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1. INTRODUCTION
1.1 The Problems of Turbulence

It has often been remarked that turbulence is a subject of great scientific
and technological importance, and yet one of the least understood (e.g.
McComb 1990). To an outsider this may seem strange, since the basic
physical laws of fluid mechanics are well established, an excellent mathe-
matical model is available in the Navier-Stokes equations, and the results
of well over a century of increasingly sophisticated experiments are at our
disposal. One major difficulty, of course, is that the governing equations
are nonlinear and little is known about their solutions at high Reynolds
number, even in simple geometries. Even mathematical questions as basic
as existence and uniqueness are unsettled in three spatial dimensions (cf
Temam 1988). A second problem, more important from the physical
viewpoint, is that experiments and the available mathematical evidence all
indicate that turbulence involves the interaction of many degrees of free-
dom over broad ranges of spatial and temporal scales.

One of the problems of turbulence is to derive this complex picture from
the simple laws of mass and momentum balance enshrined in the Navier-
Stokes equations. It was to this that Ruelle & Takens (1971) contributed
with their suggestion that turbulence might be a manifestation in physical
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space of a strange attractor in phase space. Since 1971 we have witnessed
great advances in dynamical-systems theory and many applications of it
to fluid mechanics, with, alas, mixed results in turbulence— despite the
attractive notion of using deterministic chaos in resolving the apparent
paradox of a deterministic model (Navier-Stokes) that exhibits apparently
random solutions. This is due not solely to the technical difficulties
involved: Proof of global existence and a finite-dimensional strange attrac-
tor for the 3-D equations in a general setting would be a great mathematical
achievement, but would probably be of little help to specific problems in,
say, turbomachinery. For a start, rigorous estimates of attractor dimension
(Téman 1988) indicate that any dynamical system which captures all of
the relevant spatial scales will be of enormous dimension. Advances in such
areas will most probably nccessitate a dramatic reduction in complexity
by the removal of inessential degrees of freedom.

The first real evidence that this reduction in complexity might be possible
for fully developed turbulent flows came with the experimental discovery
of coherent structures around the outbreak of the second world war,
documented by J. T. C. Liu (1988). The existence of these structures
was probably first articulated by Liepmann (1952), and was thoroughly
exploited by Townsend (1956). Extensive experimental investigation did
not take place until after 1970, however (see Lumley 1989). Coherent
structures are organized spatial features which repeatedly appear (often in
flows dominated by local shear) and undergo a characteristic temporal life
cycle. The proper orthogonal decomposition, which forms the subject of
this review, offers a rational method for the extraction of such features.
Before we begin our discussion of it, a few more general observations on
turbulence studies are appropriate.

1.2 Experiments, Simulations, Analysis, and Understanding

In analytical studies of turbulence, two grand currents are clear: statistical
and deterministic. The former originates in the work of Reynolds (1894).
The latter is harder to pin down; linear stability theory is felt to have little
to do with turbulence. Nonlinear stability, however, and such things as
amplitude equations, definitely are relevant, so perhaps L. D. Landau
and J. T. Stuart should be credited with the beginnings of an analytical
nonstatistical approach. Lorenz’ work was certainly seminal. Over the past
twenty years a third stream has emerged and grown to a torrent which
threatens to carry everything in its path: computational fluid dynamics.
Both analytical approaches have drawbacks. Statistical methods, involv-
ing averaged quantities, immediately encounter closure problems (Monin
& Yaglom 1987), the resolution of which, even in sophisticated re-
normalization group theories (cf McComb 1990) usually requires use of


http://www.annualreviews.org/aronline

POD & TURBULENCE 541

empirical data (Tennekes & Lumley 1972). Nonetheless, they are intended
for and are used for fully developed turbulence. Analytical methods have
so far been unable to deal with the interaction of more than a few unstable
modes, usually in a weakly nonlinear context, and thus have been restricted
to studies of transition or pre-turbulence. Most of the dynamical systems
studies have been limited to this area. Computational fluid dynamics
bypasses the shortcomings of these methods by offering direct simulation
of the Navier-Stokes equations. However, unlike analysis, in which logical
deductions lead stepwise to an answer, simulation provides little under-
standing of the solutions it produces. It is more akin to an experimental
method, and no less valuable (or less confusing) for the immense quantity
of data it produces, especially at high spatial resolution.

Proper orthogonal decomposition (POD), while lacking the broad sweep
of the approaches mentioned above, nonetheless has something to offer
all three of these. 1. It is statistically based—extracting data from experi-
ments and simulations. 2. Its analytical foundations supply a clear under-
standing of its capabilities and limitations. 3. It permits the extraction,
from a turbulent field, of spatial and temporal structures judged essential
according to predetermined criteria and it provides a rigorous math-
ematical framework for their description. As such, it offers not only a tool
for the analysis and synthesis of data from experiment or simulation,
but also for the construction, from the Navier-Stokes equations, of low-
dimensional dynamical models for the interaction of these essential struc-
tures. Thus, coming full circle, we have a statistical technique that con-
tributes to deterministic dynamical analysis.

In Sections 3 and 4 we review applications of the proper orthogonal
decomposition, after developing its key features in Section 2. The latter is
necessarily mathematical in style and while space limitations preclude a
complete treatment, we include some of the new and lesser known results.
Proofs are omitted; see Berkooz (1991b, Chapter 2) for details. Section 5
explores relations to some other techniques used in turbulence studies
and Section 6 contains a concluding discussion. The remainder of this
introductory section contains an historical survey.

1.3 The Proper Orthogonal Decomposition

The proper orthogonal decomposition is a procedure for extracting a basis
for a modal decomposition from an ensemble of signals. Its power lies in
the mathematical properties that suggest that it is the preferred basis to
use in many circumstances. The POD was introduced in the context of
turbulence by Lumley (1967, cf 1981). In other disciplines the same pro-
cedure goes by the names Karhunen-Loéve decomposition or principal
components analysis and it seems to have been independently rediscovered
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several times, cf Sirovich (1987). According to Lumley, quoting A. M.
Yaglom (personal communication), the POD was suggested independently
by several scientists, e.g. Kosambi (1943), Loéve (1945), Karhunen (1946),
Pougachev (1953), and Obukhov (1954). For use of the POD in other
disciplines see: Papoulis (1965)—random variables; Rosenfeld & Kak
(1982)—image processing; Algazi & Sakrison (1969)—signal analysis;
Andrews et al (1967)—data compression; Preisendorfer (1988)—ocean-
ography; and Gay & Ray (1986, 1988)—process identification and control
in chemical engineering. Introductory discussions of the method in the
context of fluid mechanical problems can also be found in Sirovich (1987,
1989, 1990) and Holmes (1990).

The attractiveness of the POD lies in the fact that it is a linear procedure.
The mathematical theory behind it is the spectral theory of compact, self-
adjoint operators. This robustness makes it a safe haven in the intimidating
world of nonlinearity; although this may not do the physical violence of
linearization methods, the linear nature of the POD is the source of its
limitations, as will emerge from what follows. Howcver, it should be made
clear that the POD makes no assumptions about the linearity of the
problem to which it is applied. In this respect it is as blind as Fourier
analysis, and as general.

2. FUNDAMENTALS OF THE PROPER
ORTHOGONAL DECOMPOSITION

2.1 The Eigenvalue Problem

For simplicity we introduce the proper orthogonal decomposition in the
context of scalar fields: (complex-valued) functions defined on a interval
Q of the real line. The interval might be the width of the flow, or the
computational domain. We restrict ourselves to the space of functions
which are square integrable (or, in physical terms, fields with finite kinetic
energy) on this interval. We need an inner product (f; ) = [o/(x)g*(x)dx,
and a norm || f|| = (f, /)"?. We start with an ensemble of realizations of
the function u(x), and ask which single (deterministic) function is most
similar to the members of u(x) on average? We need an averaging operation
{ >, which may be a time, space, ensemble, or phase average. We suppose
that the probabilistic structure of the ensemble is such that the average
and limiting operations can be interchanged (cf Lumley 1971). Mathema-
tically, the notion of “most similar” corresponds to seeking a function ¢
such that

max (|, Y1/, ) = I, )5/, §)- 2.1
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That is, we find the member of the /(= ¢) which maximizes the (nor-
malized) inner product with the field u, which is most nearly parallel in
function space. This is a classical problem in the calculus of variations. A
necessary condition for (2.1) to hold is that ¢ is an eigenfunction of the
two-point correlation tensor

L Cu(x)u*(x) ) p(x)dx” = Ap(x). 2.2)

We define the average R(x, x") = {u(x)u*(x’)>. That the maximum in (2.1)
is achieved, and corresponds to the largest eigenvalue A, of (2.2) is a
consequence of spectral theory (Reisz & Sz. Nagy 1955). Moreover Hilbert-
Schmidt theory assures us that there is not one, but a denumerable infinity
of solutions of (2.2), as long as Q is bounded. We will call these the
empirical eigenfunctions, and denote them by {¢,} and normalize them so
that ||¢.]| = 1. Note that the subscript k£ does not denote a vector, but a
member of the sequence. We order the eigenvalues by 4; > A,, , observing
that the non-negative definiteness of R(x, x") assures that A, > 0. We also
have a diagonal decomposition:

R(x, x') = Zidepr(x)PE(X). (23)

In (2.3) and hereafter the sum is from 1 to infinity unless explicity indicated
otherwise. As we will see in Section 2.2, almost every member (in a measure
sense) of the ensemble may be reproduced by a modal decomposition in
the eigenfunctions:

u(x) = Zyardi(x). (2-4)

The diagonal representation of the two-point correlation tensor R ensures
that the modal amplitudes are uncorrelated:

Aty = OpeAe; (2.5)

see Section 2.3 below. Here (2.4) is the proper orthogonal decomposition,
and the set {¢,} is called an empirical basis.

2.2 The Span of the Empirical Basis

The first step in understanding what can be done with the sequence {¢;}
is to characterize the set S = {Za,¢;| Z|a;|* < 00}, which is the span of the
set {¢;}. That s, what functions can be represented by convergent sequences
of empirical eigenfunctions? Note that we retain only eigenfunctions
with nonzero eigenvalues, so that the {¢;} need not form a complete basis.
If one adds all the eigenfunctions with zero eigenvalue, one obtains a
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complete basis, but loses some of the advantages of the POD, as we shall
see.

The first proposition describes the ability of the empirical basis to
reconstruct the ensemble from which it was generated. The propositions
are stated a little loosely, and we do not provide proofS*here; tighter
statements and proofs may be found in Berkooz (1991b).

Proposition 2.1 If R(x,x") is continuous; then almost every member u of
the ensemble belongs to S.

We denote by X the subset of «’s of the ensemble that belongs to S, i.e.
where Proposition 2.1 holds.

Corollary 2.1 Let {b,;} be an infinite sequence of real numbers, and u; an
infinite sequence of ensemble members in X. If v = Z;bu; is square integrable
on Q, then v lies'in S.

The following proposition together with the corollary above will charac-
terize S.

Proposition 2.2 If 0 is in S, then there exist infinite sequences {w;} in X
and scalars {b;} such that 6(x) = Z,bu;.

We thus have a complete characterization of the span of the eigen-
functions: It is exactly the span of all the realizations of u(x), with the
exception of a set of measure zero. In particular, with the exception of a
set of measure zero, every member of the ensemble that generated the
eigenfunctions can be represented in terms of the eigenfunctions. A special
case of this result (when the u; take on discrete values, as would be the
case in a computer experiment) was observed independently in Aubry et
al (1991a).

From this we see that the sequence {¢,} need not be complete. It is
complete only if one includes the kernel of the operator R, that is, all the
(generalized) eigenfunctions with zero eigenvalues. Of course, if R is posi-
tive definite, there are no zero eigenvalues, and one does get a complete
basis. However, in many applications one can argue on physical grounds
that the realizations u(x, ) do not span the space of square integrable
functions on Q; for example, see Section 2.4 below. This result highlights
a strong property of the POD. It a priori limits the space studied to
the smallest linear subspace that is sufficient to describe the observed
phenomena. This can be stated as a corollary:

Corollary 2.2  If all the square integrable functions u on Q having a certain
property form a closed linear subspace, then the empirical eigenfunctions
have the same property, and the converse is also true.
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The classical example is incompressibility. If R(x, x”) is formed from realiz-
ations of divergence-free vector fields u, then the eigenfunctions {¢;} are
also divergence-free.

2.3 Optimality

Suppose we have a signal u(x, r) and a decomposition with respect to an
(arbitrary) orthonormal basis {i,}:

u(x, 1) = Zb()(x)- (2.6)

If the {y,} have been nondimensionalized and normalized to give
(Wi, ¥;) = d,;, then the coefficients b; carry the dimension of the quantity
u. If u(x, 1) is a velocity, the average kinetic energy per unit mass over the
experiment is given by

f (uw*ydx = (bbb, 2.7
Q

Hence, we may say that {b;b})> represents the average kinetic energy in
the i-th mode. The following proposition establishes what is called the
optimality of the POD or Karhunen-Loéve decomposition.

Proposition 2.3 Let u(x,t) be an ensemble member square integrable on
Q for almost every t and {¢;, A;} be the POD orthonormal basis set with
associated eigenvalues. Let

u(x, 1) = Zia(t)p(x) (2.8)

be the decomposition with respect to this basis, where equality is almost
everywhere. Let {\;} be an arbitrary orthonormal set such that

u(x, 1) = Zb{OY(x). _ (2.9)
Then the following hold.:

1. La(t)ai(t)y = 6,4, i.e. the POD coefficients are uncorrelated.
2. For every n we have X} {a()a¥(t)) = X}, = Z[{b()bF(¢)).

This proposition is the basis for the claim that the POD or Karhunen-
Logéve decomposition is optimal for modeling or reconstructing a signal
u(x, t). It implies that, among all linear decompositions, this is the most
efficient, in the sense that, for a given number of modes the projection on
the subspace used for modeling will contain the most kinetic energy possible
in an average sense. In addition, the time series of the coefficients a4,(¢) are
uncorrelated.
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2.4 Symmetries and Homogeneity

We start by describing a particular kind of symmetry. We say that the
two-point correlation R(x, x’) is homogeneous or translation invariant if
R(x,x) = r(x—x’), i.e. R depends only on the difference of the two
coordinates. In general, homogeneity of a system is defined through multi-
point moments, but we only need second-order moments here. Assuming
Q is bounded and u is periodic, we may develop r in a Fourier series,

Hx—x) = ZC,e®™ ==, (2.10)
One can then solve the eigenvalue problem via the unique representation
R(X, x/) — EC"eZm’nxe—— 27tinx” (21 l)

which implies that the e**"* are exactly the eigenfunctions with eigenvalues
C,. Conversely, if the eigenfunctions are Fourier modes we can write (2.11)
which implies (2.10). In summary, we can state

Proposition 2.4 R(x,x") = r(x—x") if and only if the eigenfunctions of R
are Fourier modes.

This observation is especially useful in systems where the domain € is of
higher dimension. For example, if Q is 2-D, then we have

R(x,x") = R(x, y,x', ), (2.12)

and if the x-direction is homogeneous, the problem of finding eigen-
functions in a 2-D domain is decoupled into a set of 1-D problems by
writing

R=R(x—x",p,¥) (2.13)

and performing the same procedure as above, yielding a 1-D eigenvalue
problem for every Fourier wavenumber. Examples of such applications
can be found in Herzog (1986), Moin & Moser (1989); also see Lumley
(1971). The observations above can be generalized to other cases where
part of the domain has a more general symmetry group structure, see
Berkooz & Titi (1992).

Unfortunately, in the context of coherent structures in the turbulent
boundary layer, the above observation leads to Fourier structures which
are, of course, not localized in all space directions, unlike the events
observed. In an attempt to avoid this, and reintroduce locality, it is necess-
ary to introduce phase relationships among the Fourier modes. In the
following treatment, we adapt Lumley’s application of the shot-noise
decomposition (Rice 1944; Lumley 1971, 1981). Imagine a building block,
which is the basic coherent structure, and a process that sprinkles the units


http://www.annualreviews.org/aronline

POD & TURBULENCE 547

randomly on the real line. (See Figure 1.) If f(x) is the building block,
with 0 as a reference point, in order to move the structure so that its
reference point is at y we perform the convolution

u(x) = J(S(Zf—y)f(x—i)di, (2.14)

where 8(&) is the Dirac delta function (working in the space of generalized
functions or distributions). This prompts us to the following:

Definition 2.1 A convolution of the type

u(x, 1) = Jgt(é)f (x—&)d¢, (2.15)

where g,(&) is a random process in the space of generalized functions, will
be called a shot-noise decomposition of u(x, t).

The goal is to reconstruct f from statistics of the system. To develop
intuition for Definition 2.1, assume for simplicity that both f and u have
an upper bound on frequencies in their Fourier decompositions, and that
they are periodic. Then g need not be a generalized function, and the
Fourier transform of g will be well-defined. If u, g, and f are the Fourier
transforms of u, g, and f respectively, then clearly u = gf. We see that, in
general, a shot-noise decomposition is always possible, and that moreover

f‘l.O R1.0

.

1.0 vT 1.0 T

Av-&—aﬂ-vwﬁ

Figure 1 (Top) The basic building block and its autocorrelation. (Bottom) The result of
random sprinkling with Gaussian amplitudes.
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it is far from unique; one also has freedom in choosing f and g. To remove
the ambiguity in the decomposition, and to formalize the notion that
g “randomly” sprinkles f’s, we make the following assumption on the
process g.

Assumption 2.1 Leg g be uncorrelated in nonoverlapping intervals, i.e.

995D = (=)

This assumption removes part of the ambiguity of the decomposition, as
follows:

Proposition 2.5 If R is the Fourier transform of the two-point velocity
correlation for a homogeneous process, then R = |f|°.

We see that Assumption 2.1 prescribes the power spectrum of the build-
ing block; the phase angles are yet to be determined. Before we discuss the
retrieval of the phase information, we will examine some physical aspects
of the shot-noise decomposition with the above assumption. It seems that
this approach formalizes rather well the stochastic sprinkling of structures
in physical space. An extension of this formalism to include stochastic
sprinkling in time is also possible, the assumption being extended to non-
correlatedness in time as well as in physical space. The structure of the
building block in time corresponds to the life cycle, or evolution, of the
coherent structure. The assumptions of noncorrelatedness in physical
space and in time are, of course, simplistic approximations; coherent
structures cannot be too close to each other, in either space or time, and
hence there must be a short-range correlation of g. In addition, adjacent
coherent structures affect each other dynamically, and hence g must be
statistically dependent at different places and times, even if uncorrelated.
In addition, the assumption of a single building block may also be restric-
tive, since we may expect to meet more than one form of coherent structure.
In multiple dimensions, we should include the possibility that the building
blocks will occur with different orientations. Some of these deficiencies
will come back to haunt us when we try to retrieve the phase information
for 1.

A rational procedure was suggested by Lumley (1971, 1981) to obtain
the phase information from the bi-spectrum (Brillinger & Rosenblatt 1967,
Lii et al 1976). Our goal is to find the phase angle of the Fourier coefficients
of f. We already have the moduli. We want to find 6(x) such that

f = RI/2o2m000) (2.16)

Consider the triple correlation:


http://www.annualreviews.org/aronline

POD & TURBULENCE 549
uCyu(x+ru(x+ry)) = J”f(x—i)f(xwl -¢)

X f(x+r2—Eg(Dg(€Ng(E")>dldS dE". 2.17)

We now extend the assumption on g and require that it be triply uncor-
related on nonoverlapping intervals, thus obtaining for the right hand side

Jf(x)f(x+r1)f(x+r2)dx. (2.18)

If we designate the triple correlation in (2.17) by B(r,, r,) and its Fourier
transform by B(x |, k,), we obtain

B(x1, k2) = RV (1 )R (1)R 2 (ke + k)
x exp {2mi[f0(x )+ O(k,) — Ok, + K1)} (2.19)

The known quantities are B(x |, k,), and R(x). As Lumley (1971) observed
(see also Moin & Moser 1989), this problem is, in general, not solvable
exactly, since B(x, k,) may not be factorable as the right hand side pre-
scribes. In fact, if our assumption (that g is triply uncorrelated) is correct,
B will be so factorable, and not otherwise. There is very little information
on B in turbulence, and none on its factorability. Moin & Moser observe
that this problem is encountered in other disciplines as well; see Bartlet et
al (1984) and Matsuoka & Ulrych (1984). Lumley suggested the following
simple solution: reduce B to a one-dimensional domain by looking at
B(c, ck), where ¢ is an arbitrary number, and solve the above equation on
a finite number of points. This is not very convincing, however, and it is
exactly at this point that our assumptions on g come back to haunt us.
The lack of an exact general solution to the bi-spectrum equation suggests
that our assumptions may have been too simplistic, either regarding the
existence of a single building block, or regarding the statistical behavior
of g.

An alternative strategy for representing localized structures in homo-
geneous directions involves the use of wavelet decompositions (Meyer
1987). While not optimal (see Proposition 2.4), it has recently been shown
that periodic spline wavelets (Perrier & Basdevant 1989, cf Farge 1992)

.are not much less efficient than Fourier modes in capturing kinetic energy
on the average. More specifically, Berkooz et al (1991a) show that, if the
autocorrelation R(x—x’) is reconstructed with average error ¢ using N
Fourier modes, then a wavelet reconstruction with a similar number of
modes will incur error 3¢+ ¢/2%, where # is the order of the splines used,
and the constants ¢ and ¢ depend on how the wavelet octaves relate to N.
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There are some restrictions on this result, and it relies on the rapid decay
in Fourier space of spline wavelets, but it suggests a promising new direc-
tion to explore.

We can use the POD to examine the ergodicity of a dynamical system.
Physically, if the phase space of the dynamical system is partitioned into
disjoint closed regions, so that a system trajectory starting in one of these
never enters the others, the system is not ergodic. Now, if a system has
certain symmetries, these symmetries should appear as symmetries of the
invariant measure. However, starting from a given initial condition, it is
possible that the solution will not explore all the states associated with the
symmetry group. If this occurs, we can say that the system is not ergodic.
For example, suppose a 2-D map is invariant under the symmetry (x, y) —
(y,x), and has two disjoint attractors lying to either side of the x =y
symmetry axis (and hence individually not invariant under the symmetry).
A typical realization—an orbit of this map—will explore just one attrac-
tor, and will not have the symmetry of the full system. The invariant
measure concentrated on the two attractors is not ergodic because of the
disjeintedness, and we can see this because of the lack of symmetry. As a
result, if the empirical eigenfunctions obtained from a single run of the
experiment (in time) have less symmetry than the problem as a whole, we
conclude that the system is not ergodic. Note that it is also possible for
there to be two disjoint attractors, each of which displays the full symmetry,
and hence there may be no telltale lack of symmetry to point to the lack
of ergodicity. More formally, we have:

Proposition 2.6 Let S be a stationary ensemble of realizations, and m be
the invariant measure associated with it. Let G be a linear symmetry group
for S. Then a necessary condition for m to be ergodic is that, for almost
every realization, each of the finite-dimensional eigenspaces corresponding
to a given eigenvalue (which results from the time averages of that
experiment) is invariant under G.

The way one would go about checking this condition in an experiment
would be:

1. Perform the experiment and measure R(x, x").
2. Obtain the {¢,} from R(x, x").
3. Check that every ¢, satisfies the symmetry condition.

(Here, for simplicity, we consider a system with distinct eigenvalues.)
Recently Aubry et al (1991b) performed numerical integrations of the
Kuramoto-Sivashinsky equation and computed the POD basis. By using
the results above and the calculations cited, they conclude that for certain
values of the bifurcation parameter, the system is not ergodic. On the other
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hand, if one wants to assume that the system is ergodic, one may use the
symmetries of the system to increase the size of the ensemble. This
approach has been advocated by Sirovich (1987) and applied in many
studies (e.g. Sirovich & Park 1990). However, one should be cautious,
as there are examples (Berkooz 1990b) where the partition into ergodic
components is finer than the partition into symmetric components; in this
case the image of the basis obtained by one experiment under a symmetry
group will not produce the basis obtained by the ensemble average
measure. See Berkooz & Titi (1992) for further discussion of this point.
Caution is particularly warranted in cases of small systems or special
geometries. For example, in a square Rayleigh-Bénard cell there is a
possibility that a preferred rotation direction of the single roll may be
chosen at random at the ime of onset and may never change throughout
the life of the system. This indicates that there are at least two distinct and
disjoint parts for the support of the invariant measure, each associated
with a rotation direction, much as in the simple map example. Similar
phenomena evidently can occur in the minimal flow unit of Jimenez &
Moin (1991). The additional symmetry imposed on the ensemble of flows
by artificial addition of images of flows under symmetry group elements,
as advocated by Sirovich (1987), may therefore obscure the true nature of
a particular system.

2.5 The Nature of Attractors

We first describe a geometrical consequence of the phase space description
of asymptotic behavior afforded by the POD. In particular, we can give a
probabilistic-geometric interpretation of the location of dynamics in phase
space using Chebyshev’s inequality. This generalizes the result in Foias et
al (1990), who essentially reproduced the proof of Chebyshev’s inequality
in a specific case. Aubry et al (1991b) independently observed that the type
of picture described in Foias et al (1990) is due to Chebyshev’s inequality.

We will sketch the proof here, because it is geometrically instructive.
First, recall Chebyshev’s inequality.

Theorem 2.1 Let X be a vector-valued random variable with zero mean
and variance o = {|X|%). Then for any ¢ > 0

P{IX| = ¢} < 6?/¢? (2.20)
where P{e} is the probability of that event.
Now, denote by X, the vector-valued random variable

Xn = {an+1’an+29~--aaoo} (221)
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50 that the X, have zero mean and variance 6> = A, t Ayt
=Zf0:=n+llm-

Then Chebyshev’s inequality gives

P{lxnl 2 8} < Z:;3(1]=n+ lim/gz' (2'22)

In the space of functions u, square integrable on Q, the coefficients a, may
be regarded as coordinates. The space spanned by {¢,,...,¢,} may
be thought of as a surface in the function space, with associated coordinates
{ai,...,a,}. Containing this surface, and extending ¢ on each side of it, is
a slab of thickness 2¢, defined by |X,| < ¢. The inequality (2.22) tells us
how likely it is to be outside that slab. Inequality (2.22) is useless for fixed
m and & — 0. The way to extract something useful is to take a sequence
g, — 0 such that

5 1 Anfer = 0. (2.23)

In other words, the g, are chosen so that their squares go to zero slower
than the decay of the norms of the residual modes. This will give a series
of slabs with thickness going to zero, while the probability of the solutions
being in those slabs goes to one.

The problem is now shifted to computing the rate of decay of the residual
energy Xo_, . 1 4. There is analytical evidence that suggests that when the
POD basis is used for turbulent flows, this residual decays at least exponen-
tially fast asymptotically, as we argue later in this section. This enables us
to take a series &2 — 0 with a slightly smaller exponent. The result will be
a series of slabs with thickness going exponentially to zero, and the prob-
ability of being in that slab going exponentially to one. This gives rise to
a picture in which the attractor is very thin, albeit high or even infinite
dimensional. Thus, the essentials of the dynamics may be controlled by a
finite number of modes, as the dynamical models discussed in Section 4
suggest.

We turn now to a related matter. We show that if the POD spectrum
decays fast enough (which is the case for systems that interest us), prac-
tically all the support of the invariant measure is contained in a compact
set; that is, roughly speaking, all the likely realizations in the ensemble can
be found in a relatively small set of bounded extent.

Proposition 2.7 Consider a dynamical system whose solutions are contin-
uous and square integrable on Q. If A, = Olexp (—cn)}, then for any € > 0
there exists a compact set B, such that P{B.} > 1—e.

This is quite interesting. If one performs a POD decomposition on a system
about which little is known a priori, and gets a discrete spectrum that
decays rapidly enough (see also the next section), Proposition 2.7 allows
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us to conclude that most of the likely realizations can be found in a
compact domain. It is surprising that such fundamental information can
be obtained from such a simple procedure.

‘We next describe a very reasonable situation in which the POD spectrum
is likely to fall off exponentially and thus in which Proposition 2.7 will
hold. “Regularity of solutions” is a mathematical property describing,
essentially, the rate of decay of the tail of the wavenumber spectrum of
instantaneous solutions of a partial differential equation (PDE). It appears
that solutions of many chaotic systems have very high regularity, meaning
that the instantaneous wavenumber spectrum decays rapidly (exponen-
tially in most cases)-—see Promislow (1991). We note that wavenumber
spectra in fluid turbulence are generally believed to fall off exponentially
(see Tennekes & Lumley 1972). We will establish here the relation between
regularity results and the POD. We start by explaining what is meant by
regularity, quote regularity results for the Navier-Stokes equations, and
relate regularity to the eigenvalue spectrum of the POD. These results
appeared in Foias et al (1990), but our treatment differs from theirs in that
we use the optimality property of the POD to establish the connection,
whereas they use the uncorrelatedness of the random coefficients. A closer
examination of their proof shows that the estimates obtained from regu-
larity results hold not only for the empirical bases but also for a basis of
eigenfunctions of the Stokes operator or any other basis with similar
orthogonality properties.

We start with regularity in a simple setting. Let the domain of our flow
be a rectangular box, in which the real velocity field u is periodic and
incompressible. We have a representation in terms of Fourier modes:

u(x, 1) = Suy(r)ell™. (2.24)
We assume the kinetic energy is finite:

Zlyl? = u|?/(2n)* < 0. (2.25)
The Stokes operator is simply 4 = — V2 We can define fractional powers
of A4 via

A*u = Zylj| e, (2.26)

Similarly, we can define

exp [t4°Tu = Zu; exp []j| *]e™. 2.27

If this sum converges, we say that u is Gevrey class regular. The relation
between Gevrey regularity and the instantaneous turbulent spectrum is as
follows. We can define a 3-D spectrum (see Tennekes & Lumley 1972) as

Em) =%, o <mei iy’ (2.28)
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This is the energy in a spherical shell. For Gevrey class regular ficlds, we
have

o0 > |y *exp [2]j|*] = TE(m) exp [2tm®]. (2.29)

Therefore, for Gevrey class regular velocity fields the instantaneous spec-
trum decays at lcast exponentially fast. As wc will see later, the last
expression can be manipulated to obtain the asymptotic rate of decay of the
random coefficients, which are nothing but || in a Fourier representation.

To convince the reader that regularity results are useful, we must do the
. following: Define regularity for an arbitrary problem (not necessarily with
periodic boundary conditions); present regularity results for the Navier-
Stokes equations; and show how regularity results, which are instan-
taneous information, transform to average information such as a rate of
decay for the POD eigenvalues.

The definition of regularity for an arbitrary domain is based on the
Stokes operator. The only difference is that, instead of developing the
velocity field in terms of Fourier modes, one develops it in terms of
the eigenfunctions of the Stokes operator. These eigenfunctions form a
complete basis. The asymptotics of the eigenvalues of the Stokes operator
are the same for all reasonable domains (Constantin & Foias 1989). Rigor-
ous regularity results for the Navier-Stokes equations in two dimensions
are given in Foias & Témam (1989). For the 3-D Navier-Stokes equations,
to simplify the discussion, we assume that the vorticity is bounded above
uniformly throughout the flow and in time. This may be a very large
bound, but it nevertheless needs to be assumed. This enables us to bypass
the blowup problem for the Navier-Stokes equations (see Anderson et al
1984). In this case, Foias & Témam (1989) showed that, after a transient
period, there exists a o such that the solutions u satisfy

[AY2exp (64| < C < oo. (2.30)

Four remarks are in order. First, some uniform bound for the averages is
essential; as shown in Berkooz (1990b), one can have an ensemble with
all members exhibiting exponentially decaying tails, yet with an average
spectrum not exponentially decaying. See also Novikov (1963) and Monin
& Yaglom (1987). Second, to get a comparison to the POD, one has to
define some order on wavenumber space. The order we choose is through
wavenumber shells, that is, through the 3-D spectrum. Third, as discussed
in Berkooz (1990b) and Foias et al (1990), regularity results are relevant
only to the far dissipative range of turbulence, or to very high order
empirical eigenfunctions. (See Figure 2.) Fourth, the decay of the tail of
the empirical eigen-spectrum will always be as fast, or faster, than that of
the tail of the spectrum with respect to any other basis, in particular the
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Turbulence
spectrum

— —— Gevrey
upper bound

-
Log k
Figure2 Spectrum of turbulence compared with upper bound for the spectrum from Gevrey
regularity resuits.

Fourier spectrum. This is a straightforward consequence of the maximality
of energy principle for the POD. (See Figure 3.)
We can now state our main results for this section.

Proposition 2.8  If a solution u(x, t) in a domain of dimension n is uniformly
bounded in time in the norm | A" exp [BA"u| then the eigenvalues in the tail
of the POD spectrum will satisfy

e = ok~ " exp (—2Bk¥M)]. (2.3D)

— POD spectrum

- = — Other (non-
optimal) basis

Figure 3 Typical spectrum of a dissipative system in POD and another basis. Note the
“cross over” which will occur due to the equality in total energy (area under the curves).
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Proposition 2.9 Under the assumptions of the previous proposition, the
empirical eigenfunctions have the same regularity as the solutions.

2.6 Computational Schemes and Further Results

In this section we discuss some additional points of interest regarding the
POD.

THE METHOD OF SNAPSHOTS  This method was proposed by Sirovich (1987).
Itis a numerical procedure which can save time in computation of empirical
cigenfunctions. Suppose one is performing a numerical simulation on a
large number of grid points N, the number of ensemble members deemed
adequate for a description of the process is M, and N > M (the fun-
damental question of determining M is not part of Sirovich’s treatment).
In general the eigenfunction computation will become an N x N problem.
However, this may be reduced to an M x M problem. Berkooz (1991b)
gives an argument for the equivalence of the method of snapshots to
the original formulation of the eigenvalue problem, as well as a linear
independence condition omitted by Sirovich (1987).

DIMENSION AND THE CONDITIONAL POD  An appealing concept is to define
a dimension through the POD. The obvious thing to do is to define a
dimension as the number of nonzero eigenvalues in the POD
decomposition, as done in Aubry et al (1991a). However, this is merely
the dimension of the smallest linear subspace containing the dynamics,
and has, a priori, nothing to do with the Hausdorff dimension of the
attractor. Even if the latter is finite, the former may not be so. This is
underiined by the example in Berkooz (1990b) of a system having a limit
cycle, which has Hausdorff dimension 1, with an infinite number of nonzero
POD ceigenvalues. Indeed, as Sirovich (1989) realized, this definition is
practically useless, and he suggested the following working definition:
“...the number of actual eigenfunctions required so that the captured
energy is at least 90% of the total. .., and that no neglected mode, on the
average, contains more than 1% of the energy contained in the principle
eigenfunction mode.” The concept of entropy introduced by Aubry et al
(1991a) based on interpreting the POD eigenvalues as probabilities is
plagued by the same problem.

In Berkooz (1991b) a connection between the various dimensions is
found by using the concept of a conditional POD. Suppose (for simplicity
of explanation) that all the trajectories of a system are confined to a
bounded region of phase space. Pick a location in that region, u, and
consider a ball of radius ¢ around it. Consider the POD conditioned on
being in the ball. Now define a local dimension as the smallest number of
conditional ¢igenfunctions that will return more than 1-6 of the energy.
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Now take the upper limit as ¢ goes to zero, and then as ¢ goes to zero, and
finally take the upper bound as u ranges over the bounded region of phase
space. This dimension can be shown to lie between the ordinary dimension
and the Hausdorfl dimension. Note that it is not obvious that this dimension
should lie below the ordinary dimension; as noted in Berkooz (1990b),
finite dimension of an attractor does not guarantee that there are only a
finite number of energy-containing POD modes.

ASYMPTOTICS OF THE POD EIGENFUNCTIONS For the sake of completeness
we mention the interesting result of Sirovich & Knight (1985) on the
asymptotic form of the POD cigenfunctions (under certain assumptions).
Foias et al (1990) conclude from the results of Sirovich & Knight (1985)
that the asymptotic form of the POD eigenfunctions is that of Fourier
modes. However, the results of Section 2.2 on the span of the eigen-
functions show that this cannot be completely general. Take, for example,
an ensemble of realizations which are all constant on part of the domain,
in which case, by Corollary 2.2, the eigenfunctions will also have this
property and so cannot be asymptotically close to Fourier modes in that
region.

THE POD AND THE PDF IN FUNCTION SPACE We would like to mention
the connection between the POD and the PDF in functional space. The
invariant measure in functional space is an object of great interest; if one
could obtain it explicitly one would have “a solution to turbulence,” since
all multi-point (single time) statistics would be available. From this point
of view the POD is seen as the linear change of basis which turns the
coordinates into uncorrelated (although probably dependent) random
variables. As shown by Hopf’s theory of turbulence, the characteristic
functional of the PDF in functional space may be obtained by multi-point
correlations (Hopf 1957). This leads us to propose a very simple model
for the PDF in functional space: Using the representation

u(xa t) = gak(t)d)k(x)’ (232)

we assume that the g,’s are independent and normally distributed with
variance 4, a; ~ N(0, A;). While this is consistent with the picturc the
POD gives of the flow (the coefficients are uncorrelated and the spectrum
is correct), it clearly implies a strong assumption on the modal dynamics.
Nonetheless, in Section 5 we will see that this model is closely related to
other statistical approaches that describe coherent motions in turbulence.

3. POD IN DATA DESCRIPTION AND ANALYSIS

In this and the following section we survey applications of the POD. As
pointed out in the introduction, we make a distinction between applications
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of the POD to analysis of experimental results and applications of the
POD to data analysis and we have grouped the studies according to
the classcs of problems treated: wall-bounded flows, free shear flows,
convection problems, and mathematical model equations.

3.1 Wall-Bounded Flows

One of the earliest applications of the POD was by Bakewell & Lumley
(1967). They measured two-point correlations of one velocity component
in the wall region of a fully developed turbulent pipe flow, and recon-
structed the two-point correlation tensor using incompressibility and
a closure assumption. The flow is approximately homogeneous in the
streamwise and cross stream directions. They computed only one eigen-
function (in addition to the mean) with no streamwise variation. They
reconstructed the coherent structure using 0 as a phase relation for the
homogeneous cross stream direction, and obtained a pair of counter-
rotating rolls. In this sense their work should be considered as a pioneering
study.

Herzog performed-a complete 3-D POD analysis of the wall layer of a
turbulent pipe flow (Herzog 1986). Herzog had relatively low spatial
resolution but very well converged statistics which enabled him to compute
three significant eigenfunctions for a substantial range of wavenumber
pairs in the homogeneous (cross stream and streamwise) directions. This
work was a major undertaking and the first full two-point correlation data
set to be measured. In his reconstruction Herzog did not apply a rational
method for the reconstruction of phase angles. Herzog did measure the
two-point correlation with time delay but the processed results are limited
to zero time lag.

Moin & Moser (1989), using the channel-flow data base of Kim et al
(1987) obtained by direct numerical simulation of a channel flow, per-
formed a comprehensive POD analysis. The computations employ periodic
boundary conditions in the spanwise and streamwise directions and the
decomposition uses Fourier modes in these directions, as was done by
Herzog (see Section 2.4, above). Although it is not certain that the statistics
are well converged (less than 200 realizations were used), the spatial res-
olution is excellent. The main thrust of their work was a systematic appli-
cation of the shot-noise expansion. Moin & Moser (1989) suggest two
additional, ad hoc, methods for the determination of the phase angles.
One is based on a “‘compactness in physical space’ condition and the other
based on “‘continuity of eigenfunctions in wavenumber.” The reader is
referred to Moin & Moser (1989) for details. The results of this work are
what they call “characteristic structures” which dominate the production
of important statistics.
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More recently Sirovich et al (1990a) and Ball et al (1991) have also
computed empirical eigenfunctions from a similar direct numerical simul-
ation of channel flow. They took a lower Reynolds number than Moin &
Moser and, rather than assuming “‘compactness” and “‘continuity” as
mentioned above to determine characteristic numbers, they extracted the
temporal behavior of the coefficients a,(#) of the empirical eigenfunction
directly. These time series show strong intermittency, as one would expect
from the experimental observations of the bursting process (Kline et al
1967, Robinson 1991). In fact Sirovich et al (19902) investigate the presence
of specific structures (oblique plane waves) and their influence as triggers
for the bursting events.

In the numerical channel-flow studies mentioned above, when the full
channel width is taken as the domain Q for computation of the eigenvalues,
a relatively large number of eigenfunctions (counting Fourier modes) are
required to capture, say, 90% of the kinetic energy on average: Ball et al
give a figure of about 500 modes in reasonable agreement with Keefe et
al’s (1987) Liapunov dimension calculations. (Moin & Moser also consider
wall region eigenfunctions.) In this respect we stress that in Herzog’s study
Qis restricted to the wall layer (0 < y+ <40 wall units), and in this region
convergence 18 considerably faster. However, in all cases, the empirical
eigenfunctions representation converges significantly faster than Fourier-
Chebyshev representations of flow in the same regions.

3.2 Free Shear Flows

One of the first free shear flows to be analyzed was the jet (or annular
mixing layer) investigated experimentally by Glauser et al (1987) and
Glauser & George (1987a,b). In this work the jet is assumed to be approxi-
mately homogeneous in the streamwise direction (the growth of the layer
was not accounted for). The main results were: (@) demonstration of the
effectiveness of the POD in capturing kinetic energy; (b) determination of
the shape of the POD eigenfunctions (the majority of the energy being in
azimuthal invariant modes); (¢) the proposal of a dynamical mechanism
for turbulence production based on the eigenfunctions, and emphasis of
the role of nonazimuthal invariant structures in turbulence production,
structures which exhibit azimuthal number selection through the POD
spectrumi.

Sirovich and various coworkers also investigated the jet and mixing
layer using numcrical simulation and experimental data (Sirovich et al
1990b; Kirby et al 1990a,b). In Sirovich et al (1990b), a conditional form
of the POD was applied to the mixing-layer part of the jet, based on a
correlation criterion. As a result, the approximate homogeneity in the
streamwise direction was broken, resulting in a 2-D eigenfunction problem.
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The results of the POD eigenfunctions gave nice descriptions of the lobes
responsible for mixing. In Kirby et al (1990b) the POD is applied to a
simulated supersonic shear layer. This is again a 2-D problem. The empha-
sis of this study is on data compression. The time-averaging procedure
eliminates interesting large time-scale dynamics. Kirby et al (1990a) is
similar in spirit and results to Sirovich et al (1990b), except that Large Eddy
Simulation data is used as a basis for the conditional sampling rather than
experimental data.

A conditional POD was applied by Glezer et al (1989) to a forced mixing
layer. They term their procedure an “extended POD.”

3.3 Convection

The POD was applied to numerical simulation of Rayleigh-Bénard con-
vection problems by Sirovich & Park (1990), Park & Sirovich (1990), and
Sirovich & Deane (1991) (cf Deane & Sirovich 1991). In the former studies,
extensive use is made of discrete symmetries of the flow domain (a rect-
angular box) to simplify the computations by selecting parities (even or
odd) for various eigenfunction components. This is especially useful in this
problem, since the domain 1s bounded and there are no homogeneous
directions to assist in data reduction. The symmetries are also used to
increase the data base over which averages are taken, as discussed in
Section 2.4.

The main thrust of the more recent work is to determine scaling prop-
erties of POD eigenfunctions as a function of Rayleigh number. Some
scaling properties are found. As Sirovich & Deane (1991) point out, if such
scaling does hold for asymptotically large Rayleigh numbers, it will be a
considerable contribution. Using a definition of dimg, as the number of
modes required to capture 90% of the energy (cf Section 2.5) an empirical
relation between the Lyapunov dimension dim; and dimy, is traced out.

3.4 Mathematical Models

The POD has been applied to the analysis of the results of several math-
ematical models—mostly 1-D dissipative partial differential equations.
These problems are inherently simpler than real world problems and
therefore provide attractive tests for the method.

Chambers et al (1988) applied the POD to simulation of Burger’s equa-
tion with random forcing and showed that the resulting eigenfunctions
exhibit “viscous” boundary layers near the “walls” and have an outer
region essentially independent of Reynolds number. Sirovich and co-
workers applied the POD to the Ginzburg-Landau equation (Rodriguez
& Sirovich 1990, Sirovich 1989) and studied the bifurcation diagram for
Galerkin projections and the dependence of the eigenfunctions on an
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external control parameter such as Reynolds number. They also find that
the eigenfunction dependence on parameters is refatively weak. Kirby &
Armbruster (1991) applied a conditional POD and a “moving” POD to
the study of bifurcation problems in the Kuramoto-Sivashinsky equation.
This approach allows the identification of traveling structures. Aubry et
al (1991) have also studied the problem via a consideration of the relation
of the POD to symmetry groups. Without such a procedure the statistics
will be homogeneous and the eigenfunctions will be Fourier modes, as
described in Section 2.4 above. The procedure applied in parts of Kirby
& Armbruster (1991) is similar to the pattern-recognition techniques
described in Section 5.3. Berkooz [1991a] suggested a rigorous procedure
that allows the extraction of moving structures without the need to change
to a moving reference frame. This is done through the use of third-order
statistics. Berkooz (1991a) also provides a procedure that determines
whether the signal can be viewed as a small perturbation of a moving
structure.

A 2-D model involving the incompressible Navier-Stokes equations with
spatially periodic forcing (the Kolmogorov flow) was also studied by
Sirovich’s group (Platt ct al 1991). While they did not usc the POD,
their Poincaré sections and phase-space reconstructions show evidence
of intermittent events somewhat similar to the boundary-layer bursts.
Nicolaenko & She (1990) have made similar observations.

4. POD IN DYNAMICAL MODELING

From our (biased) viewpoint we feet that dynamical modeling is perhaps
the most innovative recent use of the POD and of the most interest in the
context of the dynamics of coherent structures. We make a distinction
between two types of applications: a direct or exact simulation, and a
model-based simulation. In the former, one performs a Galerkin projection
and the unresolved modes are neglected with the assumption that they are
irrelevant to the dynamics; thus one typically must retain many modes
le.g. 0(10% even for low Reynolds number turbulence]. In the latter,
however, one accounts for the unresolved modes by some model and so
the dimension can be much reduced. The latter are exactly the type of low-
dimensional models we hope will shed light on the dynamics of coherent
structures in turbulent flows.

4.1 Direct Simulations Using the POD

The motivation behind such studies is the utilization of the fast energy
convergence provided by the POD to get well resolved simulations with a
lower number of modes than a simulation using Fourier or other types of
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standard decompositions. The questions that are normally studied include:
(@) What is the minimal number of modes that reproduces acceptable
dynamics? and (b)) How do bifurcation sequences differ between a POD
simulation and a regular one? Questions relating to dimension are also of
interest. Observe that, although the idea of an exact simulation with a
smaller (compared to standard) number of modes may seem appealing,
the effect of the smaller number may be lost if one is interested in a
direct numerical simulation of turbulence since the POD eigenfunctions, in
general, are not suited for FFT-type algorithms which offer tremendous
savings in computation time.

As we noted in Section 3.4, Sirovich and coworkers (Sirovich 1987,
Rodriguez & Sirovich 1990) have used the Ginzburg-Landau equation as a
mathematical model. They study the eigenfunctions, Lyapunov exponents,
and bifurcations for the simulated systems and show that, for this model
at least, the eigenfunctions change rather slowly with external parameters.
This implies that an empirical basis computed for a particular Reynolds
number will continue to be advantageous in simulations over a range of
Reynolds numbers (see also Chamber et al 1988).

Kirby & Armbruster (1991) performed simulations of the Kuramoto-
Sivashinsky equation. They commented on the need for increased dis-
sipativity in the system to maintain its stability. This fact is well known in
various computational disciplines (Anderson et al 1984) and has recently
been studied from a mathematical point of view by Foias et al (1991).

4.2 Models Based on the POD

The best studied low-dimensional model is that developed by Aubry et al
(1988) for the wall region of a turbulent boundary layer. In this model the
neglected modes are modeled through a Smagorinsky-type sub-grid-scale
model. In addition there is a model that accounts for the evolution of the
local mean velocity profile. An introductory review, with some background
material on dynamical-systems theory and coherent structures is given in
Holmes (1990). Following the original study, which included five (complex)
spanwise Fourier modes, a single (k, = 0) streamwise mode, and a single
family of eigenfunctions in the wall normal direction, several developments
have taken place. Stone (1989) showed that smaller truncations, with 3
and 4 spanwise modes-—and certain larger ones, with additional nontrivial
streamwise modes—continued to exhibit the heteroclinic cycles and burst-
ing behavior characteristic of the unilateral model, which Aubry et al had
shown was remarkably similar to the burst-sweep cycle familiar from
experimental studies. Recently the more detailed studies of Aubry & Sanghi
(1989, 1990) (cf Sanghi & Aubry 1991), which include nontrivial stream-
wise modes, have added weight to these findings. It is worth noting that
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Armbruster et al’s (1988) proof of structural stability of such heteroclinic
cycles in O(2)-symmetric systems provides a mathematical foundation and
does much to explain their robustness and persistence over a range of
parameters and with different truncations (cf Armbruster et al 1989,
Holmes 1991).

Aubry et al (1990) scaled Herzog’s (1986) eigenfunctions in an attempt
to study the effect of boundary-layer modification (by polymer addition
or riblets, for example) and found a general shift of parameter values but
no new dynamical mechanism or structures, in general agreement with the
experimental evidence. Berkooz et al (1991b) in a study prompted by
comments of Moffatt (1990), showed that if the cross stream and stream-
wise velocity components are uncoupled and a dynamical model for-
mulated in which they are allowed to evolve independently, then turbulence
having no streamwise variation will decay, as expected. The important
point is that the decay is not featureless but ghosts of heteroclinic cycles
and the resulting bursting behavior are present. In this study, and in
Holmes et al (1991), it is pointed out that the coupled vector-valued
empirical eigenfunctions that result from direct application of the POD
effectively contain streamwise averages of nontrivial structures in the
k, = 0 streamwise components, and so permit sustained extraction of
energy from the mean flow, and hence sustained turbulence. From this
viewpoint, use of the POD is similar to a closure assumption.

In another development, Stone & Holmes (1990, 1991) showed that
small random and (in some cases) deterministic perturbations, charac-
teristic of coupling to the outer region of the flow, produce distributions
of bursting events having exponential tails similar in nature to those
observed experimentally (c¢f Bogard & Tiederman 1986, Sreenivasan et al
1983, Holmes & Stone 1991). The thesis of Berkooz (1991b) contained a
number of other results related to the original study of Aubry et al (1988).
The most relevant in this context is that the low-dimensional models
reproduce the energy budget of the full system within acceptable bounds.
See also Berkooz et al (1992).

A dynamical model for the jet-annular mixing layer was constructed
along the lines of the model for the wall layer by Glauser, George, and
coworkers (Glauser, et al 1989, 1990; Zheng & Glauser 1990). In Glauser
et al (1989) and Zheng & Glauser (1990) dynamical systems describing the
interaction of the POD eigenfunctions are constructed and simulated.
The result is a nonrecurring system (unlike the wall-layer system) which
corresponds to the physical structures in the jet. Glauser and coworkers
see it as a cascade mechanism.

Sirovich et al (1990c) proposed an ad-hoc approximate inertial manifold
type of approach (Foias et al 1989, Titi 1990, Constantin et al 1989). The
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idea is as follows: suppose that {¢,}2, are the POD eigenfunctions and
we want to resolve only the subset {¢;}/~ ;. Denote by P the projection on
span {¢;}/, and let Q = I— P. Suppose the original equation is # = F(u)
with u = p+¢. We can write

p=PF(p+q),

g =QF(p+qg). 4.1)
The approximate inertial manifold type model is

p = PF[p+®(p)], 4.2
where the function ¢ = ®(p) is obtained by solution of

0=QF(p+9q). 4.3)

The rationale is that unresolved, lower energy modes have a faster time
scale (van Kampen 1985) and their variations are not felt by the p’s.
Sirovich et al (1990c) apply this to a weakly chaotic system with a trun-
cation which is not as severe as the boundary layer or jet models. In general
the algebraic Equation (4.3) is not solved exactly since it may have multiple
solutions and an approximation, or truncation, is used. The results of
application of this approach to the Ginzburg-Landau equation are given
in Sirovich et al (1990c); also see Sirovich (1990).

Finally, we mention the application of the POD to 2-D flows in complex
geometries by Deane et al (1991). They considered flows behind a circular
cylinder and in a channel with spanwise, rectangular grooves and used a
numerically simulated database to produce empirical eigenfunctions which
were in turn used to construct low-dimensional ODE models by Galerkin
projection. They found that 4-8 mode models could capture the initial
(Hopf) bifurcation and loss of stability of the laminar flow rather well,
and that, in the case of the grooved channel, the model performed sat-
isfactorily over a range of Reynolds numbers. The cylinder-wake model
was more limited in this respect, and studies of fully developed turbulent
flows were not carried out for either problem.

5. RELATION TO OTHER TECHNIQUES

In this section we comment on the connection between the POD and
certain other analysis techniques. We start by describing the connection
between the POD and linear stochastic estimation, as applied by Adrian
and coworkers in Adrian (1979), Adrian & Moin (1988), Adrian et al
(1987), and Moin et al (1987). This will lead to relations between the POD
and conditional sampling techniques such as described in Blackwelder &
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Kaplan (1976), Bogard & Tiederman (1986), Johansson & Alfredsson
(1982), Antonia (1981), and references therein. A connection to pattern-
analysis techniques such as Stretch et al (1990), Townsend (1979), and
Ferre & Girlat (1989) will also be discussed. Recently Aubry et al (1991a)
introduced a “new” tool called the bi-orthogonal decomposition.
However, a careful examination of their work reveals that their suggestion
is in fact a specific case of the rather general POD formulated in Section
2.1. We remark that the formulation of the POD and the results above
apply to space, time, or space-time analysis, all depending on the choice
of the averaging operator (or equivalently, the measure) as long as the
assumptions of Section 2.1 are satisfied. A specific choice of averaging
(i.e. a measure concentrated on a finite number of points, as would be
encountered in a computer simulation) will produce the decomposition of
Aubry et al (1991a).

5.1. Linear Stochastic Estimation

Suppose one wanted to find the conditional probability density function
(CPDF) of [u(x){u(x")], where u(x’) may be a multipoint event. For the
sake of simplicity of the exposition, we limit ourselves to single-point scalar
events. There are many good reasons to seek this CPDF, either for closure
models (Pope 1985) or for the sake of producing coherent structures.
Suppose, moreover, that one seeks an estimate linear in #(x"), i.e. instead
of the full CPDF we want some representative value which would be our
best estimate in a sense which we will define below. This is called a linear
stochastic estimate. We outline the method of linear stochastic estimation
since it is simple and enlightening. We are seeking A(x,x’) such that
A(x, xyu(x") will be the estimate for u(x), and we want to find A4(x, x")
such that

min Ju(x)— ¥ (x, x)u(x)|> (5.1)
is achieved by A(x, x"). We use the calculus of variations [as in the deri-

vation of (2.2) from (2.1), cf Berkooz 1991b]. A necessary condition will
be that, for any V(x, x"), we have

d
75 () =140, X) 40V (x, X)) (X ) s = 0. (5.2)

The expression inside the averaging brackets is equal to

{u(x)—[A(x, x)+ 3V (x,x)]  u(x)} *
(15 (0) = [A*(x, %)+ 5V *(x, x)] (6} (5.3)
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After taking the average of (5.2), differentiating w.r.t.  and evaluating at
¢ = 0, and equating to zcro we get

2Real [V*(x, x):{u(x)u*(x"))] =
2Real {V*(x, x"):{[A(x, x’)u(x’)]u*(x’)?}, 5.4)

where : denotes the usual tensor contraction. Therefore we require

u(xyu*(x)y = A(x, x)* Cu(x"yu*(x’)), (5.5)
and this implies
A(x, x7) = ulx)u*(x)> * ulxYu*(x)y ’ (5.6)

It is natural to ask whether <u(x")u*(x’})) is invertible at every point x” (in
the vector case). One can convince oneself that this should typically be the
case for a turbulent system. Since here we treat u as a scalar, the inverse
of {u(x"u*(x")) 1s just a division.

In (5.6) the average two-point correlation tensor R(x, x’) of Section 2.1
appears with some normalization. Results of Adrian (1979) show that the
corrections to the CPDF due to higher order nonlinear terms in u(x") are
small (recall this is the best linear estimate), at least for homogeneous
turbulence. Using our previous results (2.9-2.11) we can write

, X2 40 x)pF(x) & .
A, x) = S T = L S, (5.7
where fi(x") = LpF(x)/Z2 1 4,(d(x")[*. We may interpret fi(x) as the
relative contribution of ¢; to u(x”") on the average. We conclude that linear
stochastic estimation is equivalent to assuming that the estimated value of
the POD coeflicient of the i-th mode, given the velocity at x’, is the average
contribution of the i-th mode to the velocity of x” times the given velocity.
The amazing point is that we get exactly the same result from the sim-
plified PDF model based on the POD introduced at the end of Section 2.6.
There we assumed a; ~ N(0,4,) and that the coefficients a; were
independent. Let us compute the estimator {u(x)|u(x")). Since we have
an expression for the PDF we can compute this explicitly. Recall from
probability theory that if x; ~ N(0,¢2) fori = 1,...,m then

oiC
m 2°
210/

(5.8)

<xilzxj=c>=
j=1

[See the formula for the conditional expectation of joint normal variables
in Feller (1957).] Using (5.8), we have
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Ail (x| u(x")

{ap(x) | -i a¢,(x') = u(x")} = SO (5.9)
which gives
N e 14160 u(x) () i(x)
{u(x)lu(x )} = Zjoz lllj,q&j(-x/)lz -
_ZEAIO)BMuE) 5.10)

2yl l)'jl(/)j(xl)l :

This is exactly the same result obtained from linear stochastic estimation
(Equation 5.7).

We conclude that the simple PDF model suggested at the end of Section
2.6 results in the best linear estimator of the conditional PDF of velocity,
and that linear stochastic estimation may be viewed as a result of the
simple PDF model. This reveals the fundamental connection between the
POD and linear stochastic estimation. Aside from this we can make the
following technical observations based on our previous results:

1. All fields generated by linear stochastic estimation (LSE) possess any
closed linear property that all ensemble members share.

2. Suitable averages of LSE events will produce the POD eigenfunctions.

3. All LSE events are linear combinations of POD eigenfunctions.

Finally we remark that one can apply the geometric result from the POD
of Section 2.5 to obtain bounds on the probability of rare LSE events.

5.2 Conditional Sampling

In this section we indicate a possible connection between the POD and
conditional sampling. This exposition is of a speculative nature which we
hope might encourage further work in the area. The general conditional-
sampling scheme adopted from Antonia (1981) is given in Figure 4. This
scheme may be formulated as

N

R(x,Ax,71;) = %Z c(x, 1) f(x, Ax, t;+ 1)), (5.11)
where ¢(x, t;) is the conditioning function at a point x in space at time ¢
which is 1 if a condition is met and 0 otherwise. Once a condition is met,
a measurement at a possibly different location (given by x4 Ax) and
possibly later in time (7,4 1;) is added to the averaged ensemble. Con-
ditional averaging has been used in the study of turbulent-nonturbulent
interfaces, shear layers perturbed by interaction with another turbulent
field, and quasi-periodic or periodic flows (such as those behind a turbine),
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Figure 4 The general scheme of conditional sampling (from Antonia 1981).

and for the study of coherent structures. Our primary interest is in the
study of coherent structures. Conditional sampling applied to coherent
structures is largely an art: The experimentalist has freedom in defining
the threshold and detection criteria and the quantity to be measured. The
subjectivity of this procedure may lead to detection of fictitious structures
in featureless random fields (Blackwelder & Kaplan 1976) or may yield
the wrong structures (Lumiey 1981). This subjectivity precludes the possi-
bility of a rigorous analytic connection, since the POD does not offer this
kind of freedom. However, one can study the compatibility between the
simple PDF model based on the POD and the results of a conditional-
sampling study. This is done through the results on linear stochastic
estimation presented in Section 5.1 above. Two comments are in order.
First, in order to treat conditional sampling in its full generality, one would
have to perform a space-time POD—otherwise the comparison will be
limited to conditional sampling with no time delays. Second, the two very
strong assumptions made in the process of establishing the correspondence
through LSE, namely the independent normal distributions for POD ran-
dom coeflicients and the adequacy of stochastic linear estimations, will
prevent us from obtaining decisive conclusions in case of a mismatch.
On the other hand, showing such a compatibility would be a welcome
contribution to the relation between average quantities such as the POD
eigenfunctions and average dynamics of coherent structures. References
on conditional sampling are Blackwelder & Kaplan (1976), Bogard &
Tiederman (1986), Johnansson & Alfredsson (1982), in addition to the
survey paper by Antonia (1981) already referred to, and references therein.

Note that the natural combination of the POD and conditional sampling
into a conditional POD based on the condition functions currently used
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might be very illuminating. These conditions also have an interpretation
as conditions in phase space and thus are related to the conditional POD
mentioned in Section 2.6. Such a combination would give a detailed kine-
matical description of important processes. If a time-delayed conditional
POD were applied, the results might be compared to results of low-
dimensional models such as those reviewed in Section 4, thus yielding
insight on the dynamics and a comparison for low-dimensional exper-
imental data.

5.3 Pattern-Recognition Techniques

In this section we indicate a second possible connection between the POD
and pattern-recognition techniques. As above, this section is of a specu-
lative nature. With the advent of digital image processing, pattern rec-
ognition has become a vast field (Rosenfeld & Kak 1982). We limit our-
selves to the relatively basic procedures used in fluid problems by Stretch et
al (1990), Townsend (1979), and Ferre & Girlat (1989). Coherent structures
were originally identified in flow visualization. The quest for a quantitative
procedure for extracting coherent structures and their dynamics is still a
subject of research. Pattern-recognition techniques are designed to mimic
the human capability of detecting patterns in a noisy medium and thus the
hope for their successful application to the task of identifying structures
in a flow. We remark that Sirovich & Kirby (1987) (cf Kirby & Sirovich
1990) have applied the POD procedure directly to reconstruction of images
(of human faces); but the feature-extraction method to be discussed below
is somewhat different in spirit.

The basic procedure is as follows: One wants to identify a recurrent
pattern in a noisy medium. First one picks a template size and fills it with
what is conjectured to look like the coherent structures. The template is
then moved around in the data sct and after each movement a correlation
is computed. Every time the corrclation attains a local maximum the
corresponding pattern is added to the ensemble, which is averaged to
produce a modified reference template. This process is repeated until the
template undergoes insignificant further change. The final template is the
coherent structure. Once the coherent structure is deduced, one attempts
to find regions in space well correlated with this structure and to study
their contribution to various statistics.

This again, is a subjective procedure, although Stretch et al (1990)
suggest it is a robust one, with the final template being practically inde-
pendent of the initial condition. Qur mathematical understanding of the
POD may contribute to a better understanding of the results of pattern-
recognition applications. Observe the similarity in mission between the
pattern-recognition technique and the shot-noise expansion. Both attempt
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to decompose the flow into building blocks (although in pattern rec-
ognition we concentrate on regions of the flow with higher correlation
with the template). This suggests caution in the interpretation of the
resultant template, since, as we saw, any template with a suitable power
spectrum might decompose the flow, with an appropriate sprinkling func-
tion. This fear is accentuated by the fact that Stretch et al (1990) show a
median correlation of only about 0.3. Based on the shot-noise de-
composition one can propose a test for the objectivity of this method to
see how well the basic building block is reproduced. Lumley’s example
(Lumley 1981) is a good starting point for such a quest.

6. DISCUSSION

In this paper we have described the proper orthogonal decomposition
technique and illustrated its use in the analysis and modeling of turbulent
flows. The POD is already a well-established tool for (statistical) data
analysis and in data compression. We have argued that it can also be used
to address two further types of questions, typified by the following: 1.
Given a complex spatio-temporal signal, what can one determine, via the
POD, regarding the system from which it originates? 2. Given a POD-
Galerkin projection of a PDE such as the Navier-Stokes equation and the
resulting finite-dimensional dynamical system, what can one learn about
the behavior of the original PDE? We hope that this paper has convinced
the reader that recent progress in these areas promises as much or more
than the POD has already delivered in its more conventional roles in signal
analysis and data compression.

Given a POD analysis of a black box we can say several things. First of
all we can determine whether the system exhibits equipartition of energy
between diflerent modes. This is immediately apparent from looking at
the POD spectrum. If it is a decaying spectrum the system is not equi-
partitioned and the notion of “more cnergetic” and “less energetic” modes
is meaningful. We can then use finer results (Proposition 2.7 and 2.8) to
examine whether the dynamics could have been generated by a compact
attractor in phase space. Looking for symmetries (or invariance properties)
and using Proposition 2.6 one can, potentially, detect symmetries in the
system which might not be apparent otherwise. If the POD eigenfunctions
of a given system all share some linear property, using Corollary 2.2 one
can deduce that the system as a whole has that property. For example, if
measuring in a turbulent flow, say in air, where it is not obvious whether
incompressibility is satisfied, a POD analysis will tell us whether the tur-
bulence is divergence free and, if not, to what extent it is not so.

Given a POD analysis which suggests more energetic and less energetic
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modes and the equations of motion one can study the question of the
interaction of energetic modes or coherent structures. This is done along
the lines of the dynamical studies of the models described in Section 4.2.
Note that a successful study is liable to require some physical under-
standing of the system, although there are some promising mathematical

approaches too.
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