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Intrinsic dimension of a dataset: what properties does one exp&e

Vladimir Pestov

Abstract— We propose an axiomatic approach to the concept could — in one form or other — eventually become very
of an intrinsic dimension of a dataset, based on a viewpoint yseful in principal manifold theory. We describe this natio
of geometry of high-dimensional structures. Our first axiom due to Gromov [5], and state the second axiom: if the

postulates that high values of dimension be indicative of th G dist bet W . Il their intrinsi
presence of the curse of dimensionality (in a certain preces romov distance between two spaces IS smail, their Inarinsi

mathematical sense). The second axiom requires the dimensi  dimensions should be close to each other.

to depend smoothly on a distance between datasets (so thaeth ~ The third axiom serves a normalization purpose by stating
dimension of a dataset and that of an approximating principd  that the intrinsic dimension of the Euclidean sphére
manifold would be close to each other). The third axiom is should be on the order of.

a normalization condition: the dimension of the Euclidean Paradoxicall di . f fi f th ted
n-sphere S™ is ©(n). We give an example of a dimension aradoxically, any dimension function of the suggeste

function satisfying our axioms, even though it is in generatom- ~ Kind always assigns to a singleton the valieo, however
putationally unfeasible, and discuss a computationally ckap this does not lead to any problems or contradictions.
fqnctior) sati;fying most but not all of our axioms (the “intrinsic We give an example of a dimension function satisfying
dimensionality” of Chavez et al.) the axioms, and compute its values for the sphé&esin
general, however, this function is computationally uniielas
We discuss in this connection the “intrinsic dimensiomyalit
A search for the “right” concept of intrinsic dimensionby Chavezet al, easy to compute and already having uses
of a dataset is not yet over, and most probably one wilh data engineering [3], which satisfies some, but not all, of
have to settle for a spectrum of various dimensions, eadur axioms.
serving a particular purpose, complementing each othér. (C
[2], 131, [4], [6], [14], [15], [16], and references therejrAt Il. PRELIMINARIES
the same time, it is quite clear that the word “dimensionA. Metric spaces with measure as models for datasets
has a rather specific meaning in this context. High values A geometric model for a dataset [11], [12] is raetric
of dimension are invariably associated with the curse afpace with measuf@0], [5], that is, a triple(X, d, 1), where
dimensionality, while the low values are expected to C(DntaiX is a set equipped with a metricand a probabi”ty measure
useful information, for instance, about a non-linear maldif distribution L. Sometimem is thought of as an under|ying
approximating the dataset. Is it too much to expect of gistribution for the actual set of data, else one can associa
dimension function? to X the normalized counting measumé¢A) = #(A)/4(X).
Here we are trying to address the problem of existence |n some situations, especially in sequence-based biology,
of dimension functions making sense for all datasets angimetricd has to be replaced with a more general similarity
satisfying the above two requirements, within the contsin measure between datapoints, such as a quasimetric [13].
of a certain mathematical model. Datasets are modelled %y ] ) ]
space€ X, d, ) equipped with a distanagand a probability B- 1-Lipschitz functions as models for features
distribution 1, while features of datasets correspondito Featuresof datasets correspond in the above setting to
Lipschitz (non-expanding) functiong on X. The curse of functionsf on X taking values in the real numbers, the Eu-
dimensionality describes a situation where the features aclidean space, or another target space (such as e.g. atéiscre
sharply concentrated around their means. In geometricsternset). The features are assumed to depend smoothly on the
one speaks here of the phenomenon of concentration of melistance between datapoints. After a suitable normatinati
sure on high-dimensional structures [12]. This phenomename can usually assume such a functipno bel-Lipschitz:
admits well-understood quantitative measures [10], [B], [ for all z,y € X, one has
which enable us to express in precise mathematical terms

I. INTRODUCTION

the following condition on an instrinsic dimension functio f(@) = )] < dlz,y).
high values of dimension are indicative of the presence dfhe features are in a sense the “observable quantities” of a
the curse of dimensionality. dataset.

Geometry of high dimensions (asymptotic geometric anal- . )
ysis) has in store a concept of a distance between spaes©Pservable diameter and concentration phenomenon
with metric and measureX and Y, which, in our view, The curse of dimensionality is a name given to the
o o ' ‘ situation where all or some of the important features of
Viadimir Pestov is with the Department of Mathematics andtiSlics, 5 dataset sharply concentrate near their median (or mean)
University of Ottawa, 585 King Edward Avenue, Ottawa, OiotakK1N L .
6N5 Canada (phone: 613-562-5800 ext. 3523, fax: 613-56B58mail: values and thus become non-discriminating. In such cases,
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of circumstances covers a whole range of well-known higt T A TS
dimensional phenomena such as for instance sparseness / \ / BT \
points (the distance to the nearest neighbour is comparal /- ~ LA 1 R
to the average distance between two points [1]), etc. |
has been argued in [12] that a mathematical counterpart . : : e
the curse of dimensionality is the well-knowoncentration % e
phenomenoif9], [7], which can be expressed, for instance. L /
using Gromov's concept of thebservable diametef5].

Let (X, d, 1) be a metric space with measure, anddet
0 be a small fixed threshold value. Théservable diameter
of X is the smallest real numbeb = ObsDiam,, (X), with
the following property: for every two points, y, randomly
drawn from X with regard to the measure, and for any
given 1-Lipschitz function f: X — R (a feature), the
probability of the event that values ¢f at = and y differ
by more thanD is below the threshold value:

P — >D .
[|f(x) f(y)| - ] <K Fig. 1. Observable diameter of the sphéfg n = 3,10, 100, 2500.
Informally, the observable diamet&bsDiam, (X) is the
size of a datasefX as perceived by us through a serieqD Concentration function
of randomized measurements using arbitrary features and ) ) .
continuing until the probability to improve on the previous A convenient way to quantify the concentration phe-

observation gets too small. The observable diameter fites [it"OMenon is provided by theoncentration functiona(c), of
(logarithmic) sensitivity tos. a space(X, d, ) [10], [7]. Here is a definition in terms of

features {-Lipschitz functions). Denote by/; the median

The characteristic siz&CharSize (X) of X as the median ) .
arSize (X) value of a functionf, that is, a number such that

value of distances between two elementsXofThe concen-
tration of measure phenomenon refers to the observatian th 1

" . ) . e X: ) > M > =, € X: < M} >
“natural” families of geometric object§X,,) often satisfy Ma{x flo) = My} = 2 e flo) < My} =

1
2
Now seta(0) = 1, and for everye > 0

ale) =suppuf{r e X: f(x) > My +e}, 1)
A family of spaces with metric and measure having the above

. , . Where the supremum is taken over &lLipschitz real-valued
property is called a&vy family Here the parameter usually functions onX. Thus, the valuex(e) of the concentration
corresponds to dimension of an object defined in one ) '

Fo. ) -
another sense. inction gives an upper bound on the probability of a large

deviation of any feature from its median. Equivalently,
For the Euclidean sphereés® of unit radius, equipped y d y

with the usual Euclidean distance and the (unique) rotation a(e) =1 —inf u(A,),
invariant probability measure, one h@aarSize(S") — v/2, . .
while ObsDiam(S") = O(1/y/n). Fig. 1 shovés o)bservable where A, denotes the-neighbourhood ofd in X (the set of

diameters (indicated by inner circles) corresponding ® tha" @ at a distance< £ to some point ind), and the infimum

threshold valuex = 10~'° of spheresS™ in dimensions '° taken over all subsetd C X satisfyingy(A) > > _
n — 3,10,100,2500, along with projections to the two- A family (X,) of spaces with metric and measure is a
dimensional screen of randomly sampled 1000 points. ~ -€VY family as defined in Subsection II-C if and only if
. , . the values of concentration functionsy, (¢) converge to
Other important examples of Lévy families [10], [7], [5] N n .
include: (i) Hamming cube(0,1}" of two-bit n-strings zero pointwise for every > 0. Concentration functions of

equipped with the normalized Hamming distante, ) — spheres in various dimensions are shown in Fig. 2.

%ﬂ{z’: o; # 7;} and the counting measure; (ii) groufi§ (n) E. Gromov distance
of special unitaryn x n matrices, with the geodesic distance

?F.‘d Haar measure (unique invariant probability measurei)rietric and measure as introduced by Gromov [5], p. 200.
(iify any family of expander graphs ([5], p. 197) with the Recall that theHausdorff distancéetween two subsetd

normalized counting measure on the set of vertices and tgﬁdB of a metric spacéX, d) is the smallest > 0 with

path metric. _ _ " the property
Any dataset whose observable diameter is small relative to

the characteristic size will be suffering from dimensiatyal
curse. (Thee-neighbourhoodA., of A was defined above in 11-D.)

ObsDiam, (X)) < CharSize (X,) asn — oo.

We proceed to describe a distance between spaces with

ACB,andB C A..
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Fig. 3. To the concept of Gromov’s distance

Fig. 2. Concentration functions of a-spheres for various

set of measure- 1 —2ax (¢), which is close tal already for

_ small values ot > 0. Consequently, the Hausdorff distance
Let (X, dx, ux) and(Y, dy, jiy') be two spaces with met- petweenLip, (X) and the set of functions ofi} (that is,
ric and measure. Denote fip, (X) andLip, (Y') the spaces gnstant functions) is close to zero.

of 1-Lipschitz real-valued functions (i.e., features) &nand
onY, respectively. Informally, the Gromov distance between . M AIN RESULTS
X andY is the Hausdorff distance betwedlip, (X) and A. Axiomatic approach to intrinsic dimension

Lip,(X). Of course, in_ order to measure |t one needs t0 [ et be a function assigning to every spdce, d, 1) with

pull back” all the functions to a common third space.  metric and measure either a non-negative real number or the
This space is the function space on the unit intefal].  symbol 0. We will say thatd is anintrinsic dimension

It is a standard result in measure theory that every measy{gctionif it satisfies the following three axioms.

space(X, 1) (under mild restrictions met e.g. by every space 1) axiom of concentrationfor a family (X,,) of spaces

with metric and measure) admitsparametrization that is, ~with metric and measure)(X,,) 1 oo if and only if (X,,)

a mappingg: [0,1] — X with the property: for allA C X,  forms a Lévy family.

1(A) equals the Lebesgue measurepof (A). For instance,  This axiom formalizes a requirement that the intrinsic

if X is a finite set with the normalized counting measuregimension is high if and only if a dataset suffers from the
then ¢ would be a function taking a constant values X curse of dimensionality.

on each ofn = §(X) intervals of equal measure. 2) axiom of smooth dependence on datasets:
Choose parametrizatiogsfor X ands for Y, and denote 4,,,..(X,,, X) — 0, thend(X,,) — 9(X).
¢* Lip, (X) the set of all functions of the fornf o ¢, f € This axiom is necessary to assure that if a datdéds
Lip,(X), and similarly)*Lip, (Y). Both ¢*Lip,(X) and well-approximated by a non-linear manifolt/, then the
»*Lip, (Y') are subspaces of the spach0, 1) of integrable instrinsic dimension ofX is close to that of\/.
functions on the unit interval. Equip the latter space wit t  3) axiom of normalizationd(S") = ©(n).t
following metric, determining theonvergence in measure:  This axiom serves to properly calibrate the values of the
. intrinsic dimension.

mer (f, g) = inf{e > 0: pfz: [[(2) —g(x) > e} < £} Remark 2:Instead of spheres, one can use normalized

Now the Gromov distanc@..,.(X,Y) is the infimum of hypercubes, Hamming cubes, Euclidean spaces with standard

Hausdorff distances between the subse¢t€ip,(X) and Gaussian distribution, etc. — it can be proved that each of

»*Lip,(Y), taken over all possible parametrizatiopsand these families results in an equivalent definition.

%- Fig. 3 illlustrates the.concelzpt. ) The axioms immediately lead to a paradoxical conclusion.
_ Theorem 1 (Gromov,)Afamﬂy (_X") of spaces with met- Since the Euclidean spheré&®' of radius one with the

ne and Mmeasure 1s a Levy_fam||y if and only.,, converges qaiion-invariant probability measure form a Lévy faynil

n _T_T]e d'ftancejcé’"c 0 a.smgleto_n{*l}. in G . [10], [5], they converge to a singletofx} with regard to
_'nheclosera atasQf IS tq asing eton{.*} In BSIOMOV'S  5romov’s distance, and Axioms 1 and 2 (or3) imply that

distance, the higher its intrinsic dimensionality is ane th

more it resembles a “black hole” from the viewpoint of data I({*}) = +oc.
analysis, becausa| the features simultenaously become less

L B _ _
and less discriminaing. This reflects the fact that on a spag Recall thatf(n) = ©(g(n)) If there exist constantd < c < ¢’ and

€SS discrimin. _ RN with c|£(n)| < |g(n)| < C|f(n)| for all n > N. One says that the
of high intrinsic dimension the features arecontant on a functions f andg asymptotically have the same order of magnitude.



The converse is also true. LéK, d, u) be a space with One can modify this example and obtain a Lévy family
metric and measure such that the support.da$ all of X. of spaces with vanishing concentration dimension. Stilt, f
Theorem 3:Let 0 be an intrinsic dimension function. al _pr_gctic_al purposes it is more convenient t_o assume the

definition in Eq. (3) and restrict it to spaces with integeabl

Thend(X) = +oc if and only if X is a singleton X = {«}. concentration function (including, for instance, all c
Proof: If 0(X) = +oo, then the constant sequence ! unction (including, ! ’ M

X, = X is a Lévy sequence, and $obsDiam (X)) = 0. Wltgvgﬁui??ﬁg ::noerfgg).t of concentration dimension is intro-
This is only possible whep is Dirac’s point mass. ] P

Thus, the one and only infinite-dimensional object in gluced here for the first time, some known results can be
theory is a single point! This paradox seems to be unaVoiéle_:formulated in such a way as to underscore its theoretical

able if one wants a notion of intrinsic dimension capable Orrel?lvsnce. Pargcufltar mstacr:ceﬁhof thﬁ .fOHO\éV.'frf]g thi:(érem a
detecting the curse of dimensionality, however it does n eli-known and often used, athougnh In a diflerent disguise

seem to lead to any problems or inconveniences. cf_.”[110], P 2(.)%,hso wed!eave t(rj]ethproof out. f1aLipschit
Perhaps even more surprising is the fact that a dimensi?l? eorem ©b.The median an € mean ot faLipschitz

; oy - ; nction f on a spacg X, d, u) differ between themselves
function satisfying the above requirements actually sxist :
unct Isfying ve requl Haly exi by at mostl/+/dim, (X) (in the sense of Eq. (3)). [ ]

B. Example: concentration dimension Euclidean sphereS™ of unit radius are among very few
For an space with metric and measusé, d, x1), define concrete families of geometric objects for which the exact
values ofdim, can be computed. (Cf. Fig. 4.)

1
dim, (X) = 5 (2)
{2 fol ax(g) de} 140
We call dim, (X) the concentration dimensioof X. 120 1
Theorem 4:The functiondim,, is an intrinsic dimension
function. 100 1

Proof: Axiom 1 follows at once from a standard
result in Real Analysis (Lebesgue’s Dominated Convergenc
Theorem). Axiom 2 involves a geometrical argument, to be:
published elsewhere. Axiom 3 is based on results obtaine§
decades ago by Paul Lévy [8] (cf. also [10], [7]). The
inequality’ dim,(S") = Q(n) follows from a standard
Gaussian upper bound on the concentration function of the =
sphere [10], [7]

asn (g) < O exp(—Cae’n). n

80

tior(Bimension

60

110

On the other hand, the value of concentration functign(e) Fig. 4. Concentration dimension efspheres for al2 < n < 101.

is the relativen-volume of a spherical cap of height— ¢,

and Lévy’s calculations show that in order for a spheriegd ¢ =~ Example 7:Let

to keep a constant relative volume :as— oo, the height of — - 9 9

such a cap should be on the ordes 1 — ©(1/\/n). This ~ Si = {eeR"™ oy =i, 2y +as+... +a, =1}
suffices to obtain the other inequalitfim,(S") = O(n). B \here; = 0, 1, be two copies of the unit spheg& ! sitting

Remark 5:0ne can replacé with any fixed real number jnsideR"+! at a distancd from and parallel to each other.
L > 0 as the upper limit of integration in Eq. (2). It would consider their union

be more natural to integrate tooo and set

. 1 X" =s57tusth
dim, (X) = T o . 42 (3) :
[2 fO a(g) dg} (Cf F|g 5)

however Axiom 1 will no longer hold. LeX = [1, +0) be a X .
semi-infinite interval with the usual distandér, y) = |z—y| & Ly e e
and probability density(x) = 1/22. Now one has X A . projection

1 [

ax (E) - 9 ¥ E’ < : —
| i X
SO fooo ax (g) de diverges to infinity. The concentration di- !
mension of such a space in the sense of Eq. (3) is zero. 1 .
So . Sy

2Recall thatf(n) = Q(g(n)) if for a constantC' > 0 and a naturalV
one hag f(n)| > C|g(n)| for all n > N. Itis easy to see that the condition ]
f = ©(g) is equivalent to the conjunction of = O(g) and f = Q(g). Fig. 5. The spaceX™ from Example 7.



Equip X™ with the Euclidean distance coming fraRr+! Theorem 8:The intrinsic dimensionality of Chave al.

and define a probability measuge as follows: u(A) =  satisfies:
pnSETI N A) + ptmD(STT N A). (Heren(" Y is the « a weaker version of Axiom 1: if(X,,dy,, u,) is a
rotation-invariant measure df'~'.) Levy family of spaces with bounded metrics, then

Among all subsetsA of measure> i, those whose:- dimgise (X, {x}) — 00,
neighbourhoods have the smallest measure are exactly thg A weaker version of Axiom 2: if deope(Xn, X) — 0
spheress!' ', i = 0, 1, which form two well-separated clus- andm(d,) — m(d), thendimais (X,) — dimaise (X),
ters insideX™. The concentration function ok " satisfies « Axiom 3.

axn(e) = { év Icf)tr?ei\/&isge L, ~ Proof: For the first property, notice that tX,) is a
' Lévy family, then so i X,, x X,,), and the distance function

anddim..,.(X™) = 1 for all n, another type of paradoxical d,, concentrates near its median value, which can be replaced
behaviour! with the mean value by Theorem 6.

This agrees with the fact that the sph&® ! of high The second property follows immediately from a similar

dimension is close (in the Gromov distance) to a singletomproperty of the concentration dimension, while the proof of
and thereforeX™ is close to the two-point spacf),1}. Axiom 3 uses symmetries of the sphere and is similar to the
A low value of the concentration dimension indicates th@roof of Axiom 3 for the concentration dimension. H
existence of a well-separating feature: the first coor@inat Remark 9:For a singleton Eq. (4) returr% and this value
projectionX™ — {0,1}. is genuinely undefined. Indeed, denoteddy,y a space with

N points at a distance of from each other, equipped with

C. The intrinsic dimensionality of Glvez et al. ) i ;
L . . o ._the normalized counting measure. It is easy to see that
The following interesting version of intrinsic dimension

was proposed by Chaveat al. [3] who called it simply dimgiss(eXn) = O(N) — 400 as N — oo.
intrinsic dimensionality The concept explores a well-known
property of high-dimensional spaces: the values of digancVWhen ¢ — 0, each of the spacesXy converges to a

between points are sharply concentrated near one value (f{ggléton in Gromov's distance, and so one cannot assign
characteristic size o), cf. Fig. 6. any particular value to the intrinsic dimensidim g;s;({*}).

This difference in behaviour is due to the fact that the
A intrinsic dimensionality is not an exact analogue of our-con
° centration dimension, but rather of its normalized anaéogu
: dimeone(X) x CharSize(X)2.

Example 10:The concentration function of the space
Xy =1-Xy as above is easy to compute:

Lo ife<i,
O‘XN@:{S if &> 1

and sodim.,,.(Xx) = 1 for every N. At the same time,
dimg;s¢(Xn) — o0, even asCharSize (Xn) = O(1).

One can argue that in Example 10 the intrinsic dimension-
ality of Chavezet al. gives away more useful information
than the concentration dimension, because the spages
" are often used to illustrate the curse of dimensionalityhi t
context of similarity search as a toy example [1]. This case,
which may or may not qualify as a genuine specimen of the
“curse of dimensionality” (when finding nearest neighbours

] o i ] ) is easy, it just just outputting them all that is expensivg),
Fig. 6. Distribution of distances between randomly chosainspof points

in the unit hypercubecub&’, n = 3,10, 100, 1000. (Each histogram is indeed missed by Ow a_lpp_roac_:h. ) .
based on a random sample of 10,000 pairs.) Example 11:The intrinsic dimensionality of the spaces

X" from Example 7 (cf. Fig. 5) is uniformly bounded over
Let (X, d, 1) be a space with metric and measure. Denotgll 5. Indeed, the mean distance between two random points
by m(d) the mean of the distance functieh X x X — 2 y € X" goes toy/2 asn — oo providedz, y are from the
R on the spaceX x X with the product measure. Assumesame sphere, and tg3 otherwise. Since the two events are
m(d) < oo. (This is not always the case: consider the spacgquiprobablen(d) — (V3 + v/2)/2. Similarly, o%(d) —
from Remark 5.) Letr(d) be the standard deviation of the (/3 — \/2)2/4, and
same function. The intrinsic dimensionality &f is defined

as 2(4
dimgisr (X) = 2”;2((d))

V3+V2
V3 -2

2
dimg;e (X") — ( ) ~ 97.99 asn — oo.

: (4)



TABLE |
ESTIMATES OF INTRINSIC DIMENSIONALITY OF SPACESX™ FROMEX. 7

10
34.0

30
61.7

100
83.5

1000
96.3

5000
97.7

n
dimg;s (X™)

6.7 | 11.2

See Table | for estimates afimg;s:(X™) for selected

theory of indexing for similarity search may consist of
distance functions to points.) Developing a corresponding
concept of an intrinsic dimension function may solve both of
the above problems, and here [3] can serve as an important
case study.

We also discuss the Gromov distance between spaces with
metric and measure. This distanger seis computationally
even harder to estimate. However, notice that any intrinsic

values ofn, based on the distance distribution of randomlgimension function gives at least a qualitative estimate on

sampled3 - 10° pairs (elements oK™ x X™). Keep in mind
that the topological dimension oK™ is n — 1, while the
concentration dimension ik.

D. Some other approaches to instrinsic dimension

the closeness of a datasgtto the one-point spacé«}. A
similar estimate would be much more interesting and useful
were a singleton replaced by a two point, or, better still, a
k point space (i.e., a singular principal manifold). This s a
obvious next step to explore. Very likely, such estimates ar

The approaches to intrinsic dimension listed below arglready implicitely present in the great body of existingkvo
all quite different both from our approach and from that obn principal manifolds.

Chavezet al, in that they are set to emulate various version
of topological(i.e. essentially local) dimension. All of them
fail both our Axioms 1 and 2 and satisflim(X") = ©(n)
for the two-sphere spac&”™ from Example 7.

e Correlation dimensionyhich is a computationally effi-
cient version of the box-counting dimension, see [2], [15].

e Packing dimensionor rather its computable version as
proposed and explored in [6].

e Distance exponentl6], which is a version of the well-
known Minkowski dimension.

e An algorithm for estimating the intrinsic dimension

based on the Takens theorem from differential geometry, [14]
¢ A non-local approach to intrinsic dimension estimation3]

based on entropy-theoretic results is proposed in [4], kewe
in case of manifolds the algorithm will still return the
topological dimension, so the same conclusions apply.

IV. CONCLUSIONS

We have proposed a mathematical formalism for dealing]
with intrinsic dimension functions of datasets (as well as
more general geometric objects) satisfying two requirdsien #7]

a high intrinsic dimension is indicative of the curse o
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