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1. Introduction

In this paper, we provide several examples
of application of the principal manifold and
graphs methodology taken from applied projects:
comparative political science, data analysis in molec-
ular biology, theoretical methods of dynamical sys-
tems analysis. As it will be shown, one of the most
common problems in these fields is how to approxi-
mate a finite set D in Rm for relatively large m by
a finite subset of a regular low-dimensional object
in Rm.

The first hypothesis we have to check is: whether
the dataset D is situated near a low–dimensional
affine manifold (plane) in Rm. If we look for a point,
straight line, plane, . . . that minimizes the average
squared distance to the datapoints, we immediately
come to the Principal Component Analysis (PCA).

PCA is one of the most seminal inventions in
data analysis. Now it is textbook material. Nonlinear

generalization of PCA is a great challenge, and many
attempts have been made to answer it. In 1982 Koho-
nen introduced a type of neural networks called Self-
Organizing Maps (SOM).1

With the SOM algorithm we take a finite metric
space Y with metric ρ (a space of “neurons”) and try
to map it into Rm with (a) the best preservation of
initial structure in the image of Y and (b) the best
approximation of the dataset D. The SOM algorithm
has several setup variables to regulate the compro-
mise between these goals. We start from some ini-
tial approximation of the map, ϕ1 : M → Rm. On
each (k-th) step of the algorithm we have a datapoint
x ∈ D and a current approximation ϕk : M → Rm.
For these x and ϕk we define an “owner neuron” of x

in Y : yx = argminy∈Y ‖x−ϕk(y)‖. The next approx-
imation, ϕk+1, is

ϕk+1(y) = ϕk(y) + hk w(ρ(y, yx))(x − ϕk(y)). (1)
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Here hk is a step size, 0 ≤ w(ρ(y, yx)) ≤ 1
is a monotonically decreasing cutting function and
ρ(y, yx) is distance between y and yx. There are many
ways to combine steps (1) in the whole algorithm.
The idea of SOM is very flexible and seminal, has
plenty of applications and generalizations (for exam-
ple, see Refs. 2–4), but, strictly speaking, we don’t
know what we are looking for: we have the algorithm,
but no independent definition: SOM is a result of
the algorithm work. The attempts to define SOM as
solution of a minimization problem for some energy
functional were not very successful.5

For a known probability distribution, principal
manifolds were introduced as lines or surfaces passing
through “the middle” of the data distribution.6

This intuitive vision was transformed into the
mathematical notion of self-consistency: every point
x of the principal manifold M is a conditional expec-
tation of all points z that are projected into x. Nei-
ther manifold, nor projection should be linear: just a
differentiable projection π of the data space (usually
it is Rm or a domain in Rm) onto the manifold M

with the self-consistency requirement for conditional
expectations: x = E(z|π(z) = x). For a finite dataset
D, only one or zero datapoints are typically pro-
jected into a point of the principal manifold. In order
to avoid overfitting, we have to introduce smoothers
that become an essential part of the principal mani-
fold construction algorithms.

SOMs give the most popular approximations for
principal manifolds: we can take for Y a fragment of
a regular k-dimensional grid and consider the result-
ing SOM as the approximation to the k-dimensional
principal manifold (see, for example, Refs. 7 and 8).
Several original algorithms for construction of prin-
cipal curves9 and surfaces for finite datasets were
developed during last decade, as well as many appli-
cations of this idea. In 1996, in a discussion about
SOM at the 5th Russian National Seminar in Neu-
roinformatics, a method of multidimensional data
approximation based on elastic energy minimization
was proposed (see Refs. 10–17 and the bibliography
there). This method is based on the analogy between
the principal manifold and the elastic membrane
(and plate). Following the metaphor of elasticity, we
introduce two quadratic smoothness penalty terms.
This allows one to apply standard minimization of
quadratic functionals (i.e., solving a system of linear
algebraic equations with a sparse matrix).

2. Method of Principal Elastic Graphs
and Principal Elastic Maps

2.1. Principal graphs and manifolds

Here we give a short description of the structure of
the elastic functional used for construction of princi-
pal graphs and manifolds. For more detailed descrip-
tion, see other works (in particular, Ref. 17).

In a series of works (see Refs. 10–19), the
authors of this paper used metaphor of elastic mem-
brane and plate to construct one-, two- and three-
dimensional principal manifold approximations of
various topologies. Mean squared distance approxi-
mation error combined with the elastic energy of the
membrane serves as a functional to be optimised.
The elastic map algorithm is extremely fast at the
optimisation step due to the simplest form of the
smoothness penalty. It is implemented in several pro-
gramming languages as software libraries or front-
end user graphical interfaces freely available from the
web-site http://bioinfo.curie.fr/projects/vidaexpert.
The software found applications in microarray data
analysis, visualization of genetic texts, visualiza-
tion of economical and sociological data and other
fields.10–19

Let G be a simple undirected graph with set of
vertices V and set of edges E.

Definition. k-star in a graph G is a subgraph with
k + 1 vertices v0,1,...,k ∈ V and k edges {(v0, vi)|i =
1, . . . , k}.

Definition. Suppose that for each k ≥ 2, a family
Sk of k-stars in G has been selected. Then we define
an elastic graph as a graph with selected families of
k-stars Sk and for which for all E(i) ∈ E and S

(j)
k ∈

Sk, the corresponding elasticity moduli λi > 0 and
µkj > 0 are defined.

Definition. Primitive elastic graph is an elastic
graph in which every non-terminal node (with the
number of neighbours more than one) is associated
with a k-star formed by all neighbours of the node.
All k-stars in the primitive elastic graph are selected,
i.e. the Sk sets are completely determined by the
graph structure.

Definition. Elastic net of dimension s is a particu-
lar case of elastic graph which (1) contains only ribs
(2-stars) (the family Sk are empty for all k > 2);
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and (2) the vertices of this graph form a regular s-
dimensional grid. Let E(i)(0), E(i)(1) denote two ver-
tices of the graph edge E(i) and S

(j)
k (0), . . . , S(j)

k (k)
denote vertices of a k-star S

(j)
k (where S

(j)
k (0) is the

central vertex, to which all other vertices are con-
nected). Let us consider a map φ : V → Rm which
describes an embedding of the graph into a multi-
dimensional space. The elastic energy of the graph
embedding in the Euclidean space is defined as

Uφ(G) := Uφ
E(G) + Uφ

R(G), (2)

Uφ
E(G) :=

∑
E(i)

λi‖φ(E(i)(0))− φ(E(i)(1))‖2, (3)

Uφ
E(G) :=

∑

S
(j)
k

µkj

∥∥∥∥∥φ(S(j)
k (0))− 1

k

k∑
i=1

φ(S(j)
k (i))

∥∥∥∥∥
2

.

(4)

Definition. Elastic map is a continuous mani-
fold Y ∈ Rm constructed from the elastic net
as its grid approximation using some between-
node interpolation procedure. This interpolation
procedure constructs a continuous mapping φc :
{φ1, . . . , φdim(G)} → Rm from the discrete map
φ : V → Rm, used to embed the graph in Rm, and
the discrete values of node indices {λi

1, . . . , λ
i
dim(G)},

i = 1 . . . |V |. For example, the simplest piecewise lin-
ear elastic map is build by piecewise linear map φc.

Definition. Elastic principal manifold of dimension
s for a dataset X is an elastic map, constructed from
an elastic net Y of dimension s embedded in Rm

using such a map φopt : Y → Rm, that corresponds
to the minimal value of the functional

Uφ(X, Y ) = MSDW (X, Y ) + Uφ(G), (5)

where the weighted mean squared distance from
the dataset X to the elastic net Y is calculated
as the distance to the finite set of vertices {y1 =
φ(ν1), . . . , yk = φ(vk)}.

In the Euclidean space one can apply an EM
algorithm for estimating the elastic principal man-
ifold for a finite dataset. It is based in turn on the
general algorithm for estimating the locally optimal
embedding map φ or an arbitrary elastic graph G

(see Ref. 17).

2.2. Pluriharmonic graphs as ideal
approximators

Approximating datasets by one dimensional princi-
pal curves is not satisfactory in the case of datasets

that can be intuitively characterized as branched. A
principal object which naturally passes through the
‘middle’ of such a data distribution should also have
branching points that are missing in the simple struc-
ture of principal curves. Introducing such branching
points converts principal curves into principal graphs.

In Refs. 13, 15 and 17, it was proposed to use
a universal form of non-linearity penalty for the
branching points. The form of this penalty is defined
in the previous Section (4) for the elastic energy
of graph embedment. It naturally generalizes the
simplest three-point second derivative approximation
squared: for a 2-star (or rib) the penalty equals
‖φ(S(j)

2 (0)) − 1
2 (φ(S(j)

2 (1)) + φ(S(j)
2 (2)))‖2, for a 3-

star it is ‖φ(S(j)
3 (0)) − 1

3 (φ(S(j)
3 (1)) + φ(S(j)

3 (2)) +
φ(S(j)

3 (3)))‖2, etc.
For a k-star this penalty equals to zero iff the

position of the central node coincides with the mean
point of its neighbors. An embedment φ(G) is ‘ideal’
if all such penalties equal to zero. For a primitive
elastic graph this means that this embedment is a
harmonic function on graph: its value in each non-
terminal vertex is a mean of the value in the closest
neighbors of this vertex.

For non-primitive graphs we can consider stars
which include not all neighbors of their centers. For
example, for a square lattice we create elastic graph
(elastic net) using 2-stars (ribs): all vertical 2-stars
and all horizontal 2-stars. For such elastic net, each
non-boundary vertex belongs to two stars. For a gen-
eral elastic graph G with sets of k-stars Sk we intro-
duce the following notion of pluriharmonic function.

Definition. A map φ : V → Rm defined on vertices
of G is pluriharmonic iff for any k-star S

(j)
k ∈ Sk

with the central vertex S
(j)
k (0) and the neighbouring

vertices S
(j)
k (i), i = 1, . . . , k, the equality holds:

φ(S(j)
k (0)) =

1
k

k∑
i=1

φ(S(j)
k (i)). (6)

Pluriharmonic maps generalize the notion of lin-
ear map and of harmonic map, simultaneously. For
example:

(1) 1D harmonic functions are linear;
(2) If we consider an n-dimensional cubic lattice

as a primitive graph (with 2n-stars for all
non-boundary vertices), then the correspondent
pluriharmonic functions are just harmonic ones;
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(3) If we create from n-dimensional cubic lattice the
standard n-dimensional elastic net with 2-stars
(each non-boundary vertex is a center of n 2-
stars, one 2-star for each coordinate direction),
then pluriharmonic functions are linear.

In the theory of principal curves and manifolds the
penalty functions were introduced to penalise devia-
tion from linear manifolds (straight lines or planes).
We proposed to use pluriharmonic embeddings as
“ideal objects” instead of manifolds and to introduce
penalty (2) for deviation from this ideal form.

2.3. Complexity of principal graphs

The principal graphs can be called data approxi-
mators of controllable complexity. By complexity of
the principal objects we mean the following three
notions:

(1) Geometric complexity: how far a principal object
deviates from its ideal configuration; for the elas-
tic principal graphs we explicitly measure devia-
tion from the ‘ideal’ pluriharmonic graph by the
elastic energy Uφ(G) (2) (this sort of complexity
is often just a measure of non-linearity);

(2) Structural complexity measure: it is some non-
decreasing function of the number of ver-
tices, edges and k-stars of different orders
SC(G) = SC(|V |, |E|, |S2|, . . . , |Sm|); this func-
tion penalises for number of structural elements;

(3) Construction complexity is defined with respect
to a graph grammar as a minimum number of
applications of elementary transformations nec-
essary to construct given G from the simplest
graph (one vertex, zero edges).

The construction complexity is defined with
respect to a grammar of elementary transformation.
The graph grammars20,21 provide a well-developed
formalism for the description of elementary trans-
formations. An elastic graph grammar is presented
as a set of production (or substitution) rules. Each
rule has a form A → B, where A and B are elastic
graphs. When this rule is applied to an elastic graph,
a copy of A is removed from the graph together with
all its incident edges and is replaced with a copy of
B with edges that connect B to the graph. For a
full description of this language we need the notion
of a labeled graph. Labels are necessary to provide
the proper connection between B and the graph.21

An approach based on graph grammars to construct-
ing effective approximations of elastic principal graph
was proposed recently.13,15,17

Let us define graph grammar O as a set of graph
grammar operations O = {o1, . . . , os}. All possible
applications of a graph grammar operation oi to a
graph G gives a set of transformations of the ini-
tial graph oi(G) = {G1, G2, . . . , Gp}, where p is the
number of all possible applications of oi to G. Let us
also define a sequence of r different graph grammars
{O(1) = {o(1)

1 , . . . , o
(1)
s1 }, . . . , O(r) = {o(r)

1 , . . . , o
(r)
sr }}.

Let us choose a grammar of elementary trans-
formations, predefined boundaries of structural com-
plexity SCmax and construction complexity CCmax,
and elasticity coefficients λi and µkj .

Definition. Elastic principal graph for a dataset X

is such an elastic graph G embedded in the Euclidean
space by the map φ : V → Rm that SC(G) ≤ SCmax,
CC(G) ≤ CCmax, and Uφ(G)→ min over all possible
elastic graphs G embeddings in Rm.

For the simplest choice of grammar, this defini-
tion gives us principal trees (see the Sec. 3.3).

3. Real-Life Examples of Principal
Graph and Manifold Applications

3.1. Happiness (quality of life) is
non-linear

Let us take a simple real-life example where applica-
tion of linear data approximation is not satisfactory
and non-linear one-dimensional principal manifolds
(principal curves) are needed to adequately describe
the data.

In the Political World Atlas project, launched
by the Moscow State Institute of International
Relations,22 systematic quantitative data on 192
modern countries for the 1989–2005 period were
collected. One of the goals was to estimate the
“objective” position of post-sovetic countries, in
particular, in terms of “objective” estimates of
the quality of life. Similarly to other projects on
quantification of country happiness or life quality,
the following quantitative indicators were used for
constructing an integral index and ranking: gross
product per capita in dollars, life expectancy in
years, infant mortality in cases per 10000 habitants,
tuberculosis incidence in cases per 100000 habitants.
A common practice in this field is to combine these
or similar features in one index (number) which
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usually represents a linear combination of features
with weights determined by experts (see, for exam-
ple, Ref. 23). This approach is inevitably biased by
the experts’ opinion. An unbiased approach would
be to use the best one-dimensional approximation of
data to introduce the “objective” ranking. It makes
sense if a good approximation function exists.

Each of 192 countries is characterized by the
4 values, thus, we can represent this dataset as a
cloud of 192 points in 4-dimensional space. Simple
visualization of this distribution allows to make a
conclusion that no linear function exists that can
equally well serve for reducing the dimension of this
space from 4 to 1 (see Fig. 1). The distribution is
intrinsically curved, hence, any linear mapping will
inevitably give strong distortions in one or other
region of dataspace.

There is a simple reason for this. Observing
Fig. 1, it is easy to realize that all countries can be

Fig. 1. Approximation of data used for constructing the quality of life index. Each of 192 points represents a country
in 4-dimensional space formed by the values of 4 indicators (gross product, life expectancy, infant mortality, tuberculosis
incidence). Different forms and colors correspond to various geographical locations. Red line represents the principal curve,
approximating the dataset. Three arrows show the basis of principal components. The best linear index (first principal
component) explains 76% of variation, while the non-linear index (principal curve) explains 93% of variation.

roughly separated in two groups. First group con-
sists of very wealthy countries, mostly from Western
and Nothern Europe, USA, Australia and some oth-
ers (right branch of the distribution on the Fig. 1).
It happens that the most of variation among these
countries can be attributed to the gross product per
capita feature while others are approximately equal
for them and do not contribute significantly to the
variance. The second group (left branch of the dis-
tribution on the Fig.1) consists of very poor coun-
tries (mostly, African), which are “equally poor” in
terms of the gross product per capita but can be
very different in terms of their problems (lower of
higher life expectancy, level of infectious diseases,
conditions of the state health system), for a num-
ber of reasons (wars, difference in internal politics,
etc.). However, this classification is not perfect: in
fact, there are many countries which are localized in
the non-linear junction between these two branches
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of the 4-dimensional distribution. This intermediate
group includes the most of the post-sovetic countries
which are the subject of the data analysis in this
study, hence, it is important to correctly position
them in the global picture.

To do this, we have constructed a principal curve
approximating the curved data distribution (red line
on the Fig. 1). The advantage of using the principal
curve instead of principal line was significant in term
of Mean-Squared Error (93% vs 76% of explained
variance). Importantly, using the non-linear index for
non-linear one-dimensional dimension reduction can
significantly change the absolute and relative rank-
ings for many countries, including Russia. Thus, for
the index, constructed using the first principal com-
ponent, Russia in 2005 is ranked the 86th (with the
most prosperous Luxembourg at the 1st place), after,
for example, Iran (74th) and Egypt (84th). For non-
linear index, Russia is ranked the 71st before Iran
(77th) and Egypt (85th).

3.2. Dimension reduction for
microarrays

Now let us consider application of two-dimensional
principal manifolds for data visualization. This is
their natural application since they permit to cre-
ate a mapping from multidimensional space of data
to two- or three- dimensional spaces, thus, providing
a possibility to create visual images of multidimen-
sional distributions.

DNA microarray data is a rich source of informa-
tion for molecular biology (for a recent overview, see
Ref. 24). This technology found numerous applica-
tions in understanding various biological processes
including cancer. It allows simultaneous screening
of the expression of all genes in a cell exposed
to some specific conditions (for example, stress,
cancer, treatment, normal conditions). Obtaining a
sufficient number of observations (chips), one can
construct a table of “samples vs genes”, contain-
ing logarithms of the expression levels of, typically
several thousands (n) of genes, in typically sev-
eral tens (m) of samples. Visualization of microar-
ray data is highly demanded field of research
that, for example, can help with breast cancer
diagnosis.25

For this study, we took three distinct microar-
ray datasets, provided at http://www.math.le.ac.uk/

people / ag153 / homepage / PrincManLeicAug 2006.
htm:

(1) Breast cancer dataset from Ref. 26, 286 tumor
samples and 17816 genes, several natural group-
ings of samples accordingly to survival of
patients, status of some cell receptors and molec-
ular classification of tumors.

(2) Bladder cancer dataset from Ref. 27, 40 tumor
samples, several natural groupings of samples
accordingly to the stage and grade of the tumor.

(3) Collection of microarrays for normal human tis-
sues from Ref. 28, 103 samples of healthy tis-
sues, grouped accordingly to the tissue of origin
(brain, heart, pancreas, etc.).

In Fig. 2 we compare data visualization scatters
after projection of the normal tissues dataset, pro-
vided in Ref. 28, onto the linear two-dimensional and
non-linear two-dimensional principal manifold. The
later one is constructed by the elastic maps approach.
Each point here represents a sample of tissue, labeled
by the tissue name. Before dimension reduction it is
represented as a vector in Rn, containing the expres-
sion values for all n genes in the sample.

One of the conclusions that can be made from
the Fig. 2 is that the non-linear mapping is capa-
ble of resolving the structure of the data distribu-
tion in more details. In particular, some groups of
points that are not separated on the linear scatter
become separated on the non-linear one. We have
decided to quantify this effect, thus, comparing the
quality of linear and non-linear mappings of the same
dimension. Four criteria, each characterizing a pro-
jection of dataset into the low-dimensional space
were developed:

(1) Mean-Squared Error (MSE). This is simply the
mean squared distance from all of the points to
the manifold, where the projection is orthogonal
(by the shortest distance). MSE is measured in %
of total variance. Notice that non-linear approx-
imations should give smaller MSE by construc-
tion, since they are less rigid than the linear ones.

(2) Quality of distance mapping (QDM). This is a
correlation coefficient between the pair-wise dis-
tances between data points before (dij) and after
(d̂ij) projection onto the manifold:

QDM = corr(dij , d̂ij) (7)
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(a) (b)

Fig. 2. Comparing linear (b) and non-linear (a) two-dimensional projections of data on the expression of genes in normal
human tissues. Each point represents a tissue sample (brain, heart, pancreas, etc., each denoted by a distinct color) by
a vector of expression of several thousands of genes. The linear projection is done by the standard PCA approach. The
non-linear projection is made by the elastic map method, described in this paper.

For estimating QDM measure we also proposed
to calculate the correlation coefficient only on
“the most representative” subset of pair-wise dis-
tances, selected by a procedure which we have
called “Natural PCA”. The procedure was intro-
duced in Ref. 16. The first “natural” component
is defined by the pair of the most distant points
(i1, j1). The second component is such a pair
of points (i2, j2) that 1) i2 is the most distant
point to the first component, where the distance
from a point to a set of points S is defined as the
distance to the closest point in S; 2) j2 is the
point from the first component which is the clos-
est to i2. All the next components are introduced
analogously: the nth component (in, jn) is such
a pair of points that the in is the most distant
from the union Sn−1 of all components from 1 to
n − 1 and jn is the point from this union Sn−1

which is the closest to in. We use both Pearson
and Spearman correlation coefficients for calcu-
lating QDM.

(3) Quality of point neighborhood preservation
(QNP). For measuring it, for every data point i

we calculate the size of the intersection of the set
of k neighbours in the multi-dimensional space
S(i; k) and in the low-dimensional space Ŝ(i; k).

QNP is the average value of this intersection
divided by k:

QNPk = 1/k
∑

i=1...N

|S(i; k) ∩ Ŝ(i; k)|/N. (8)

(4) Quality of group compactness (QGC). In this test
we assume that there is a label C(i) associated
with every point i. Then, for each label B, we can
calculate the average number of points with the
same label in the k-neighborhood of the points
before and after projection. Let us define c(i; k)
as the number of points in the k-neighbourhood
of the point i having the label C(i). Then, for a
label B,

QGCk(B) = 1/k
∑

C(i)=B

c(i; k)/N(B), (9)

where N(B) is the number of points having the
label B. Values of QGC close to 1 would indicate
that the points of the label B forms a very com-
pact and separated from the other labels group.
Comparing QGC(B) before and after projection
into the low-dimensional space, one can conclude
on what happened with the group of points of the
label B.
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Fig. 3. Criterion 1 (Mean-Squared Error, MSE)
for comparison of linear (of dimension 1-5, 10, columns
PC1-PC5, PC10) and non-linear projections of data (of
dimension 2, column ELMAP2D). The color mark on
the table shows the comparative performance of the
non-linear method compared to the linear ones. Here
two-dimensional ELMAP approach performs as well as
4-dimensional linear approximations.

Fig. 4. Criterion 2 (Quality of distance mapping,
QDM). For the column titles see the legend to the
Fig. 3. The plot shows the comparison of pair-wise point
distances in the initial mutli-dimensional space and on
the manifold after projection. The subset of distances
selected by NPCA approach is shown (see the text for
explanations).

It is clear from the Figs. 3–6 that the non-linear
two-dimensional principal manifolds provide system-
atically better results accordingly to all four criteria,
achieving the performance of three- and four- dimen-
sional linear principal manifolds.

Fig. 5. Criterion 3 (Quality of point neighborhood
preservation,QNP). For the column titles see the leg-
end to the Fig. 3. The RANDOM column shows the ran-
dom permutation test when random k points are taken
instead of the real k-neighbourhood.

A special attention should be made to the per-
formance of the non-linear principal manifolds with
respect to the QGC criterion. It works particu-
larly well for the collection of normal tissues. There
are cases when neither linear nor non-linear low-
dimensional manifolds could put together points of
the same class and there are a few examples when
linear manifolds perform better. In the latter cases
(Breast cancer’s A, B, lumA, lumB and “unclassi-
fied” classes, bladder cancer T1 class), almost all
class compactness values are close to the estimated
random values which means that these classes have
big intra-class dispersions or are poorly separated
from the others. In this case the value of class com-
pactness becomes unstable (look, for example, at the
classes A and B of the breast cancer dataset) and
depends on random factors which can not be taken
into account in this framework.

The closer class compactness is to unity, the
easier one can construct a decision function sepa-
rating this class from the others. However, in the
high-dimensional space, due to many degrees of
freedom, the “class compactness” might be compro-
mised and become better after appropriate dimen-
sion reduction. In Fig. 6 one can find examples when
dimension reduction gives better class compactness
in comparison with that calculated in the initial
multi-dimensional space (breast cancer basal sub-
type, bladder cancer Grade 2 and T1, T2+ classes).
It means that sample classifiers can be regularized
by dimension reduction using PCA-like methods.

There are several particular cases (breast cancer
basal subtype, bladder cancer T2+, Grade 2 sub-
types) when non-linear manifolds give better class
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Fig. 6. Criterion 4 (Quality of group compactness,
QGC). For the column titles see the legend to the Fig.
3. The numbers on the right and the row colors have
the following meaning (see the graph above): number 3
is a group which is compact in the original space and
remains compact after the projection; number 1 group is
not compact before and after projection; number 2 group
being compact before projection, becomes dispersed after
the projection; number 4 group being not compact before,
becomes compact after the projection. ‘+’ on the left
means ‘better than linear’, ‘++’ means ‘much better’,
‘+++’ means ‘incomparably better’, ‘-’ means ‘worse’.

compactness than both the multidimensional space
and linear principal manifolds of the same dimension.
In these cases we can conclude that the dataset in the
regions of these classes is naturally “curved” and the
application of non-linear techniques for classification
regularization is an appropriate solution.

We can conclude that non-linear principal mani-
folds provide systematically better or equal resolu-
tion of class separation in comparison with linear
manifolds of the same dimension. They perform
particularly well when there are many small and

relatively compact heterogeneous classes (as in the
case of normal tissue collection).

3.3. Principal trees and Metro Maps

Let us demonstrate how the idea of graph gram-
mars (Sec. 2) allows constructing the simplest non-
trivial type of the principal graphs, called principal
trees.15,17 For this purpose let us introduce a sim-
ple ‘Add a node, bisect an edge’ graph grammar
(see Fig. 7) applied to the class of primitive elastic
graphs.

Definition. Principal tree is an acyclic primitive
elastic principal graph.

Definition. ‘Add a node, bisect an edge’ graph gram-
mar O(grow) applicable for the class of primitive
elastic graphs consists of two operations: (1) The
transformation “add a node” can be applied to any
vertex v of G: add a new node z and a new edge (v, z);
(2) The transformation “bisect an edge” is applica-
ble to any pair of graph vertices v, v′ connected by
an edge (v, v′): delete edge (v, v′), add a vertex z

and two edges, (v, z) and (z, v′). The transformation

(a) (b)

(c)

Fig. 7. Illustration of the simple “add node to a node”
or “bisect an edge” graph grammar. (a) We start with a
simple 2-star from which one can generate three distinct
graphs shown. The “Op1” operation is adding a node
to a node, operations “Op1” and “Op2” are edge bisec-
tions (here they are topologically equivalent to adding a
node to a terminal node of the initial 2-star). For illus-
tration let us suppose that the “Op2” operation gives the
biggest elastic energy decrement, thus it is the “optimal”
operation. (b) From the graph obtained one can gener-
ate 5 distinct graphs and choose the optimal one. (c) The
process is continued until a definite number of nodes are
inserted.
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of the elastic structure (change in the star list) is
induced by the change of topology, because the elas-
tic graph is primitive. Consecutive application of the
operations from this grammar generates trees, i.e.
graphs without cycles.

Definition. ‘Remove a leaf, remove an edge’ graph
grammar O(shrink) applicable for the class of primi-
tive elastic graphs consists of two operations: (1) The
transformation ‘remove a leaf ’ can be applied to any
vertex v of G with connectivity degree equal to 1:
remove v and remove the edge (v, v′) connecting v
to the tree; (2) The transformation ‘remove an edge’
is applicable to any pair of graph vertices v, v′ con-
nected by an edge (v, v′): delete edge (v, v′), delete
vertex v′, merge the k-stars for which v and v′ are
the central nodes and make a new k-star for which
v is the central node with a set of neighbors which
is the union of the neighbors from the k-stars of v

and v′.
Also we should define the structural complex-

ity measure SC(G) = SC(|V |, |E|, |S2|, . . . , |Sm|). Its
concrete form depends on the application field. Here
are some simple examples:

(1) SC(G) = |V |: i.e., the graph is considered more
complex if it has more vertices;

(2) SC(G) =




|S3|, if |S3| ≤ bmax

and
m∑

k=4

|Sk| = 0,

∞, otherwise

i.e., only bmax simple branches (3-stars) are allowed
in the principal tree.

To construct the principal tree, the following sim-
ple algorithm is applied:

(1) Initialize the elastic graph G by 2 vertices v1

and v2 connected by an edge. The initial map
φ is chosen in such a way that φ(v1) and φ(v2)
belong to the first principal line in such a way
that all the data points are projected onto the
principal line segment defined by φ(v1), φ(v2);

(2) For a sequence of grammars O(j) = {O(grow),

O(grow), O(shrink)}, j = 1 . . . 3, repeat steps 3–6:
(3) Apply all grammar operations from O(j) to G in

all possible ways; this gives a collection of can-
didate graph transformations {G1, G2, . . . };

(4) Separate {G1, G2, . . . } into permissible and for-
bidden transformations; permissible transforma-
tion Gk is such that SC(Gk) ≤ SCmax, where
SCmax is some predefined structural complexity
ceiling;

(5) Optimize the embedding φ and calculate the
elastic energy Uφ(G) of graph embedment for
every permissible candidate transformation, and
choose such a graph Gopt that gives the min-
imal value of the elastic functional: Gopt =
arg infGk∈permissible set Uφ(Gk);

(6) Substitute G← Gopt ;
(7) Repeat steps 2–6 until the set of permissible

transformations is empty or the number of oper-
ations exceeds a predefined number — the con-
struction complexity.

Using the ‘tree trimming’ grammar O(shrink) allows
to produce principal trees closer to the global opti-
mum, trimming excessive tree branching and fusing
k-stars separated by small ‘bridges’.

Principal trees can have applications in data visu-
alization. A principal tree is embedded into a mul-
tidimensional data space. It approximates the data
so that one can project points from the multidimen-
sional space into the closest node of the tree. The
tree by its construction is a one-dimensional object,
so sthis projection performs dimension reduction of
the multidimensional data. The question is how to
produce a planar tree layout? Of course, there are
many ways to layout a tree on a plane without edge
intersection. But it would be useful if both local
tree properties and global distance relations would
be represented using the layout. We can require
that

(1) In a two-dimensional layout, all k-stars should be
represented equiangular; this is the small penalty
configuration;

(2) The edge lengths should be proportional to their
length in the multidimensional embedding; thus
one can represent between-node distances.

This defines a tree layout up to global rotation
and scaling and also up to changing the order of
leaves in every k-star. We can change this order to
eliminate edge intersections, but the result cannot
be guaranteed. In order to represent the global dis-
tance structure, it was found that a good approx-
imation for the order of k-star leaves can be taken
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from the projection of every k-star on the linear prin-
cipal plane15 calculated for all data point or on the
local principal plane in the vicinity of the k-star, cal-
culated only for the points close to this star. The
resulting layout can be further optimized using some
greedy optimization methods.

Note that the distance on the metro map is esti-
mated by summing up the lengths of branches along
the path (Fig. 8). Hence, any layout of the tree will
not distort this information. The k-stars are pro-
jected onto the principal plane in order to find a good
ordering of nodes inside the star, as a heuristics, to
avoid excessive tree branch intersections. However,
this ordering does not encode the distance along the
tree branches but rather provide a way to generate
a nice 2D layout.

Fig. 8. “Metro map” representation of normal human
tissue samples (on the right) and the hierarchical den-
drogram of the same data (on the left, shown only
for comparison). Both methods approximate the data
by a tree-like structure, but using different metaphors
(“genealogy tree” in the case of hierarchical dendrogram
and “metro map” for the harmonic dendrite used by the
principal tree method). In both representations the user
can estimate a distance from one sample to another by
summing up distances along the path in the tree. The
size of circles on the metro map diagram is proportional
to the number of points projected into the corresponding
node, the pie diagram represents the composition of the
cluster in terms of pre-existing sample groups (human
tissues, in this case).

The point projections are then represented as
pie diagrams, where the size of the diagram reflects
the number of points projected into the correspond-
ing tree node. The sectors of the diagram allow us
to show proportions of points of different classes
projected into the node. An example of the metro
map representation applied to the case of microarray
dataset of normal tissues is shown in Fig. 8 (compare
with 2D representation of the same dataset shown in
Fig. 2).

3.4. Principal manifolds for dynamical
systems analysis

Invariant manifold is a central concept in the theory
of dynamical systems and its construction provides a
consistent approach for model reduction.29 The gen-
eral picture behind this concept is that starting from
an initial condition, the dynamical system quickly
reaches vicinity of a curved low-dimensional mani-
fold and during most of its dynamics remains close
to it.

In Ref. 30 we constructed a dynamical model of
NFkB biochemical signaling cascade. The model con-
tains 35 dynamic variables representing concentra-
tions of various biochemical species. This system is
capable for sustained oscillations and converges to a
limit cycle in the phase space. When studying the
details of the dynamics of this system, we found that
the dynamics in the vicinity of the limit cycle can
be characterized by presence of a two-dimensional
invariant manifold.31

Using the same methodology as described above
in the section 2 and a phase space sampling tech-
nique, we have constructed the invariant manifold
approximation. To do it, we first sample the trajec-
tories of the dynamical system in the vicinity of its
limit cycle in the following way:

(1) Using the PCA approach we found a linear man-
ifold in which the cycle trajectory is embedded.

(2) A system trajectory was computed in some inter-
val of time [0; tm], started from a randomly cho-
sen point of the limit cycle plus random shift in
the linear manifold calculated at Step 1. The size
of this shift δ can be made up to the border of
the phase space (when one of the concentrations
becomes zero).

(3) The trajectory obtained at Step 2 was cut into
two parts: for t ∈ [0; αtm] and t ∈ [αtm; tm]
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intervals, where α ∈ [0; 1]. For the sampling,
only the second part of the trajectory was used,
properly discretized. It was done to skip the first
(fast) dynamics of the system towards a hypo-
thetical invariant manifold.

(4) Steps 2 and 3 were repeated until sufficient
(50000 in our experiments) number points were
sampled.

The resulting distribution of points each rep-
resenting a ‘snapshot’ along the trajectory of
the dynamical system was approximated by a
non-linear two-dimensional principal manifold con-
structed using the elastic map approach. The result-
ing manifold projected into the subspace of the
first three (linear) principal components is shown on
the Fig. 9. The constructed approximation to the
invariant manifold can be further used for model
reduction by projection of the system dynamics
onto it.29,32

Principal component analysis applied to the tra-
jectories of a dynamical system sometimes called
Karhunen-Loéve expansion33,34 and it is a useful tool
for reducing complexity of the dynamics. Hence, the
approach presented in this example can be called the
non-linear Karhunen-Loéve expansion.

Fig. 9. Two-dimensional invariant manifold (blue grid)
approximation obtained by application of the principal
manifold methodology to the set of “snapshots” (black
points) along trajectories of a dynamical system. The
manifold is shown in the 3D projection of the first three
principal components. By red one particular trajectory
is shown, quickly approaching the manifold and further
converging along it to the limit cycle.

4. Conclusions

Principal component analysis was introduced into
applied science by Karl Pearson more than one hun-
dred years ago35 and since then it became one of
the most used mathematical tool in many domains
of science (in every domain, where approximation of
a finite set of points is required).

Non-linear extensions of this method (Self-
Organizing neural networks and their further gen-
eralizations such as principal manifolds, principal
graphs and principal trees) also can serve as a
universal tool allowing to approximate complex dis-
tributions of data points, when the linear approxima-
tion happens to be insufficient. To prove superiority
and advantage of applying the non-linear approxima-
tions, one can use the set of benchmarking criteria
described in this paper.

The elastic graph approach can be interpreted
as an intermediate between absolutely flexible neu-
ral gas36 and significantly more restrictive Self-
Organizing Maps and elastic maps.

Using efficient implementation of principal
graphs and manifolds provided by the elastic
graph approach, applying these methods in prac-
tice becomes relatively easy and computationally fast
exercise. In this paper, we demonstrate this on sev-
eral practical examples: from comparative political
science, data analysis in molecular biology and anal-
ysis of dynamical systems for biochemical modeling.
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