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ABSTRACT

This paper presents a novel approach to image denoising
using adaptive principal components. Our assumptions are
that the image is corrupted by additive white Gaussian noise.
The new denoising technique performs well in terms of im-
age visual fidelity, and in terms of PSNR values, the new
technique compares very well against some of the most re-
cently published denoising algorithms.

1. INTRODUCTION

This paper investigates the problem of image denoising when
the image is corrupted by additive white Gaussian noise,
which is a valid assumption for images obtained through
scanning or other image capturing devices. A lot of work
on noise reduction is based on wavelet thresholding [1], a
simple and very effective denoising method. The basic idea
is to project the noisy signal onto a properly selected or-
thogonal set of basis functions, such that the high frequency
coefficients are mostly due to noise. Then, the small high
frequency coefficients can be safely set to zero, preserving
the structure of the original signal, while removing noise.
Finding the best signal representation and the proper thresh-
old is discussed in detail in [2].

A large percentage of the image denoising algorithms
assume an orthogonal basis decomposition of the signal.
While this may be an efficient way to decompose the im-
age for compression purposes, several authors [3, 4, 5] have
shown that an over-complete representation of the signal
is superior for image denoising. The main advantage of
over-complete expansion is summarized by [3] as a sup-
pression of the Gibbs phenomena. In [3] the Translation-
Invariant denoising algorithm is achieved by shifting the
signal multiple times, denoising each shifted signal sep-
arately (using orthogonal decompositions for each shift),
shifting back and then averaging the results. When denois-
ing shifted versions of the signal, edge artifacts occur at
different locations. When the signals are shifted back and
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averaged these edge artifacts are averaged as well. The au-
thors of [3] showed that a uniform thresholding in a Trans-
lation Invariant denoising does well in eliminating some of
the edge artifacts seen in orthogonal wavelet denoising.

The authors in [5] extend the idea of [3] by simultane-
ously processing all the shifted versions to obtain more ac-
curate statistical models for signal components. The work
of [4] extends the idea of wavelet thresholding to an adap-
tive wavelet thresholding method based on context model-
ing. Each wavelet coefficient is modeled as a random vari-
able of a generalized Gaussian distribution with an unknown
parameter. Experimentally, their adaptive thresholding us-
ing shift-invariant non-subsampled wavelet transform (SI-
AdaptShrink) is one of the best denoising algorithms.

All denoising algorithms reviewed are some form of a
low pass filter. The assumption is that noise is captured
by the high frequency coefficients and by filtering these co-
efficients the unwanted noise is removed. Unfortunately,
edges also have high frequency components and by remov-
ing noise, high frequency components belonging to edges
are also removed. This is accentuated when using separable
wavelets, as is the case with most denoising algorithms in
literature. By generating 2-D basis sets, which have vec-
tors lined up along edges, and not across them, the high fre-
quency coefficients caused by edges are much smaller. This
in turn improves the denoising algorithm. The selection of
2-D locally adaptive basis sets is the main contribution of
this paper.

2. THE ALGORITHM

Signal decompositions based on edge direction [6] decom-
pose an image, based on both scale and local edge direction,
using steerable filters. Our approach uses principal compo-
nents (PC) on local image patches to derive a 2-D, locally
adaptive basis set. The local principal components provide
the best local1 basis set and the largest eigenvector is in the

1The basis set minimizes the sum of the squares of the errors between
the firstN basis and a set of training vectors,S, representative of the local



direction of the local image edge. As it will be shown, this
new basis decomposition is more efficient at reducing white
Gaussian noise than using a wavelet decomposition. This
is especially true for highly structured regions, such as the
stripes onbarb, where the local edge direction can be es-
timated much better. The idea behind Gaussian image de-
noising is to decompose the local signal using the locally
adapted principal components (PC), threshold the coeffi-
cients, and then reconstruct. Our approach is similar to [7],
except that we use principal components instead of inde-
pendent components and the local basis functions are deter-
mined adaptively from the local image patches as opposed
to being fixed for the entire image and then being applied
adaptively to local image patches, as in [7].

Our image model is based on adaptively determining the
best local basis and this means that PCs are recalculated at
different image locations. To denoise an entire image all
the patches that make up the image are denoised separately.
The noisy image is given by

y = x + n; (1)

wheren � N (0; �2) is zero mean, white Gaussian noise
with unknown variance�2. The locally adaptive basis func-
tions are the principal components ofS, whereS contains
a local collection of noisy image blocks,y

i
, with 1 � i �

M . Noise removal is done by decomposing the signal into
the local principal components, estimating the clean coeffi-
cients, and reconstructing. The approach to estimating the
clean transform coefficients from the noisy ones follows the
approach of [8] for estimating the clean wavelet coefficients
from the noisy ones. In particular, the clean PC transform
coefficients are obtained using an optimal LMMSE.

The noise variance�2 is estimated, as in [9], using the
robust median estimator of the highest sub-band of a Daubechies
Two wavelet transform:

�̂ =
Median(HH)

0:6745
; (2)

whereHH are the high-high band wavelet coefficients. This
approach of estimating�2 is also used in [4]. An alternative
approach is to let�2 = Variance(HH). Even better, is to
use the local basis decomposition and look at the transform
coefficients in the direction of the smallest principal com-
ponents ofS. Next, letxl

i
be the transform coefficient of

vectorxi in the direction of thelth principal components of
S (i.e. the projection ofxi onto thelth principal compo-
nent), and similarly foryl

i
with vectory

i
, andnl

i
with vector

ni. Then
yl
i
= xl

i
+ nl

i
; (3)

wherenl
i
� N (0; �2). Recall that since the noise samples

are independent and identically distributed (i.i.d.) Gaussian,
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Fig. 1. Description of the denoising process. Denoising is
done for each patch, labeled “’Denoise” using the PC de-
noising algorithm. Training set for determining the princi-
pal components is generated from the patch labeled “Train”.
The “Denoise” patches are overlapped in the dark region la-
beled “Overlap” in order to eliminate blocking artifacts.

decomposing the signaly
i

using the PC basis preserves the
statistical independence and statistical properties of the co-
efficientsnl

i
. Next, the PC coefficientsxl

i
are modeled as

realizations ofN (0; �2
l
) and for clarity the superscriptl is

dropped from the notation. The LMMSE estimator forxi
is:

x̂i = k � yi; (4)

wherek is constant. Forcing the orthogonality condition
E
�
(xi � x̂i)y

T

i

�
= 0 the estimate fork is:

k =
E [xiyi]

E [y2
i
]

=
E [xi(xi + ni)]

E [(xi + ni)2]
: (5)

With ni independent ofxi, E[xini] = E[xi]E[ni] = 0 and
equation (5) becomes:

k =
E
�
x2
i

�
E [x2

i
] +E [n2

i
]
=

�2
l

�2
l
+ �2

(6)

and the LMMSE estimator of equation (4) is

x̂i =
�2
l

�2
l
+ �2

� yi (7)

The variance ofxi is estimated using the maximum likeli-
hood estimator given in [4]:

�̂2
l
= max

"
0;

1

M

MX
i=1

y2i � �2

#
; (8)

whereM is the number of training vectors in setS. (Recall
that in equation (8), yi is yl

i
but the superscriptl is left out

for clarity.)
Starting with a noisy image, the complete denoising al-

gorithm is:

1. Estimate the noise variance,�2, using equation (2).



2. Partition the image into overlapping patches as shown
on the left side of Fig.1. Each patch, depicted on the
right side of Fig.1, contains atrain region, adenoise
regionand anoverlap region. Theoverlap regionis
included in thedenoise region, which is included in
thetrain region.

3. Fix the dimension,N2, of the training vectors and
generateS. The training vectors areN �N patches,
reordered in anN2 long vector, and the training setS
is the collection of all the possibleN �N patches in-
cluded in thetrain region. To be consistent, the num-
ber of training vectors inS is M . The dimension of
S, the matrix formed by ordering the vectors inS as
column vectors, isN2 �M .

4. The PC basis functions are the eigenvectors ofQ =
(SST )�1, which are also the principal components of
S.

5. Forl = 1 : : :N2 andi = 1 : : :M find the PC coeffi-
cientsyl

i
by taking projections of the training vectors

in S onto the PC basis functions.

6. Forl = 1 : : :N2 estimate the variance of the PC co-
efficients using equation (8).

7. Denoise the PC coefficients using equation (7) and
reconstruct the denoised training vectors inS. Since
the training vectors inS overlap, average out the re-
sults in regions of overlap after the denoised train-
ing vectors are put back into thetrain region. In the
middle of thetrain regioneach pixel is estimatedN2

times, while on the boundary, it may be estimated
only once. Choose thedenoise regionsuch that each
pixel is estimatedN2 times. This step resembles the
over-complete basis denoising algorithm of [3]. The
training vectors are formed from a moving window,
which is similar to shifting the signal. In this sense
the denoising algorithm has a built-in shift invariant
feature.

8. If the denoise regionis too large, blocking artifacts
in the denoised image can become a problem, even
though the PSNR values are still good. To average
out the blocking artifacts between different denoised
regions, add anoverlap region.

3. RESULTS AND CONCLUSION

Using four different images, adaptive PC denoising is tested
against three different algorithms . Three of the images used
in our tests are the standard512� 512 gray level images of
lena, boatandbarb. The ring image is a 1-D chirp signal
rotated around 360 degrees. It contains concentric circles

Image Noisy HMM Sp. A. SI-AShr PC

Lena 14.13 26.07 27.23 27.96 28.00
Boat 14.15 24.70 25.74 26.29 26.36
Barb 14.16 23.29 25.03 24.72 26.21
Ring 14.15 17.58 23.28 22.97 27.18

Table 1. Comparison of denoising results. Val-
ues are peak-to-peak signal-to-noise ratio (PSNR)
(20 log

10
(255=�error)), with Gaussian noise of vari-

ance� = 50.

Image Noisy HMM Sp. A. SI-AShr PC

Lena 20.16 29.22 30.64 31.05 31.26
Boat 20.16 28.01 28.99 29.42 29.62
Barb 20.20 26.75 28.67 28.58 29.91
Ring 20.17 22.10 27.66 27.54 32.82

Table 2. Comparison of denoising results (PSNR, in dB)
with Gaussian noise of variance� = 25.

that get closer and closer to each other as they move out-
ward, away from the center. All of these test images can
be obtained from [10]. Each of the five images is corrupted
with i.i.d. Gaussian noise of different variance,�2, using
the MATLAB command+� �RANDN .

The four algorithms used for testing are: the wavelet-
domain Hidden Markov Tree Models of [8], the spatially
adaptive image denoising algorithm of [5], the SI-Adaptive
Shrink of [4], and our adaptive PC denoising. The adaptive
PC denoising used a training region of21 � 21, a training
vector size of5� 5, a denoise region of7� 7, and an over-
lap patch of3. All tested algorithms were obtained directly
from the authors and our tests matched closely the results
the authors originally published. The results for� values
50, 25 and 15 are in Tables1, 2, and3 respectively. In
almost all experiments the adaptive PC denoising algorithm
performed best in terms of PSNR values. Looking at the de-
noising results for� = 50, the differences between the four
denoising algorithms are very noticeable. The zoomed knee
of barb is depicted in Fig.2. Due to limited space, only the
results of SI-AdaptShrink and adaptive PC are shown. From
the four algorithms, PC denoising performs best at main-
taining the high frequency contents of the stripes. On the
test patternring, adaptive PC outperforms SI-AdaptShrink
by about 5.0 dB. Imagesring andbarb are two images that
emphasize the strength of our adaptive PC model. In par-
ticular, adaptive PC denoising performs best when there are
strong edge patterns. The reader is also encouraged to visit
[10, 11] for more image examples.

In conclusion, this paper presented a novel and simple
approach to decomposing an image using adaptive princi-
pal components. The paper emphasized the strengths of this
new decomposition approach by applying it to image de-



Image Noisy HMM Sp. A. SI-AShr PC

Lena 24.60 31.66 33.05 33.31 33.60
Boat 24.59 30.68 31.65 32.01 32.25
Barb 24.63 29.39 31.49 31.56 32.63
Ring 24.61 25.80 30.97 31.07 36.32

Table 3. Comparison of denoising results (PSNR, in dB)
with Gaussian noise of variance� = 15.

noising.
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