by cross�validation is re�ected the large spread of the maxima found in the ����plane�

����� Online estimation of � and �

Essentially the same set�up was used to evaluate the methods for online estimation� except that � and
� were set to initial values and then were re�estimated during training� Figure ��� shows the resulting
plots of log�evidence� log�likelihood� � and �� plotted against log� �� As can be seen� the results agree
reasonably well with those obtained in the o�ine estimation experiments described above�

Figure ��� shows an example of a model selected using this 
semi�online� procedure ��  �����
together with the generating manifold and the sample data set used for training� and examples of
under� and over��tting models�
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�a� Log�likelihood by cross�validation� The 
clos�
est�� folded surface represents a log�likelihood of
������ the maximum value observed was �����
found at h�� �� �i � h��� ��� ���i� The two sur�
faces behind represent log�likelihoods of �� and
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�b� Log�likelihood of test data� The innermost
surface� or shell� represents a log�likelihood of
������ the maximum value observed was ������
found at h�� �� �i � h���� ��� ��i� The two sur�
faces on each side are part of the same surface�
representing the log�likelihood value ��� and the
farthest surface represents a log�likelihood of ���
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�c� 
Approximate� log�evidence� The small� top�
clove�looking shell represent a log�evidence of
���� the maximum value observed was ����
found at h�� �� �i � h��� ��� ��i� The nearest
surrounding surface represents a log�evidence of
���� and the furthermost surface� a value of
������
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�d� 
Exact� log�evidence� The innermost� tetra�
hedron�looking shell represent a log�evidence of
���� the maximum value observed was ����
found at h�� �� �i � h��� ��� ��i� The nearest
surrounding surface represents a log�evidence of
���� and the furthermost surface� a value of
������

Figure ���� The surfaces are computed from averaged observations of the �� di	erent training sets�
The log�likelihood scores have been normalized by the number of data points� Note that the log�
evidence plots are rotated ��� relative to the log�likelihood plots� as this was found to give the best
view of these results�
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Figure ��� The surface and contour plots show the average log�likelihood or log�evidence� computed
over the �� data sets� plotted against log����� and log����� Rows � to � correspond to log�likelihood
on validation data ���� ditto on test data ���� and log�evidence computed using the approximate ��
and exact ��� form of the Hessian� Columns �� � and  correspond to ��values of �� �� and �� The
plots also contain histograms with numerical labels of the optimal ������combinations found for the
�� data sets� Note that the plots of the log�evidence are rotated ���� relative to the log�likelihood
plots�
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Figure ���� The plots shows values after training for the log�evidence� ����a�� log�likelihood for training
and test set� ����b�� and the estimates of �� ����c�� and �� ����d�� plotted against log����� Each plot
shows the results for the �� individual training sets� together with a line showing the mean�
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Figure ���� The top left plot shows the data generating manifold� together with a sample data set�
plotted as �� The top right plot shows the manifold of a GTM model trained on this data set� with �
�xed to � and � and � being re�estimated during training� �nal values being �  ��� and �  ����
The bottom left plot shows a signi�cantly more �exible model� �  ����� trained using the standard
GTM algorithm and no weight regularization� the �nal estimated value for � was ����� Note that this
plot was produced using a �ner grid in the latent space� The bottom right plot� shows a much sti	er
model� �  �� trained using the standard GTM algorithm and constant weight regularization of ���
the �nal estimated value for � was �����
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��� Discussion

The experimental results in the previous section suggest that all methods that have been considered
can be used for parameter selection� although both log�likelihood computed by cross�validation and
the log�evidence computed o�ine using the approximate form of the Hessian over�estimate the noise
level rather signi�cantly� From a practical point of view� online estimation of � and � combined with
grid search in ��space appear to be the most favourable alternative� requiring only a fraction of the
computational e	ort for grid search in ������space�
Taking a Bayesian perspective on the GTM� we no longer have one single manifold in the data

space� but rather a distribution of manifolds� obtained by integrating over the posterior distribution
over all parameters in the GTM �W� �� � and ��� How should such a model be used for visualisation
of data( There is no obvious answer to this question� but possible approaches are to use the manifolds
corresponding to the mean or the mode of the joint distribution over parameters �these would be
identical using the approximate Bayesian method described in this chapter�� There are also more
di�cult questions that arise� which we so far have not addressed� One such problem is multi�modality
� when we are using the Gaussian approximation of the posterior distribution in the weight space�
we can only expect this to be true 
locally�� If we are using symmetrical grids for the latent points
and the centres of the basis functions� we know that there are identical modes in the weight space�
corresponding to di	erent rotations and �ips of the manifold� Moreover� we know that the EM�
algorithm may �nd a local� rather than the global minima� and di	erent parameter settings and
di	erent initializations may result in di	erent local minima� However� if we assume that these di	erent
minima are su�ciently distant from each other in the weight space� we can still hope that using the
Gaussian approximation should allow us to �nd values for �� � and �� appropriate for the particular
mode under consideration�
A possible solution to the problem of multiple modes of the posterior weight distribution would

be to �t a Gaussian at each mode and then form a weighted combination of these models� which
also can be carried out within the Bayesian framework� However� this has important implications
for how we use the GTM� again� how do we use such a mixture of weights in visualization( As an
example� consider the posterior mean projection of a data point for a GTM with a symmetrically
aligned� square� ��D latent space� if we combine the four modes corresponding to the four rotations
of the manifold� which obviously will �t the data equally well and hence should carry equal weight�
we end up with a point in the centre of the latent space� and this is going to be the result regardless
of the location of the data point�
A di	erent approach� that avoids using a Gaussian approximation for the posterior distribution

of the weights� is to evaluate the necessary integrals numerically by using Monte�Carlo methods�
However� also then ways of dealing with multi�modality and symmetries must be addressed� if the
resulting GTM model is to be used for visualization�
In principle� Bayesian methods could also be used for selecting other model parameters� such as

the number of basis functions and the number of latent points� but as the number of parameters
increase� grid search methods quickly becomes computationally infeasible� An alternative approach to
implementing the mapping from latent to data space that eliminates the basis functions is discussed
in section ����

The number of latent points

A parameter that we have only brie�y touched upon in the preceding discussion is the number of
points on the grid in the latent space� If this grid is intended to approximate a continuous� uniform
distribution� we obviously would want it to be as dense as possible� and in principle there is nothing
preventing us from using a very dense grid� This will result in a very large mixture of Gaussians�
measured by the number of components� but the mixture is constrained and the number of degrees of
freedom in the model depends on the number of adjustable parameters� which is independent of the
number of latent points� In practice� however� using large grids in the latent space is computationally
prohibitive� both in terms of speed and memory usage� and so we must make a judged trade�o	
between the computational e	ort we can a	ord and the 
resolution� in the latent space�



Chapter �

Extensions and Future Directions

This chapter discusses a number of possible extensions of the basic GTM model described in chapter �
some of which have been discussed in Bishop et al� �����a�� and which may become subjects of future
research� For some cases� preliminary work has already been done� whereas others are currently only
proposals� They all highlight the advantages of having chosen a model that �ts into the framework of
probability theory�

	�� Relaxations in the GTM model

There are several constraints governing the Gaussian mixture generated in the data space under the
GTM model� when compared to a general Gaussian mixture� Apart from the constraints imposed on
the centres by the latent variable construction� the basic GTM model uses an isotropic noise model
with the noise level being equal for all components� Moreover� the mixing coe�cients of the mixture
are kept �xed and equal ���K�� In principle� there is nothing preventing us from simply letting
each component have a full covariance matrix of its own� possibly combined with variable mixture
coe�cients� ��� � � � � �K � such that

PK
k �k  �� In practice� however� this would lead to an explosion

in the number of parameters and a model with far too much freedom� with associated problems such
as over�tting the training data� as discussed in section ����
A more realistic approach� which is also more in the spirit of the GTM� is to allow the variances

and the mixing coe�cients to be functions of the latent variable x� For �� one way to achieve this
would be

��xk�  exp

�
MX
m

�m�xk�wm�

�
� �����

where �m��� are basis functions that may or may not be identical with the basis functions used to
compute the centres� The exponentiation ensures that � is always positive� Similarly� a possible
way to compute the mixing coe�cients is to use the soft�max function �Bridle� ������ also called the
normalized exponential�

��xk�  
exp

�PM
m �m�xk�wm	

�
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k� exp
�PM

m �m�x�k�wm	

� � �����

which guarantees that ��xk� � ��� �� for all k and
PK

k ��xk�  �� A complication with ����� and
����� is that we can no longer �nd update formulae in closed form� but must resort to numerical
optimization�
Assuming we model � and � as scalar functions of the latent variables� we can incorporate this

information in visualization plots of data� showing �e�g�� how the noise on the data varies between
di	erent regions of the data space�
Another issue is whether we should use a spherical or a ellipsoidal� possibly axis�aligned� noise

model� Alternative variants which cater for two cases of full covariance matrices are discussed in
�This is not necessarily the case for ��

�
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W

O

Figure ���� The within� and o	�manifold variances� labelled W and O respectively� illustrated for
a ��D GTM with the standard isotropic noise model� The curved line represents the manifold� the
�!��signs centres of mixture components� with the surrounding circles representing the noise model�

Figure ���� Illustration of a manifold�aligned noise model � as in �gure ���� the curved line represents
the manifold� the �!��signs centres of mixture components� but the circles have been replaced by ellipses
aligned with the manifold� illustrating the new noise model�

sections ��� and ��� below� The use of an isotropic or an independent noise model is what di	erentiates
between probabilistic principal components analysis and factor analysis� respectively� A more general
noise model will avoid skewing the structural model �the shape in the manifold� in the case of the
GTM� in order to explain noise not catered for by a more restrictive noise model� However� if the noise
indeed is approximately isotropic� the spare degrees of freedom provided by the more general model
may cause problems associated with over�tting� When we use an isotropic noise model� we implicitly
assume that any residual variance has the same scale on all observed variables� If assume that the
fraction of noise is the same on all observed variables� � i�e� that observed variables with higher
variance also are subject a higher level of noise � putting them on a common scale� by normalising
them to all have unit variance over the training data� will meet the underlying assumption of the
isotropic noise model�

	�� A Manifold�aligned noise model

A potential problem with the basic GTM is that the noise model may have to take on double roles�
of possibly con�icting natures� The noise model is intended to take account of o��manifold variance
�see �gure ����� i�e� the fact that data points� because of noise� normally do not lie exactly on the
manifold� However� since our prior distribution in the latent space consists of a �nite set of points�
the noise model may also have to explain the within�manifold variance �see �gure ����� arising from
data points that lie close to the manifold� but fall between mixture components�

We would like to avoid this con�ict by allowing for greater variance within the manifold� which
leads us to a Gaussian mixture with ellipsoidal components which are locally aligned with the manifold�
as illustrated in �gure ���� Other models has been proposed along these lines �Williams et al�� ����
Hinton et al�� ����a� Simard et al�� ������ where variance along certain directions in the data space
is less penalized than variance in other directions� These models require the use of full covariance
matrices for the mixture components� but this does not mean we have to increase the number of
parameters in our model� Since we want the within�manifold noise to be locally aligned with the
manifold� the corresponding covariance matrix for each component is determined by the derivatives
of the mapping y�x�W� with respect to the latent variable x� computed at the location of the centre
of the corresponding component� That is�

Ck  ���I!
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Figure ��� The left plot shows a GTM with �� latent points and a spherical noise model �tted to
the data from example ��� the log�likelihood for this model after training was ������ The middle
plot shows a corresponding GTM� but with a manifold aligned noise model� the log�likelihood after
training was ����� The right plot� �nally� shows a GTM with � latent points and a spherical noise
model �tted to the same data� the log�likelihood after training was ������

where Ck denotes the covariance matrix of the kh mixture component� �y��x
l
k is de�ned in ������ �

is a scaling factor equal to some multiple of the distance between neighbouring points in latent space�
and we have added the �I term so that the resulting probability distribution does not become singular�
We could instead consider letting each component have its own o	�manifold noise term� orthogonal
to the within�manifold noise� rather than just adding isotropic noise�

This modi�cation of the model requires that we� in the E�step� compute Mahalanobis distances�
rather than square distances� Moreover� we generally lose the closed form update of the weights in
the M�step� since now also the manifold�aligned part of the covariance matrix depends on the weights�
However� the original M�step may still be used as an approximation� since if we assume that the
manifold is smooth� a con�guration where the centres have their 
right� location will automatically
get the noise model approximately correctly aligned� Unfortunately� with this approximate 
M�step�
the resulting algorithm is no longer an EM�algorithm and so there is no guarantee that this algorithm
will converge to a maximum of the log�likelihood function�

We now return to the toy data set introduced in example ��� Figure �� shows the result of trying
a modi�ed GTM model with �� mixture components� which uses the manifold aligned noise just
described� on this data� with the exception that we use the M�step of the original training algorithm�
ignoring the in�uence of the covariance matrices� The model is compared to a GTM with the same
number of mixture components� but restricted to use the standard� spherical noise model� The plots
and the likelihood scores clearly show that the manifold�aligned noise model is superior here� However�
when compared with a standard GTM that has � mixture components� that is no longer the case�
One might think that the use of fewer mixture components should result in computational savings�
but unfortunately� at least in this case� these savings are lost in the increased cost of the E�step�

	�� Mixtures of GTMs

Since the GTM is itself a mixture model� an obvious and straightforward alternative to a single GTM
model is to use a mixture of J GTM models� Computation of the mixing coe�cients for the GTM
mixture� )�j � can easily be incorporated into an EM�algorithm for simultaneously training all GTM
models of the mixture� as

)�j  
NX
n

PKj

kj
rkjnPJ

j�
PKj�

kj�
rkj�n

� j  �� � � � � J� ����

This says that the posterior probability of the jth GTM model in the mixture equals its share of the
total responsibility of the data� The E�step of the training algorithm will involve the whole mixture
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of GTM models� but for the M�step� each GTM model can be updated separately� unless we make use
of global parameters� e�g� having a single value for �� shared by all GTM models in the mixture�
An example where such a model might be appropriate is the �phase pipe �ow data introduced

in example ��� We know that data generated from di	erent �ow con�gurations live on a number of
di	erent ��D manifolds� and the use of a mixture of linear models to visualize this data� by Bishop
and Tipping ������� has been shown to be successful�

	�� A Semi�linear model

Normally� we select the latent space of the GTM to have a low dimensionality � typically� we would
choose it to be ��D� If we want to experiment with higher�dimensional latent spaces� although in
principle straightforward� we would soon run into computational di�culties� since the number of
latent points would grow exponentially with the number of dimensions� MacKay and Gibbs ������
address this problem for a density network model by re�sampling the latent space using hybrid Monte�
Carlo methods �Neal� ����� ������ This is a potentially useful approach� but it su	ers the problem of
still being rather demanding in terms of computation�
Here� we instead consider the use of a semi�linear model� obtained by combining a GTM model

with a probabilistic PCA model �see section ������� This gives a model where the observed variables
depend non�linearly on� say� � of the latent variables� while depending linearly on the remaining L���
The 
non�linear� latent variable are treated just like in the GTM model� essential by discretizing the
latent space� while for the 
linear�� or continuous� latent variables� the posterior distribution over the
latent space can be calculated analytically� We have already seen that the basic GTM model can be
seen as a constrained mixture of spherical Gaussians� similarly� this semi�linear model can be viewed as
constrained mixture of probabilistic principal component analyzers� where the centres of the PPCAs
lie in the manifold de�ned by the non�linear mapping from latent to data space� In contrast to the
manifold aligned noised model discussed above� this model will allow greater variance along certain
directions o� the curved manifold� To be more precise� the distribution in the data space would now
be de�ned as

p�tjW�V� ��  
�����D��

KjCj���
KX
k

exp

�
��
�
�t� y�xk �W��C���t� y�xk �W��T

�
� �����

where

C  ���I!VVT

and V is a D�q matrix that de�nes the linear mapping from latent to data space� q being the number
of continuous latent variables�
Tipping and Bishop �����a� presents an EM�algorithm for general mixtures of PPCAs� which is

easily modi�ed to deal with this constrained case� The E�step di	ers only in that we must now
compute the full Mahalanobis�distance� as indicated in ������ while in the M�step� we �rst updateW

using the standard M�step ����� We then use the updated weights� fW� to compute the weighted
covariance matrix�

S  
�

N

N�KX
n�k

rkn�tn � y�xk �fW��T�tn � y�xk �fW���

Using the results of Tipping and Bishop �����a�� the maximum likelihood solution for V is given by

eV  U��� ���I�����

where U is the D � q matrix whose columns is the q principal eigenvectors of S and � is a q � q
diagonal matrix containing the corresponding eigenvalues� �d� d  �� � � � � q� This result corresponds
to the traditional way of computing principal components� discussed in section ������ For �� we get
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Figure ���� A demonstration of a semi�linear model trained on toy�data � the left plot shows the data
generating manifold together with the data points plotted as � � the middle plot shows the trained
mixture of �� PPCAs� plotted as ellipsoids� with their centres lying in the ��D manifold de�ned by
the GTM� which is plotted as a line� the right plot shows the same thing� but viewed along the 
linear�
direction of the manifold �not plotted�� highlighting that the model does capture the non�linearity in
the data� which is included in this plot as � �

which has the intuitive interpretation as the average variance 
lost� when projecting the D�dimensional
data on the q�dimensional subspace de�ned by the model�
These update formulae for V and � require computing the covariance matrix S� which can be quite

an e	ort if the dimensionality of the data space� D� is high� As noted by Tipping and Bishop �����a��
a better approach in such situations may be to take the latent variable perspective on PCA and use
an EM�algorithm� similar to the one for factor analysis� discussed in section ������ Although this
means using an iterative optimization scheme� the computational cost for each iteration only scales
as O�ND�� compared to O�ND�� for the computation of S� Thus� provided that the EM�algorithm
converges quickly enough� this will be a computationally favourable alternative� The EM�algorithm
for PPCA is discussed in detail in Tipping and Bishop �����b��
To try this model� a toy data set of ��� data points was generated in a �D space� The �rst two

variables� x and y were drawn from a regular� rectangular grid� with x having range ���� �� and y
range ���� ��� The third variable� z� was computed from x and y with the formula

z  ��� sin�����x� ! y�

so the z was linearly correlated with y� A semi�linear GTM with one non�linear latent variable� using
�� latent points and � basis functions with width ���� and one linear latent variable was trained on
this data set� starting from a PCA initialization� The trained model� shown in �gure ���� captures
the structure of the data well� However� the data was generated so as to ensure that the initialization
would map the continuous and discretized latent variables to the dimensions along which the data
exhibited linear and non�linear behaviour� respectively� Initialized the other way around� the model
fails to discover anything but linear structure in the data�

	�� Missing data

A potential problem with real data sets� not discussed so far� is that of missing data �Little and
Rubin� ������ Data values may be simply missing or may fall outside known possible ranges� and
must therefore be considered as being missing� If we have large amounts of data� we can simply
discard data vectors with missing values� but if this is not the case� we would like to be able to use
information in the observed values of incomplete vectors� There may be many reasons for the missing
data� but assuming that data is missing at random � that is� the 
missingness� itself does provide
any information� � we can learn also from incomplete data�

�A counterexample of this is a sensor that fails to give readings when these exceed a certain value�
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We want to deal with the missing values in the data just like we dealt with the missing �unknown�
latent variables� and integrate them out� For that purpose� we split our data set into two parts �
observed�� To� and missing Tm � and equation ����� then becomes

p�tojW� ��  

ZZ
p�to� tmjx�W� ��p�x� dx dtm �

Using the fundamental assumption of latent variable models� namely that data variables in t are
independent given the latent variables� we get

p�tojW� ��  

Z
p�tojx�W� ��p�x�

Z
p�tmjx�W� ��p�x� dx dtm

 

Z
p�tojx�W� ��p�x� dx�

Thus we can deal with missing values by simply ignoring them� and carry out the calculations of
the E� and M�step using only the observed values� Intuitively� for each data point� we are using the
information it provides� while ignoring any 
non�information�� Interestingly� the same way of dealing
with missing data has been suggested for the SOM �Samad and Harp� ������

	�	 Incremental learning

As has been pointed out earlier� the GTM training algorithm discussed in chapter  is a batch algo�
rithm� i�e� the update of the parameters is based on all the data� This means that we have to perform
the E�step for the whole data set� which is normally computationally rather demanding� before we
can update the parameters� W and �� If instead we could do one iteration of EM for each data
point� there is the possibility that the algorithm would converge more quickly� since the model will
be updated for each data point� rather than having to wait for the full E�step over all data points�
Such an incremental form of EM is presented by Neal and Hinton ������� who give examples of its
application to general Gaussian mixtures� Bishop et al� �����a� show how it can be adapted for the
GTM�
Consider some stage of the standard GTM training algorithm� after an M�step� where we have

the 
old� responsibility matrix� Rold� from the previous E�step and current parametersW and �� If�
instead of doing a full E�step� we select a data point tn� which is the nth row of T� and compute the
column�vector� rnewn � with elements rkn as de�ned in equation ���� �although we keep n �xed�� we
can revise the quantity RT in equations ���� or ����� to

�RT�new  �RT�old ! �rnewn � roldn �tn�

where roldn is the nth column of Rold� Similarly� we can revise our estimate of G from ����� by

gnewkk  goldkk ! �r
new
kn � roldkn ��

yielding Gnew� We then substitute �RT�new andGnew for the corresponding factors in ���� or �����
and solve forW� Similarly� for �� equation ����� becomes
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�rnewkn � roldkn �ky�xk �W�� tnk��

The M�step for a general mixture of Gaussians is relatively simple and hence can be computed
quickly� For the GTM� the M�step consists of solving a set of linear equations and is therefore more
demanding in terms of computation� This may result in that savings made from faster convergence
are lost� because of the increased amount of computation required by more frequent M�steps� This
can easily be avoided by� rather than doing the partial E�step for just one data point at the time�
doing it for batches of )N data points� where )N is chosen to be some suitable fraction of the total

�Note that up till now� we have assumed there were no missing variables in t and we have referred to all the variables
in t as observed� in contrast to the latent variables which are unobserved� In this section� all the variables in t� some of
which may be missing� are referred to as data variables�
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number of data points� Neal and Hinton ������ report substantial net gains in speed when applying
this semi�batch algorithm to general mixtures of Gaussians�
Neal and Hinton ������ also discuss other variants of the EM�algorithm� including a freeze�EM

algorithm where a proportion of the responsibilities are being frozen �kept �xed� for a number of
iterations during which only responsibilities which are not frozen are recomputed� After a few iteration
with 
frozen� E�steps� all the responsibilities are recomputed using the normal E�step� This variant
has the potential to be particularly useful in the context of GTM� which often uses a rather large
number of mixture components �
 ����� The plots of responsibility distributions in �gures �� and
�� suggest that� after only few iterations of 
full� EM� up to ��+ of the responsibilities can be frozen�
to then be recomputed only every �fth iteration �say��
Note that this incremental form of EM is not an online algorithm� since we are only recycling a

�nite set of data points� for which we are keeping the old responsibilities� In a real online algorithms�
data points arrive one at the time� the model is updated and then the data point is discarded� For the
GTM� we could derive such an online algorithm� either by constructing a gradient descent algorithm�
where the Robbins�Monro theorem �Robbins and Monro� ����� will guarantee convergence� or we could
derive an online EM�algorithm �Titterington et al�� ������ Not only would this allow us to use the
GTM in a true online setting� but maybe more importantly� we could use it in tackling very large
data sets�

	�� A Memory�e�cient OSL�algorithm

The standard training algorithm for the GTM is rather demanding in terms of memory usage� since it
needs to store the K �N matrix� R� containing the responsibilities�� This may pose a problem when
applying the GTM to large data sets or when computer resources are scarce� One way to resolve this
would be to derive an online training algorithm� as discussed in the end of section ��� above�
However� an alternative approach is to use a so called one�step�late �OSL� algorithm �Green� ������

From ����� and ����� we see that the only reason that we need to maintain the responsibility matrix�

R� is that we need both the responsibilities and the updated weights� fW� in order to update �� To
update W� we only need the quantities RT and G� which both are independent of the size of the
data set� and can be computed incrementally� As part of this computation� we would compute the
squared distances between mixture components and data points used to update �� but using the old
W� Thus we could obtain an EM�algorithm whose memory usage was independent of the size of the
training set� where the update of � is one iteration behind the update ofW� Green ������ suggests a
similar algorithm for penalized maximum�likelihood estimation� where the penalization term at any
given iteration is based on the parameters from the previous iteration� Using such an OSL estimate
of � means that we lose the guarantee that the EM�algorithm will converge� However� it is easy to see
that both algorithms have the same �xed points� so if the OSL algorithm converges� it will converge
to a �local� maxima of the likelihood function� In practice� this algorithm appears to converge just as
quickly and reliably as the original EM�algorithm�

	� Discrete and mixed data

Up till now� we have assumed that the observed variables have all been continuous� In this section we
describe how the GTM can be extended also to model discrete data and� more generally� data with
both discrete and continuous variables� The discrete variables may re�ect the underlying continuous
structure and can be of signi�cant� sometimes even indispensable� help in discovering this structure�
Before considering such instances of mixed data� we �rst consider how to model discrete data� starting
with the binary case�
For a binary variable� t� which takes on values f�� �g� we assume it follows a binomial distribution�

p�tjy�  yt��� y����t	

where y is the mean of the distribution� which is modelled by the GTM using a logistic sigmoid

�Typically� it would also maintain a matrix D of the same size� containing the squared distances between mixture
components and data points� but this can be avoided in a more elaborate implementation�
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function� so that

y  
�

� ! exp��w�
�

where w is the M � � weight vector mapping from the basis functions to the binary data space� Note
that here there is no parameter ��
Variables that are assumed to indicate membership of one of D mutually classes can be modelled

using D�dimensional binary vectors� where if a data point belongs to class d� the dth element of the
corresponding binary vector is set to �� while all the other elements are set to �� this is commonly
referred to as a ��of�D coding scheme� We can model the distribution of such binary vector with a
multinomial distribution�

p�tjy�  
DY
d

ytdd �

which is analogous the binomial distribution if D  �� The D�dimensional binary vector is modelled
by the GTM using the soft�max function� which we used in section ��� to suggest a GTM model with
variable mixing coe�cients�

yd  
exp��wd�PD
d� exp��wd��

�

Since the observed variables are assumed to be independent given the latent variables� we can
deal with mixed data by simply multiplying the corresponding Gaussian� binomial and multinomial
distributions in the E�step� For the continuous variables the M�step will stay the same� but for
binary variables� we must use numerical maximization� This can be done e�ciently using iterative
least�square �IRLS� methods �McCullagh and Nelder� ������ or alternatively a general non�linear
optimization algorithm �Press et al�� ������ In any case� it may turn out to be more e�cient to do
only a partial M�step� which increases but not necessarily maximizes the likelihood� resulting in a
generalised EM�algorithm�

	�� GTM using Gaussian processes

In the basic GTM model� the latent variables are mapped to the data space using a generalised
linear regression model� consisting of a linear combination of a set of �xed linear and non�linear basis
functions� As pointed out in section ��� this gives the computational advantage of an M�step in closed
form� However� there are also disadvantages with this form of mapping � maybe most important�
it require us to decide on a �xed number of basis functions� This will put a hard constraint on the
�exibility of the mapping� which we then usually combine with a soft constraint� imposed by weight
regularization� Alternatively we could constrain the mapping only using regularization� by specifying
a Gaussian process prior over the distribution of possible functions �Williams and Rasmussen� ������
Consider a GTM model where we have removed the basis functions� and instead each latent point�

xk � has a Gaussian mixture component with centre wk directly associated with it �like nodes and
the corresponding reference vectors in the SOM�� Left like that� the model would simply be a K�
component� general Gaussian mixture� However� now we specify a prior over the centres�

p�W�  
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�
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�
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��
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�
where )wd is the dth �K � �� column ofW and the Cd are positive de�nite matrices� typically� it will
not be necessary to have separate matrices Cd for each dimension� This prior de�nes a distribution
over all possible con�gurations of the centres� where some con�gurations� e�g� those where the centres
are approximately ordered on a low�dimensional manifold� will be much more likely than others�
Combining the prior with the likelihood function of the training data results in a posterior distri�

bution over the weights� which corresponds to a regularized log�likelihood function in the form
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We can use the EM�algorithm from section ��� where the E�step will stay the same while in the
M�step� we solve

�G! ���C���W  RT�

with respect toW� where all quantities except C are the same as in the original M�step ����� Here
we have assumed that we use the same C for all dimensions� Again we have obtained an M�step in
closed form� but this time we need to invert a K �K matrix� K being the number of latent points
or mixture components� the original M�step required the inversion of a M �M matrix� M being the
number of basis functions� which is typically signi�cantly less than K�
We specify our prior� p�W�� by specifying C� using a so�called covariance function� Apart from

ensuring that C is positive de�nite� we would like the covariance function to give a prior such that
centreswi and wj are encouraged to stay close to each other in the data space� when the corresponding
nodes xi and xj are close to each other in the latent space� The literature on Gaussian processes�
or equivalently regularization networks �Girosi et al�� ������ provides a wide range of choice �Yaglom�
������ For example� we can choose

Cij  C�xi�xj�  � exp

�
�kxi � xjk�

���

�
� �����

where � gives overall scale of C� and hence determining the overall degree of smoothing� while � de�nes
a length scale in the latent space� corresponding to the scale on which di	erent mixture components
will in�uence each other�
The use of a Gaussian process to specify the mapping from latent to data space in the GTM

is similar to the discretized Laplacian smoothing used by Utsugi ������ in the generalized elastic
net model described in section ������� However� the resulting smoothing matrix� used by Utsugi�
corresponds to a relatively simple covariance matrix
� which is rather in�exible and cannot cater for
new points in the latent space� From ������ we see that � provides continuous adjustable parameter
that controls the 
resolution� of the smoother in the latent space� Moreover� for any new point in the
latent space� ,x� we can compute the corresponding point in the data space

,y  ,wC��W

where� using ������ ,w  �C�,x�x��� � � � � C�,x�xK���
In the revisited principal curve model� Tibshirani ������ uses a cubic spline smoother in the M�step�

which corresponds to the use of a Gaussian process with a particular choice of C�
The principal advantage of using a Gaussian process rather than a generalised linear regression

model is that the �exibility of the mapping can be controlled in a more elegant way� using � in ������
in the generalised regression model the �exibility depends both on the width and the number of basis
functions� Using Gaussian processes removes one model parameter �the number of basis functions�
and may therefore facilitate the search for the right model complexity� as discussed in chapter ��
especially since both parameters that control the model complexity� � and �� are real valued rather
than discrete� We could consider a similar scheme to the one used in chapter �� which is similar to the
work of Utsugi ������� or a full Bayesian treatment using hybrid Monte Carlo methods� The principal
disadvantage in using Gaussian processes is the increased amount of computation and memory storage
required to do the matrix inversion� however� on a modern workstation� dealing with problems up to
moderate size �say� K � ����� should be straightforward� and for larger problems there exist e�cient
approximate methods �Gibbs and MacKay� �����

	��� Altering the latent structure

In section �� we discussed the inherent structural constraints built into the basic GTM model� and
the kind of undesirable result that may follow when these structural constraints are at odds with the
structure in the data� This is a potential problem whenever our prior knowledge about the underlying
structure in the data is limited� However� there are also situations where we do have prior knowledge
about the structure in the data which we can build into the GTM model� by chosing a latent space

�In fact� this matrix is only positive semi�de	nite� due to the presence of a linear null�space�
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with a corresponding structure� As an example� consider the situation where we know that the data
follows a ��D� smooth cyclic structure� we can then use the ��D latent space ��� ��� and trigonometric
basis functions sin�x� and cos�x��
Building such prior knowledge into our model will aid the model �tting� since the space of possible

models that we are searching will be smaller �often much smaller� than if we had chosen a more
general model� This will also make it more likely that the �tted model really re�ects the underlying
structure in the data�

	��� Discussion

This chapter has presented a number of possible extension or variations of the basic GTM model�
Apart from being interesting on their own merits� the more important result is that� together� they
highlight the advantages of the GTM being a probabilistic model� This allows us to make use of
well�established ideas from probability theory and statistics� in order to develop the GTM to tackle
new sorts of problems� Although one could imagine how to tackle the problems listed in this chapter
instead using a SOM model� such attempts would invariably have to made on an ad hoc basis�
The variations of the GTM model discussed in this chapter have barely been tried out� and it

remains to be seen whether they can become truly useful� Although they all carry some intuitive
appeal� there might be other� simpler ways to achieve the same goals� as exempli�ed to some extent
by the experiment with the manifold aligned noise model� shown in �gure ���



Chapter 	

Summary and Conclusions

In this �nal chapter we summarize the work described in this thesis and try to draw some conclusions�
We consider potential applications for the GTM as well as problems which are still unresolved� We
also brie�y review independent work on the GTM� before coming to the �nal conclusions�

��� Related models

Chapter � gave a review of some of the models that have been proposed for discovering and exploiting
low�dimensional structures in high�dimensional data sets� The GTM has drawn inspiration from many
of these models� and can be seen as an extension of more than one of them� Given the latent variable
interpretation of principal components analysis in section ������ it can be seen as a form of non�linear
PCA� while generalizing the noise model to independent noise levels for the observed variables results
in a non�linear form of factor analysis� However� in its current form� the GTM is limited to three�
possibly four� non�linear principal components or factors� The new results on PCA also change our
view on the kernel based PCA described in section ������ but this method is still very di	erent from
the GTM� since the corresponding latent space does not have an explicit representation�
Considering the various principal curve and surface models� the GTM provides an alternative�

generative model� which is readily applicable for modelling two� and three�dimensional distributions�
and could potentially also be used with higher dimensional latent space� provided a more sophisticated
approach is adopted for modelling the posterior distribution in the latent space� e�g� using hybrid
Monte Carlo methods�
The relationship to the elastic net �sec� ������ and� in particular� its generalized form �sec� �����

can be directly understood via Gaussian process variant of the GTM� described in section ���� where
the di	erence between the two models boils down to the choice of covariance function� This also forms
a connection to the generative variants of principal curves �sec� �������
The relationship to the self�organizing map was discussed at length in section ����� In summary�

the GTM can be seen as a principled alternative to the SOM� which circumvents many of its associated
theoretical problems� without su	ering any signi�cant comparative drawbacks�

��� The GTM and its applications

This thesis has primarily been concerned with establishing the GTM as a model for non�linear latent
variable density modelling and data visualisation� A more thorough investigation of its general ap�
plicability still remains to be done� However� its strong links to PCA and the SOM give reasons for
optimism�
PCA is a classical method for feature extraction� in terms of low dimensional representations of

data� and has found application in data compression� image analysis� visualization and data pre�
processing� Also the SOM has been subject to a wide range of application �Kohonen� ������ with
examples such as categorizing messages in Internet newsgroups� recognizing topographic patterns in
EEG spectra and production process control�
The GTMmay also �nd a role in exploratory and con�rmatory data analysis� As a related example�

MacKay and Gibbs ������ show how a density network model can be used for discovering correlations

�
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in protein sequences�

����� Visualisation

The GTM holds the potential of becoming a very powerful tool for visualisation of high dimensional
data� capable of dealing with continuous as well as discrete and mixed data� Since it is a generative
model� it is straightforward to incorporate the GTM into hierarchical� probabilistic visualisation mod�
els� such as that suggested by Bishop and Tipping ������� The possibility to compute magni�cation
factors which can be visualised jointly with data further enhance this potential� The magni�cation
factor 
adds a dimension� to the visual representation of data� and can thereby provide a better
understanding of the data� In particular� it can be used to discover clusters in the data�

��� Open questions

There are still a number of questions about the GTM that have so far not been touched upon� and
for which there are still no de�nite answers� These questions are not unique to the GTM � the
corresponding questions exist unanswered also for many of the other models discussed in this thesis�

����� Dimensionality of the latent space

How do we choose the dimensionality of the latent space( Even for the linear PCA and FA models� it
is usually not obvious how many principal components or factors should be used� In PCA� a common
practice is to plot the eigenvalues of the covariance matrix of the data or� equivalently� the singular
values of the singular value decomposition� If the variance in the data primarily is due to a linear
combination of L latent variables� only the L largest eigenvalues will be signi�cant� with the remaining
L � � being very small� Hence� having computed and plotted these eigenvalues� one may be able to
judge� simply by eye� how many latent variables to use� The corresponding procedure for the GTM
would be to �t GTM models with increasing number of latent variables and then plot the inverse
noise variance� �� against the number of latent variables� Assuming that the distribution of the data
is intrinsically L�dimensional� we would expect to see a sharp rise in �� for the �rst L latent variables�
where after the increase of � with L should be much slower� However� in PCA all the D eigenvalues
are available at a computationally moderate cost� This unfortunately not the case with the GTM� As
has already been mentioned� the computational e	ort required to �t the model grows exponentially
with the dimensionality of the latent space� Moreover� as discussed in chapter �� the non�linearity in
the GTM can result in over�tting�problems� in which case the break in the increasing trend of � may
not be that obvious�
An important issue� when deciding on the number of latent variables to use� is the intended use

of the GTM� If the purpose is visualisation of data� we may have to sacri�ce modelling all underlying
degrees of freedom in the data� in order to be able to visualise it using a single� global model� Unless
we want to employ additional visualisation techniques� we will be restricted to three� possibly four�
latent variables� We can still hope that the GTM model will provide a model which is as good as
possible� given these restrictions� although it is not yet clear under which circumstances this will
actually happen�

����� Structural constraints of the GTM

As pointed out in section ��� the basic GTM model is best suited to model moderately curved�
L�dimensional distributions of roughly rectangular shape� What happens when we apply the GTM
under di	erent circumstances( The objective of the training algorithm of the GTM is to maximise
the likelihood of the training data� subject to the constraints imposed by �e�g�� the number and the
width of the basis functions and the degree of weight regularization� and this objective will always
be the same� If the constraints imposed are too strong� e�g� if the manifold is too sti	� then the
resulting GTM model is bound to be sub�optimal� at least as a density model� With more relaxed
constraints� on the other hand� we may end up with a signi�cantly better density model� but which
gives a 
complex explanation� to an inherently simple structure� as in example �� This is not to say
that the GTM is over�tting� capturing structure in the data which is due to noise � the problem is
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that the structure in the data� although simple� is very di	erent from the inherent structure of the
density model provided by the GTM� Of course� there are ways in which we could handle this speci�c
case �the two Gaussians in ��D� � as pointed out in section ����� in situations where we do have prior
knowledge about the structure in the data� we can build this knowledge into the GTM model� which
usually leads to more e�cient model �tting and better agreement between the �tted model and the
data generating mechanism� However� in general we cannot expect the GTM to be able to provide

interpretable� models of arbitrary low�dimensional distributions� Therefore� an important task will be
to develop reliable diagnostics that can be used to detect folds and other undesirable sub�structures
in the manifold�

����� The merits of being �principled

A recurring term used together with the GTM� especially when relating it to the SOM is 
principled��
This is motivated by the fact that the GTM is derived from probabilty theory and statistics� whereas
the SOM is motivated only by heuristic and empirical arguments� However� are there any practical
gains to be made from this( Are the results obtained with the GTM normally �if at all� 
better� than
those obtained with the SOM( Is the choice of basis functions for the GTM any less arbitrary than
the choice of neighbourhood functions for the SOM(
No doubt� results obtained in terms of visualisation from GTM and the SOM are typically very

similar� as we would expect given the many similarities between the two models� However� except
for simple toy examples it is typically very di�cult or even impossible to judge what is a 
good�
visualisation� With no other objective measure to discriminate between models� we ought to prefer
models which have a sound theoretical foundation to those which have not�
It is also true that� as much as visualisation results vary for the SOM with varying choices of the

neighbourhood function� as much will they vary for the GTM with varying choices of basis functions�
However� if we are working with the SOM� we are left to little but rules of thumb for choosing
our neighbourhood function� attempts to empirically �nd suitable parameters for the neighbourhood
function would be hampered by the fact that the SOM does not minimize an objective function� and
hence we have no measure for comparison� For the GTM� the limitations are 
only� practical � given
in�nite amounts of data and computing time� we will be able to construct an optimal model for any
distribution� given the constraints imposed by the particular GTM model we are using� Even though
this would not be possible in practice� a framework where such an objective is at least theoretically
achievable� is clearly more desirable than one where it does not even exist� To quote Judea Pearl & � � �
we �nd it more comfortable to compromise an ideal theory that is well understood than to search for
a new surrogate theory� with only gut feeling for guidance' �Pearl� ����� page ����

��� Independent work on GTM

Although the GTM is relatively 
young�� it has already inspired new work� also among independent
researchers�� Bishop et al� �����a� use the GTM to model the emission density of a hidden Markov
model� thereby extending the GTM to deal with time series data� where the assumption that the
data points are generated independently is no longer required� They show an example of how this
model can be used to visualise time series data from a helicopter �ight recorder� where di	erent
regions in the latent space corresponds to di	erent modes of �ying� Kiviluoto and Oja ������ develop
a probabilistic� hybrid GTM�SOM model which they call the S�map� they give empirical evidence
that this model� under certain circumstances� has a stronger tendency to self�organize � that is�
adapting so that the topological structure of the model re�ects the topological structure of the data
� when starting from a random initialization� Pajunen and Karhunen ������ show how the GTM can
be used to perform a non�linear form of independent components analysis �ICA� �Bell and Sejnowski�
����� Amari et al�� ������ also knows as blind source separation� This GTM based model can be used
to separate independent sources which have been non�linearly mixed� assuming that the probability
distributions of the sources are known and that the non�linear mixing function is smooth�
A search on the Internet gave additional indications of the GTM being used as an unsupervised

visualization technique for cloud type recognition� for risk prediction in pregnancy and for dimension�
ality reduction of articulatory data�

�The GTM was proposed by Bishop� Svens�en� and Williams�
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��� Conclusions

The generative topographic mapping provides a method for modelling continuous� low�dimensional�
non�linear structures in high�dimensional spaces� It provides a way of doing non�linear PCA or FA�
although in practice it is still limited to a small number of principal components or factors� It forms
a principled alternative to the SOM� resolving many of its inherent problems�
As has been exempli�ed in this thesis� an important application for the GTM is visualisation of

high�dimensional data� The possibility of computing the magni�cation factor as a continuous function
over the latent space and incorporating this in visualisation plots� can make visualised data easier to
interpret�
Since the GTM is a probabilistic model� it �ts into the framework of probability theory and

statistics� We can thus make use of established and well�founded theory to deal with issues such as
selection of model complexity� Moreover� we bene�t from it when extending the GTM to deal with
e�g� missing data and data which take discrete or mixed discrete�continuous values�
Since there are examples where the GTM� when �tted to data with rather simple structure� ends

up being rather complex� developing reliable diagnostics for detecting these situations will be an
important future task� Moreover� before it can fully be assessed� the GTM will need to be thoroughly
tested in a wide range of real applications�
Apart from this thesis and papers referenced herein� the work on GTM has also resulted in a

Matlab
eR implementation with associated documentation� which is freely available on the Internet�

at http���www�ncrg�aston�ac�uk�GTM��
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Appendix A

Derivatives of the Log�likelihood

Function

In this appendix we derive formulae for the �rst and second derivatives� with respect to the weight
parameters� W� of the error function in ������ corresponding to the negative� unregularized log�
likelihood function� here we re�write it as

ST  �
NX
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�
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KX
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From ���� and ������ we get
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where �k is the kth row of �� wd is the dth column ofW� and we have introduced pkn� in order to
simplify the notation� Thus� ���� now reads
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A�� First derivatives

Di	erentiating �A���� using �A��� and �A��� along with standard rules for di	erentiation� we get
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A�� Second derivatives

First� we introduce
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from which it follows directly that
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and we see from �A��� and �A��� that
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Second� we di	erentiate rkn with respect to wpq � using �A�� and �A���� to get
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Finally� from �A���� �A���� �A��� and �A���� we get
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If we study �A��� we see that whenever rkn is close to one� �
pq
kn �

PK
k� rk�n

pq
k�n� will be close to

zero� For a trained GTM model� it is often the case that almost all the responsibility for a data point
rests with a single mixture component� in which case it would be reasonable to use the approximation

��ST
�wij�wpq

 

� PN�K
n�k rkn��kp�ki if j  q�

� otherwise�
�A����

which is a block�diagonal matrix with D identical M �M building blocks

��TG�� �A����

where G is de�ned in ������ If we combine this with Hw� given in ������� we get the building blocks
of the full approximate Hessian as

��TG�! �I�

which we recognize �subject to a multiplicative factor �� from the left�hand side of the M�step equa�
tion ������ thus� we have already computed this approximate form of the Hessian� as part of the
normal training algorithm�

A���� Computing the exact Hessian

To turn the formulae from �A��� into a computational algorithm we expand the expression rkn
ij
kn�� � � �

using �A���� to get
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where

zpqn  

KX
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Using �A���� and �A����� the formulae from �A��� can now be put into matrix form�

Hjq
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where Hjq
T is the M �M sub�matrix of the data Hessian� HT corresponding to the weights of yj and

yq� Q
jq is a K �K diagonal matrix with entries

qjqkk  
NX
n

rkn�tnj � ykj��tnq � ykq��

Dj is a K �N matrix with entries

djnk  �tnj � ykj��

and R is the responsibility matrix from ����� with � denoting component�wise multiplication�

A���� Exact vs� approximate form

Clearly� computing the exact Hessian as well as using it in further computation� will require much
more computation� compared to the approximate form� It would therefore be useful to be able to
assess the penalty we pay in terms of inaccuracy when using the approximate form� and judge that
against computational savings� A simple approach for estimating �� � and � discussed in section ���
would be to evaluate the logarithm of the evidence for �� � and �� given in ������� over a grid in
������space� This includes the logarithm of the determinant of the Hessian�

ln jHj  ln
WY
i

��i ! ��  

WX
i

ln��i ! ��� �A����

where �i is the ith eigenvalue of HT� Figure A�� shows ln jHj plotted against log�� � during di	erent
stages of training on the arti�cial data from section ���� A problem with the exact Hessian is that is
not guaranteed to be positive de�nite� in fact� it is generally the case that the eigen�decomposition
results in a small number of non�positive eigenvalues� For the plots in �gure A��� terms with �i � �
have been excluded from the sum in �A����� It can happen that also the approximate Hessian has
zero eigenvalues� although this is uncommon� which is then treated the same way�
In section ��� we also discuss methods for estimating the hyper�parameters �� � and � during

training� For this purpose� we make use of a quantity� �� interpreted as the e	ective number of weight
parameters and de�ned as

�  

WX
i

�i
�i ! �

�

Figure A�� show � plotted against log�� �� during di	erent iterations of training for the same data set
which were used to produce the plots in A��� Again� terms corresponding to non�positive eigenvalues�
�i� have been excluded�

As can be seen� there seems to be rather signi�cant discrepancies between the exact and approxi�
mate value for ln jHj whereas the di	erences for � are smaller� The di	erences for both ln jHj and �
appear not to change very much with training� which is somewhat unexpected� since we would expect
them to decrease as a consequence of improved �t to data�
Table A�� contains a comparison of the computational e	ort required for the exact and approximate

form of the Hessian� for the some of the data sets described in this thesis� Note that the computational
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Figure A��� The plots show
PW

i ln��i ! �� against log�� �� where the dashed line shows results from
using the approximate Hessian while the solid line shows results obtained using the exact form� The
four plots correspond �top�down� left�to�right� to results evaluated after � �i�e� after initialization� but
before training has started�� �� ��� and �� iterations of training�
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Figure A��� Plots of � against log�� � at � �i�e� after initialization� but before training has started�� ��
��� and �� iterations of training� The dashed line shows results from using the approximate Hessian
while the solid line shows results obtained using the exact form�
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Data set K N M D size�H� Method Time
Pipe �ow ��� ���� �� �� ������� Exact �����
�example ��� Apprx ��
Crabs ��� ��� � � ���� Exact ��
�example ���� Apprx �
Synthetic ��� ��� ��  ���� Exact ���
�section ���� Apprx �

Table A��� Comparison of the time �measured in ticks �  ticks per second� required for computing
the exact and approximate forms of the Hessian� using some of the data sets described earlier in this
thesis� The notation is the same as has been used before� i�e� K is the number of latent points� N
is the number of data points� M is the number of basis functions and D is the dimensionality of the
data�

e	ort required does not only depend on the size of the Hessian� but also the size of the data set and
the number of latent points involved� Although this comparison is far from exhaustive� the �gures in
table A�� clearly shows that computing the exact Hessian is much more expensive than computing
the approximate form �which we have computed anyway� so the actual cost is ��� Moreover� in a lot of
the subsequent calculation using the approximate Hessian� we really only need to compute with one
of the identical blocks from the diagonal� which will result in additional savings�



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


