
A Review of Dimension Reduction Techniques∗

Miguel Á. Carreira-Perpiñán

Technical Report CS–96–09

Dept. of Computer Science

University of Sheffield

M.Carreira@dcs.shef.ac.uk

January 27, 1997

Abstract

The problem of dimension reduction is introduced as a way to overcome the curse of the dimen-
sionality when dealing with vector data in high-dimensional spaces and as a modelling tool for such
data. It is defined as the search for a low-dimensional manifold that embeds the high-dimensional
data. A classification of dimension reduction problems is proposed.

A survey of several techniques for dimension reduction is given, including principal component
analysis, projection pursuit and projection pursuit regression, principal curves and methods based
on topologically continuous maps, such as Kohonen’s maps or the generalised topographic mapping.
Neural network implementations for several of these techniques are also reviewed, such as the projec-
tion pursuit learning network and the BCM neuron with an objective function.

Several appendices complement the mathematical treatment of the main text.

Contents

1 Introduction to the Problem of Dimension Reduction 5
1.1 Motivation . 5
1.2 Definition of the problem . 6
1.3 Why is dimension reduction possible? . 6
1.4 The curse of the dimensionality and the empty space phenomenon 7
1.5 The intrinsic dimension of a sample . 7
1.6 Views of the problem of dimension reduction . 8
1.7 Classes of dimension reduction problems . 8
1.8 Methods for dimension reduction. Overview of the report 9

2 Principal Component Analysis 10

3 Projection Pursuit 12
3.1 Introduction . 12

3.1.1 What is an interesting projection? . 12
3.2 The projection index . 13

3.2.1 Definition . 13
3.2.2 Classification . 13
3.2.3 Desirable properties . 14
3.2.4 Outliers . 14
3.2.5 Indices based on polynomial moments . 14
3.2.6 Projection pursuit and density estimation . 15
3.2.7 Examples . 15
3.2.8 Extension to higher dimensions . 16

3.3 Multidimensional projections . 16
3.4 Relation to PCA . 17

∗This work has been partially funded by the Spanish Ministry of Education.

1

3.5 Relation to computer tomography . 17
3.6 Exploratory projection pursuit (EPP) . 17

3.6.1 Localised EPP . 18
3.7 Projection pursuit regression (PPR) . 18

3.7.1 Penalty terms in PPR . 19
3.7.2 Projection pursuit density approximation (PPDA) 19
3.7.3 Projection pursuit density estimation (PPDE) . 20

3.8 Generalised additive models . 20
3.8.1 Backfitting . 20
3.8.2 Multivariate adaptive regression splines (MARS) 21

4 Principal Curves and Principal Surfaces 22
4.1 Construction algorithm . 23
4.2 Extension to several dimensions: Principal surfaces . 23

5 Topologically Continuous Maps 24
5.1 Kohonen’s self-organising maps . 24

5.1.1 The neighbourhood function . 24
5.1.2 Kohonen learning . 24
5.1.3 Summary . 24
5.1.4 Disadvantages . 25

5.2 Generative modelling: density networks . 25
5.2.1 Bayesian neural networks . 25
5.2.2 Density networks . 26
5.2.3 Generative topographic mapping (GTM) . 27

6 Neural Network Implementation of Some Statistical Models 31
6.1 Architectures based on a two-layer perceptron . 31
6.2 Principal component analysis networks . 32
6.3 Projection pursuit learning network (PPLN) . 32

6.3.1 Performance of PPL compared to that of BPL . 34
6.3.2 Parametric PPR . 34

6.4 Cascade correlation learning network (CCLN) . 35
6.5 BCM neuron using an objective function . 36

6.5.1 The BCM neuron . 36
6.5.2 Extension to nonlinear neuron . 37
6.5.3 Extension to network with feedforward inhibition 37
6.5.4 Conclusions . 38

7 Conclusions and Future Work 39

A Glossary 40

B Notation 41

C Properties of the Covariance Matrix 44
C.1 Transformation of the covariance matrix under transformations of the sample 44
C.2 Centring, scaling, sphering and PCA . 44

D Probability Density Function of a Projected Distribution 45

E Density Estimation (Density Smoothing) 46
E.1 Parametric and nonparametric density estimation . 46
E.2 The smoothing parameter . 46
E.3 Nonparametric density estimation techniques: Univariate case 46

E.3.1 Histogram estimation . 46
E.3.2 Naive estimator . 47
E.3.3 Kernel density estimation . 47
E.3.4 Nearest-neighbours estimation . 47
E.3.5 Generalised k-th nearest-neighbour estimation . 49

2

E.3.6 Variable (or adaptive) kernel estimator . 49
E.3.7 Orthogonal series estimation . 49
E.3.8 Maximum penalised likelihood estimator . 50
E.3.9 General weight function estimator . 51

E.4 Nonparametric density estimation techniques: Multivariate case 51
E.4.1 Nearest-neighbour estimation . 51
E.4.2 Generalised nearest-neighbour estimation . 51
E.4.3 Kernel estimation . 51

E.5 Approximation (sampling) properties . 52
E.5.1 Approximation properties for kernel estimators . 52

E.6 What method to use? . 52

F Regression Smoothing 54
F.1 The multivariate regression problem . 54
F.2 Parametric and nonparametric regression . 54
F.3 Nonparametric regression techniques . 54

F.3.1 Kernel regression smoothing (the Nadaraya-Watson estimator) 55
F.3.2 Nearest-neighbour regression smoothing . 55
F.3.3 Spline regression smoothing . 55
F.3.4 Supersmoother . 55
F.3.5 Orthogonal series regression . 56
F.3.6 Projection pursuit regression . 56
F.3.7 Partitioning methods (regression trees) . 56

G Generalised Linear Models 57

H Manifolds in R
n 58

I The Geometry of High-Dimensional Spaces 60
I.1 Hypervolumes . 60
I.2 Consequences in the limit of high dimensions . 60

J Multidimensional Scaling 62
J.1 Two-way MDS . 62
J.2 Selection of the map dimension . 63
J.3 Problems of MDS . 64

List of Figures

1 The dimension reduction problem. 5
2 An example of coordinate representation of a one-dimensional manifold in R

3. 6
3 Curve or surface? . 8
4 Bidimensional, normal point cloud with its principal components. 10
5 Two-dimensional projections of a three-dimensional data set. 13
6 Principal curves as generalised (nonlinear, symmetric) regression. 22
7 “Jump” from the latent space into the data space. 26
8 Two-layer perceptron with one output unit. 31
9 Examples of neural networks for principal component analysis. 32
10 Autoencoder, implemented as a four-layer nonlinear perceptron. 32
11 Two-layer perceptron with several output units. 33
12 Kernel function for parametric PPR. 35
13 Cascade correlation learning network (CCLN). 36
14 The BCM neuron and its associated synaptic and loss functions. 37
15 BCM neurons with inhibiting connections. 38
16 Plot of some typical kernel functions. 48
17 The drawback of kernel smoothing. 48
18 Generalised linear network. 57
19 Examples of manifolds. 58
20 Coordinate system of a 2-manifold in R

3. 59

3

21 Examples of manifolds-with-boundary. 59
22 Dependence of several geometric quantities with the dimension. 61
23 2D map resulting from the Morse code similarities. 63
24 The horseshoe phenomenon. 64

List of Tables

1 Comparison between GTM and Kohonen’s SOM. 30
2 CCLNs vs PPLNs. 36
3 Transformation of the covariance matrix under transformations on the sample. 44
4 Some typical kernel functions and their efficiencies. 48
5 Statistics for several smoothers. 52
6 Density estimation vs. regression smoothing. 54
7 Volumes of unit D-hypersphere and D-hypercube. 61
8 Rothkopf’s data on similarities among Morse code symbols. 62

4

1 Introduction to the Problem of Dimension Reduction

1.1 Motivation

Consider an application in which a system processes data (speech signals, images or patterns in general) in
the form of a collection of real-valued vectors. Suppose that the system is only effective if the dimension
of each individual vector —the number of components— is not too high, where high depends on the
particular application. The problem of dimension reduction appears when the data are in fact of a higher
dimension than tolerated. For example, take the following typical cases:

• A face recognition/classification system based on m × n greyscale images which, by row concate-
nation, can be transformed into mn-dimensional real vectors. In practice, one could have images
of m = n = 256, or 65536-dimensional vectors; if, say, a multilayer perceptron was to be used as
the classification system, the number of weights would be exceedingly large. Therefore we need to
reduce the dimension. A crude solution would be to simply scale down the images to a manageable
size. More elaborate approaches exist, e.g. in [31], a first neural network is used to reduce the vector
dimension (which actually performs a principal component analysis of the training data) from the
original dimension of 63 × 61 = 3843 to 80 components and a second one to actually perform the
classification.

• A statistical analysis of a multivariate population. Typically there will be a few variables and the
analyst is interested in finding clusters or other structure of the population and/or interpreting the
variables. To that aim, it is quite convenient to visualise the data, but this will not be reasonably
possible for more than 3 dimensions1. For example, in [73] data for the three species of flea-
beetles Ch. concinna, Ch. heptapotamica and Ch. heikertingeri are given. For each individual, 6
measurements were taken, including head width, front angle of the aedeagus and others. In this
case, reduction to a two- or three-dimensional space by projection pursuit techniques can easily
show the clustered structure of the data.

• A more straightforward example is simply the estimation of a function of several variables from a
finite sample. Due to the curse of the dimensionality (see section 1.4), we can greatly reduce the
size of the sample by reducing the number of variables, i.e. the dimension of the data.

Therefore, in a number of occasions it can be useful or even necessary to first reduce the dimension
of the data to a manageable size, keeping as much of the original information as possible, and then feed
the reduced-dimension data into the system. Figure 1 summarises this situation, showing the dimension
reduction as a preprocessing stage in the whole system.

PSfrag replacements

High-dimensional
data

Low-dimensional
data

DIMENSION
REDUCTION

PROCESSING
SYSTEM

Intractable

Figure 1: The dimension reduction problem. A given processing system is only effective with vector data
of not more than a certain dimension, so data of higher dimension must be reduced before being fed into
the system.

Sometimes, a phenomenon which is in appearance high-dimensional, and thus complex, can actually
be governed by a few simple variables (sometimes called “hidden causes” or “latent variables” [29, 20,
21, 6, 74]). Dimension reduction can be a powerful tool for modelling such phenomena and improve
our understanding of them (as often the new variables will have an interpretation). For example:

• Genome sequences modelling. A protein is a sequence of aminoacids (of which there are 20 different
ones) with residue lengths varying from tens to tens of thousands. Proteins with the same spatial
structure —but often with very different aminoacid sequences— are grouped together in families.

1Several representation techniques (see [89] for a review) exist that allow to visualise up to about 5-dimensional data
sets, using colours, rotation, stereography, glyphs or other devices, but they lack the appeal of a simple plot; a well-known
one is the grand tour [1]. Chernoff faces [13] allow even a few more dimensions, but are difficult to interpret and do not
produce a spatial view of the data.

5

PSfrag replacements

x1

x2

x3 M

A

B

tA tB

t

f(t) = (R sin 2πt, R cos 2πt, st)T

Figure 2: An example of coordinate representation of a one-dimensional manifold M in R
3 (a curve):

the segment of spiral M = {x ∈ R
3 : x = f(t), t ∈ [tA, tB]} for f(t) = (R sin 2πt,R cos 2πt, st)T .

A model of protein families can give insight into the properties of particular families and can also
help to identify new members of a family or to discover new families. Probabilistic approaches to
the investigation of the structure of protein families include hidden Markov models [70] and density
networks [74].

• Speech modelling. It has been conjectured2 that speech recognition, undoubtedly an exceedingly
complex process, could be accomplished with only about 5 variables.

1.2 Definition of the problem

More formally, the problem of dimension reduction can be stated as follows. Suppose we have a sample
{tn}Ni=1 of D-dimensional real vectors drawn from an unknown probability distribution. The fundamental
assumption that justifies the dimension reduction is that the sample actually lies, at least approximately,
on a manifold (nonlinear in general) of smaller dimension than the data space. The goal of dimension
reduction is to find a representation of that manifold (a coordinate system) that will allow to project the
data vectors on it and obtain a low-dimensional, compact representation of the data.

For example, if principal component analysis is employed, a linear manifold (a vector subspace) is
obtained and a representation of it is the vector basis formed by the first principal components of the
data. In figure 2, a one-dimensional nonlinear manifold in R

3 (a curve, namely a spiral of radius R and
step s) is parameterised in terms of the dimensionless parameter t: M = {x ∈ R

3 : x = f(t), t ∈ [tA, tB]}
for f(t) = (R sin 2πt,R cos 2πt, st)T . Notice that the domain of the parameter can be a bounded interval.
Given that the arc length of the spiral between points xA = f(tA) and xB = f(tB) is

λ =

∫ xB

xA

√

(

dx1

dt

)2

+

(

dx2

dt

)2

+

(

dx3

dt

)2

dt =
√

(2πR)2 + s2(tB − tA)

we could reparameterise the manifold in terms of the arc length λ =
√

(2πR)2 + s2(tB−tA) (see section 4
for an example). Yet another parameterisation would be in terms of the angle θ = 2πt, etc. This shows
that the election of the coordinate system for a given manifold is by no means unique3.

A more formal definition of k-manifold can be found in appendix H.

1.3 Why is dimension reduction possible?

Often, the original representation of the data will be redundant for several reasons:

• Many of the variables will have a variation smaller than the measurement noise and thus will be
irrelevant.

2Unfortunately, I don’t have a ready reference for this assertion!
3And the different coordinate systems do not have to keep a linear relationship. A familiar example are the Cartesian,

spherical and cylindrical systems in R3.

6

• Many of the variables will be correlated with each other (e.g. through linear combinations or other
functional dependence); a new set of incorrelated variables should be found.

Therefore in many situations it should be possible to somehow strip off the redundant information,
producing a more economic representation of the data.

1.4 The curse of the dimensionality and the empty space phenomenon

The curse of the dimensionality (term coined by Bellman in 1961 [3]) refers to the fact that, in the
absence of simplifying assumptions, the sample size needed to estimate a function of several variables to
a given degree of accuracy (i.e. to get a reasonably low-variance estimate) grows exponentially with the
number of variables.

For example, most density smoothers base their estimates on some local average of the neighbour-
ing observations (see appendix F); but in order to find enough neighbours in high-dimensional spaces,
multivariate smoothers have to reach out farther and the locality can be lost.

A way to avoid the curse of the dimensionality is to reduce the input dimension of the function to
be estimated; this is the basis for the use of local objective functions, depending on a small number of
variables, in unsupervised methods.

A related fact, responsible for the curse of the dimensionality, is the empty space phenomenon (Scott
and Thompson [90]): high-dimensional spaces are inherently sparse. For example, the probability that a
point distributed uniformly in the unit 10-dimensional sphere falls at a distance of 0.9 or less from the
centre is only 0.35. This is a difficult problem in multivariate density estimation, as regions of relatively
very low density can contain a considerable part of the distribution, whereas regions of apparently high
density can be completely devoid of observations in a sample of moderate size [93]. For example, for a
one-dimensional standard normal N (0, 1), 70% of the mass is at points contained in a sphere of radius
one standard deviation (i.e. the [−1, 1] interval); for a 10-dimensional N (0, I), that same (hyper)sphere
contains only 0.02% of the mass and one has to take a radius of more than 3 standard deviations to
contain 70%. Therefore, and contrarily to our intuition, in high-dimensional distributions the tails are
much more important than in one-dimensional ones.

Another problem caused by the curse of the dimensionality is that, if there are linear correlations in
the data (a very likely situation in high dimensions), the optimal mean integrated squared error when
estimating the data density will be very large (see appendix E) even if the sample size is arbitrarily
large [89].

Appendix I gives more insight about the geometry of high-dimensional spaces.

1.5 The intrinsic dimension of a sample

Consider a certain phenomenon governed by L independent variables. In practice, this phenomenon will
actually appear as having (perhaps many) more degrees of freedom due to the influence of a variety of
factors4: noise, imperfection in the measurement system, addition of irrelevant variables, etc. However,
provided this influence is not too strong as to completely mask the original structure, we should be able
to “filter” it out and recover the original variables or an equivalent set of them. We define the intrinsic
dimension of a phenomenon as the number of independent variables that explain satisfactorily that
phenomenon. From a purely geometrical point of view, the intrinsic dimension would be the dimension
L of the manifold that embeds a sample of an unknown distribution in D-dimensional space (D > L),
satisfying certain smoothness constraints.

Incidentally, we know from set theory that card
(

R
D
)

= card (R) (= ℵ0) for any D ∈ N, which
means that we can map invertibly and continuously R

D into R, for example using the diagonal Cantor
construction5. In principle, this would allow to find a (nonlinear) continuous mapping from R

D into R
L,

L < D, preserving all information. Of course, due to the finite precision this is of no practical application.
The determination of the intrinsic dimension of a distribution given a sample of it is central to the

problem of dimension reduction, because knowing it would eliminate the possibility of over- or under-
fitting. All the dimension reduction methods known to the author take the intrinsic dimension as a
parameter to be given by the user; a trial-and-error process is necessary to obtain a satisfactory value for
it (in some practical applications, domain information may give insight into the intrinsic dimension).

Of course, this problem is itself ill-posed, because given a data sample it is possible to make a manifold
of any dimension pass through it with negligible error given enough parameters. For example, in fig. 3 a

4We assume no knowledge about these factors; otherwise, a simplification of the problem would be possible.
5Write each of the components x1, . . . , xD in a binary expansion and interleave the expansions to obtain the binary

expansion of a number in R.

7

one-dimensional manifold (the dotted curve) is forced to interpolate a set of points which naturally would
lie on the two-dimensional manifold shown (the dotted rectangle). It is necessary to introduce some a
priori knowledge about the degree of smoothness of the manifold, perhaps in terms of a regularisation
term in a certain objective function.

Figure 3: Curve or surface?

1.6 Views of the problem of dimension reduction

Given the basic nature of the curse of the dimensionality, it is not surprising that many different fields
are affected by it. We can look at the dimension reduction problem from a number of perspectives:

• Basically, it is nothing else but a projection, i.e. a mapping from a D-dimensional space onto an
L-dimensional one, for D > L, with its associated change of coordinates.

• In statistics it is related to multivariate density estimation, regression and smoothing techniques.

• From the pattern recognition standpoint, it is equivalent to feature extraction, where the feature
vector would be the reduced-dimension one.

• In information theory it is related to the problem of data compression and coding.

• Many visualisation techniques are actually performing some kind of dimension reduction: multidi-
mensional scaling [71], Sammon mapping [87], etc.

• Complexity reduction: if the complexity in time or memory of an algorithm depends on the dimen-
sion of its input data as a consequence of the curse of the dimensionality, reducing this will make
the algorithm more efficient (at the expense of moving that complexity to the dimension reduction
procedure, of course).

• Latent-variable models: in the latent-variable approach, we assume that a small number of hidden
causes acting in combination gives rise to the apparent complexity of the data [6]. The latent-
variable space is the low-dimensional representation or coordinate system mentioned before.

1.7 Classes of dimension reduction problems

We attempt here a rough classification of the dimension reduction problems:

• Hard dimension reduction problems, in which the data have dimension ranging from hundreds to
perhaps hundreds of thousands of components, and usually a drastic reduction (possibly of orders
of magnitude) is sought. The components are often repeated measures of a certain magnitude
in different points of space or in different instants of time. In this class we would find pattern
recognition and classification problems involving images (e.g. face recognition, character recognition,
etc.) or speech (e.g. auditory models). Principal component analysis is one of the most widespread
techniques in most practical cases.

8

• Soft dimension reduction problems, in which the data is not too high-dimensional (less than a few
tens of components), and the reduction not very drastic. Typically, the components are observed or
measured values of different variables, which have an straightforward interpretation. Most statistical
analyses in fields like social sciences, psychology, etc. fall in this class. Typical methods include
all the usual multivariate analysis methods [75]: principal component analysis, factor analysis,
discriminant analysis, multidimensional scaling, etc.

• Visualisation problems, in which the data doesn’t normally have a very high dimension in absolute
terms, but we need to reduce it to 2, 3 or 4 at most in order to plot it. Lots of applications
from many disciplines fall into this category. A number of methods are used in practice, including
projection pursuit, principal component analysis, multidimensional scaling and self-organising maps
and their variants, among others, as well as interactive programs that allow manual intervention
(such as Xgobi [95]).

If we allow the time variable in, we find two further categories: static dimension reduction and time-
dependent dimension reduction. The latter could possibly be useful for vector time series, such as video
sequences or continuous speech.

A further categorisation can be done attending to the discrete or continuous nature of the data
vectors. An example of discrete data is found in electropalatography (EPG) [44], where each vector is a
sequence of about 100 binary values which indicate the presence or absence of tongue-palate contact in
coarticulation studies6. Another example of discrete data are genome sequences, as mentioned earlier.
Images are an example of continuous data, where each pixel value can be scaled to the [0, 1] interval.

1.8 Methods for dimension reduction. Overview of the report

As we will see, when the manifold sought is linear and the criterion is to maximise the directional variance
in an incorrelated way, the dimension reduction problem has an exact analytical solution and corresponds
to principal component analysis [62]. This, together with its reasonably good results in practice, make it
probably the most widespread and well-known of all dimension reduction techniques.

In other cases the problem is harder and a number of techniques approach it from different perspec-
tives: low-dimensional projections of the data (projection pursuit, generalised additive models), regression
(principal curves), self-organisation (Kohonen’s maps), topologically continuous mappings (generative to-
pographic mapping) and others.

The rest of this report is organised as follows: section 2 briefly presents principal component analysis.
Section 3 deals with projection pursuit, a more general statistical technique for dimension reduction (of
which PCA and other methods are particular cases); particular emphasis is done on the concept of pro-
jection index. Projection pursuit regression, a nonparametric regression approach based on projection
pursuit, is introduced in section 3.7, and generalised additive models, a particular case of projection pur-
suit regression, in section 3.8. Section 4 deals with principal curves and principal surfaces, which appear
naturally as a generalisation of regression in the nonlinear, symmetrical case. Section 5 introduces the
concept of self-organisation and topological continuity in mappings, and illustrates it with the well-known
Kohonen’s maps and with the generative topographic mapping (GTM), a method based in MacKay’s den-
sity networks [74]. Section 6 gives connectionist implementations for several of the techniques previously
reviewed and some improvements to them. The report is concluded with a short discussion of the material
presented and of further work. Several appendices complement the mathematical part of the main text.

6See [43] for a discussion of several ad-hoc dimension reduction methods in use in electropalatography.

9

2 Principal Component Analysis

Principal component analysis7 (PCA) is possibly the dimension reduction technique most widely used in
practice, perhaps due to its conceptual simplicity and to the fact that relatively efficient algorithms (of
polynomial complexity) exist for its computation. In signal processing it is known as the Karhunen-Loève
transform.

Let us consider a sample {xi}ni=1 in R
D with mean x = 1

n

∑n
i=1 xi and covariance matrix Σ =

E
{

(x− x)(x− x)T
}

, with spectral decomposition Σ = UΛUT (U orthogonal and Λ diagonal). The
principal component transformation y = UT (x − x) yields a reference system in which the sample
has mean 0 and diagonal covariance matrix Λ containing the eigenvalues of Σ: the variables are now
uncorrelated. One can discard the variables with small variance, i.e. project on the subspace spanned by
the first L principal components, and obtain a good approximation (the best linear one in the LS sense)
to the original sample. Figure 4 shows an example.

0

2

4

6

8

10

0 2 4 6 8 10

PSfrag replacements

x1

x2

PC 1

PC 2

Figure 4: Bidimensional, normal point cloud with its principal components.

Geometrically, the hyperplane spanned by the first L principal components is the regression hyperplane
that minimises the orthogonal distances to the data. In this sense, PCA is a symmetric regression
approach, as opposed to standard linear regression, which points one component as response variable and
the rest as predictors (see sections 4 and F.1).

The key property of principal component analysis is that it attains the best linear map x ∈ R
D −→

x∗ ∈ R
L in the senses of:

• Least squared sum of errors of the reconstructed data.

• Maximum mutual information (assuming the data vectors x distributed normally) between the
original vectors x and their projections x∗: I(x;x∗) = 1

2 ln ((2πe)Lλ1 . . . λL), where λ1, . . . , λL are
the first L eigenvalues of the covariance matrix.

The first principal components are often used as starting points for other algorithms, such as projection
pursuit regression, principal curves, Kohonen’s maps or the generalised topographic mapping, all of which
are reviewed in this report.

There exist several neural network architectures capable to extract principal components; see sec-
tion 6.2. Also, when the data is clustered, it can be more convenient to apply PCA locally. For example,
in piecewise PCA (Kambhatla and Leen [67]), a partition of R

D is defined by some form of vector quanti-
sation of the data set and PCA applied locally in each region. This approach is fast and has comparable
results to autoencoders.

A number of numerical techniques exist for finding all or the first few eigenvalues and eigenvectors
of a square, symmetric, semidefinite positive matrix (the covariance matrix) in O(D3): singular value

7See [27, 61, 62] for a more comprehensive treatment. Also, see section C.2 for a comparison with other transformations
of the covariance matrix.

10

decomposition, Cholesky decomposition, etc.; see [81] or [99]. When the covariance matrix, of order
D × D, is too large to be explicitly computed one could use neural network techniques (section 6.2),
some of which do not require more memory space other than the one needed for the data vectors and the
principal components themselves. Unfortunately, these techniques (usually based on a gradient descent
method) are much slower than traditional methods.

The disadvantages of PCA are:

• It is only able to find a linear subspace and thus cannot deal properly with data lying on nonlinear
manifolds.

• One does not know how many principal components to keep, although some thumb rules are applied
in practice. For example, eliminate components whose eigenvalues are smaller than a fraction of the
mean eigenvalue, or keep as many as necessary to explain a certain fraction of the total variance [27].

11

3 Projection Pursuit

3.1 Introduction

Often, especially during the initial stages, the analysis of a data set is exploratory: one wishes to gain
insight about the structure of the data. Projection pursuit8 is an unsupervised technique that picks
interesting low-dimensional linear orthogonal projections of a high-dimensional point cloud by optimising
a certain objective function called projection index. It is typically used to take profit of the human
ability to discover patterns in low-dimensional (1- to 3-D) projections: they are visual representations
of the projected data density (e.g. histograms or other smoothed density estimates, scatterplots, contour
plots) and can be inspected to ascertain the structure of the data (clustering, etc.).

Projections are smoothing operations in that structure can be obscured but never enhanced: any
structure seen in a projection is a shadow of an actual structure in the original space. It is of interest to
pursue the sharpest projections, that will reveal most of the information contained in the high-dimensional
data distribution.

A remarkable feature of projection pursuit is that, when applied to regression or density estimation
(e.g. projection pursuit regression), it is one of the very few multivariate methods able to bypass the
curse of the dimensionality to some extent. However, the power of any projection pursuit algorithm
to find important structure will still suffer if the sample size is small and the dimension large. Several
methods of the classical multivariate analysis are special cases of projection pursuit (for example, principal
component analysis).

The disadvantages of projection pursuit are:

• It works with linear projections and therefore it is poorly suited to deal with highly nonlinear
structure.

• Projection pursuit methods tend to be computationally intensive.

The (scaled) variable loadings (components of the projection vectors) that define the corresponding
solution indicate the relative strength that each variable contributes to the observed effect. Additionally,
applying varimax rotation9 or similar procedures to the projections will produce the same picture but
with an easier interpretation of the variable loadings.

3.1.1 What is an interesting projection?

We consider that a projection is interesting if it contains structure. Structure in the data can be:

• Linear: correlations between variables are readily detected by linear regression.

• Nonlinear: clustering or multimodality (the density function presents several peaks), skewness,
kurtosis (sharp peaking), discontinuities and in general concentration along nonlinear manifolds.

According to this and the following results:

• For fixed variance, the normal distribution has the least information, in both the senses of Fisher
information and negative entropy [16].

• For most high-dimensional clouds, most low-dimensional projections are approximately normal
(Diaconis and Freedman [24]).

We will consider the normal distribution as the least structured (or least interesting) density.

For example, figure 5 shows two 2-D projections of a 3-D data set consisting of two clusters. The
projection on the plane spanned by e2 and e3 is not very informative, as both clusters confuse in one;
this projection nearly coincides with the one in the direction of the first principal component, which
proves that the projection index of PCA (maximum variance; see section 3.2) is not a good indicator of
structure. However, the projection on the plane spanned by e1 and e2 clearly shows both clusters.

8The term projection pursuit was introduced by Friedman and Tukey [38] in 1974, along with the first projection index.
Good reviews of projection pursuit can be found in Huber [53] and Jones and Sibson [65].

9Varimax rotation [66] is a procedure that, given a subspace or projection, selects a new basis for it that maximises the
variance but giving large loadings to as few variables as possible. The projection will be mainly explained by a few variables
and thus be easier to interpret.

12

PSfrag replacements

x1

x2

x3

e1

e2

e3

u1

u2

u3

Projection on
basis {e2, e3}

Projection on
basis {e1, e2}

Figure 5: Two-dimensional projections of a three-dimensional data set.

3.2 The projection index

3.2.1 Definition10

A projection index Q is a real functional on the space of distributions on R
k:

Q : f ∈ L2(R
k) −→ q = Q(f) ∈ R

Normally, f = FA will be the distribution of the projection (of matrix A) of a D-dimensional random
variable X with distribution F , and will correspond to a k-dimensional random variable Y = ATX, if
A is D × k (see section D). Abusing of notation, we will write Q(X) and Q(ATX) instead of Q(F) and
Q(FA).

Projection pursuit attempts to find projection directions ai for a given distribution F which produce
local optima of Q. To make the optimisation problem independent of the length of the projection vectors
and to obtain uncorrelated directions, the ai are constrained to be unit length and mutually orthogonal
(i.e. the column vectors of A must be orthonormal). The optimisation problem is then

Optimise Q(A) subject to aT
i aj = δij (3.1)

In this work, we will consider only one-dimensional projections a —although the treatment is easily
extendable to k-dimensional projections A. We will also consider problem (3.1) as a maximisation of the
index unless otherwise indicated.

3.2.2 Classification

Let s ∈ R, t ∈ R
D and X a random variable with values in R

D. Following Huber [53], we distinguish the
following classes of indices:

• Class I (location-scale equivariance): QI(sX + t) = sQI(X) + t

• Class II (location invariance, scale equivariance): QII(sX + t) = |s|QII(X)

10Huber [53] introduces two versions of projection pursuit:

• An abstract version, based on D-dimensional probability distributions: X will be a random variable with values in
RD.

• A practical version, based on D-dimensional samples or point clouds: XD×n will be the matrix representation of a
sample of n vectors {x1, . . . ,xn} in RD.

To keep this report short, we will stick to the abstract version and the context will show when we actually refer to a sample.

13

• Class III (affine invariance): QIII(sX + t) = QIII(X), s 6= 0

The following equalities hold:

|Q′
I −Q′′

I | = QII
Q′

II

Q′′
II

= QIII

where Q′
I would be a class I index, etc.

3.2.3 Desirable properties

In general, there will be several interesting projections, each showing different insight, which correspond to
local optima of the projection index. One way of discovering them is to repeatedly invoke the optimisation
procedure, each time removing from consideration the solutions previously found (structure removal).
Accordingly, a good projection index should:

• Have continuous first (at least) derivative, to allow the use of gradient methods.

• Be rapidly computable —as well as its derivative(s)—, as the optimisation procedure requires
evaluating it many times.

• Be invariant to all nonsingular affine transformations in the data space (to discover structure not
captured by the correlation), i.e. be of class III.

• Satisfy:

Q(X + Y) ≤ max(Q(X), Q(Y)) (3.2)

because, by the central limit theorem, X + Y must be more normal (less interesting) than the less
normal of X and Y . (3.2) implies Q(X1 + · · · + Xn) ≤ Q(X) if X1, . . . , Xn are copies of X, and
therefore Q(N) ≤ Q(X) if N is normal.

All known class III indices satisfying (3.2) are of the form QIII(X) = h(S1(X)/S2(X)), with h
monotone increasing and S1, S2 are class II satisfying

Subadditivity: S2
1(X + Y) ≤ S2

1(X) + S2
1(Y)

Superadditivity: S2
2(X + Y) ≥ S2

2(X) + S2
2(Y)

3.2.4 Outliers

The projection pursuit procedure will tend to identify outliers because the presence of the latter in
a sample gives it the appearance of nonnormality. This sometimes can obscure the clusters or other
interesting structure being sought. Also, the sample covariance matrix is strongly influenced by extreme
outliers. Consequently, all methods relying on it (e.g. through data sphering) will not be robust against
outliers.

The effect of outliers can be partially tackled by robust sphering, e.g. using a simple multivariate
trimming method:

Set d0 to a convenient threshold distance.
Repeat

Delete all observations that lie farther than d0 from the mean.
Recompute the mean.

Until not more than a certain small fraction of the data are deleted.

3.2.5 Indices based on polynomial moments

Approximating the density by a truncated series of orthogonal polynomials (Legendre, Hermite, etc.;
see section E.3.7) allows easy computation of the moments. Indices based on polynomial moments (see
eqs. (3.4) and (3.7) for examples):

• Are computationally efficient.

• Don’t have to be recomputed at each step of the numerical procedure, as they can be derived for
each projection direction from sufficient statistics of the original data set.

14

• Heavily emphasise departure from normality in the tails of the distribution, thus being oversensitive
to outliers; as a result, they perform poorly. Some methods try to address this problem in several
ways:

– In EPP (section 3.6), a nonlinear transformation from R to [−1, 1] using a normal distribution
function is introduced.

– In the BCM neuron with an objective function (section 6.5.2), a sigmoidal function is applied
to the projections.

Second-order polynomials give measures of the mean and variance of the distribution, but not infor-
mation on multimodality. Higher-order polynomials are required to measure deviation from normality11.

3.2.6 Projection pursuit and density estimation

Silverman [93] suggests that the maximisation of the projection index I can be carried out by:

1. Finding an estimate of the density of the projected points.

2. Maximising the projection index operating on the estimate.

Step 2 is enormously facilitated if an appropriate (differentiable) density estimate f̂ is used; a particular
example is the use of orthogonal expansions (section E.3.7). Good results can be obtained using the
corresponding optimum smoothing parameter hopt, although the behaviour of the index is not very
sensitive to the choice of h (see appendix E).

3.2.7 Examples12

Consider a random variable X with density f , expectation µ = E {X} and covariance matrix Σ =
E
{

(X − µ)(X − µ)T
}

:

• Average:
QI(X) = E {·} .

In this case max‖a‖=1Q(aTX) = ‖µ‖ for a0 = µ/‖µ‖.
• Variance:

QII(X) = var {·} = E
{

(aT (X − µ))2
}

. (3.3)

In this case max‖a‖=1Q(aTX) = λmax for a0 = umax, the largest eigenvalue and normalised prin-
cipal eigenvector of Σ, respectively. In other words, this index finds the first principal component.

• Standardised absolute cumulants km(X) (defined in eq. (B.2)):

QIII(X) =
|km(X)|
k2(X)m/2

m > 2. (3.4)

• Fisher information:

QIII(X) = J(Xθ) = E

{

∂

∂θ
ln fθ(x)

}2

=

∫

(

∂
∂θfθ(x)

)2

fθ(x)
dx (3.5)

where f depends on some parameter θ. J(Xvar{X}) is minimised by the normal pdf (B.5): J(Nσ2) =
1/σ2 [53].

• Negative Shannon entropy:

QIII(X) = −h(X) = E {ln f(x)} =

∫

f(x) ln f(x) dx (3.6)

For fixed variance, −h(X) is minimised by the normal pdf (B.5): h(Nσ2) = ln
√

2πeσ2 [16].

Jones and Sibson13 [65] propose two ways to evaluate the entropy index (3.6):

11Although many synaptic plasticity models are based on second-order statistics and lead to the extraction of principal
components [59].

12The visualisation program Xgobi [95, 68] implements several of these indices.
13In a variant of projection pursuit they call projection pursuit exploratory data analysis (PPEDA).

15

– Implementing it as a sample entropy,
∫

f̂ ln f̂ dx (by numerical integration) or 1
n

∑

i ln f̂(aT xi),

where f̂ is the (univariate) nonparametric density estimate of the projected points aT xi. Both
are very slow to compute.

– Approximating f by an expansion in terms of the cumulants; for 1-D projections:
∫

f ln f dx ≈ 1

12

(

k2
3 +

1

4
k2
4

)

. (3.7)

• Original univariate Friedman-Tukey index [38]:

Q(X) = σ̂α(X)
∑

i,j

I[0,∞](h− |Xi −Xj |).

where σ̂α(X) is the α-trimmed standard deviation (i.e. the standard deviation after α/2 of the data
are deleted on each end) and h is a parameter. The criterion is large whenever many points are
clustered in a neighbourhood of size h.

Huber [53] noted that this index is proportional to
∫

f2
h , where fh is the kernel estimate of f with

a uniform kernel U[−0.5, 0.5]; so, the Friedman-Tukey index is essentially based on
∫

f2. However,
its optimisation is difficult because of the use of both a discontinuous kernel and a discontinuous
measure of scale.

Jones [64] found little difference in practice between
∫

f ln f and
∫

f2. However, the integral
∫

f ln f
is minimised by the normal, while

∫

f2 is minimised by the Epanechnikov kernel (see table 4).

All the previous class III indices satisfy property (3.2). The following two indices are computed via an
orthogonal series estimator of f using Hermite polynomials:

• IH =
∫

(f(x)− φ(x))2 dx (Hall [42]).

• IN =
∫

(f(x)− φ(x))2φ(x) dx (Cook et al. [14]).

where φ(x) is the normal density of eq. (B.6). Other indices are:

• Eslava and Marriott [28] propose two two-dimensional indices designed to display all clusters:

– Minimise the polar nearest neighbour index I = E {min (|θi − θi−1|, |θi+1 − θi|)}, where {θi}ni=1

are the polar angles of the projected sample points, ordered increasingly.

– Maximise the mean radial distance, equivalent to minimising the variance of the radial distance
for sphered data.

• Posse [78, 79, 80] proposes a two-dimensional index based on radial symmetry.

There is no general unanimity about the merits of the projection indices presented, except that
moment indices give poor results than the rest, albeit being faster to compute.

3.2.8 Extension to higher dimensions

Most of the indexes discussed admit a simple extension to two dimensions, depending on their nature:

• Based on density estimation: by estimating the two-dimensional density and integrating.

• Based on moments: by using bivariate moments (e.g. IN =
∫∫

(f(x, y)− φ(x)φ(y))2φ(x)φ(y) dxdy
with bivariate Hermite polynomials).

However, extension to high dimensions is analytically very complicated for most indexes.

3.3 Multidimensional projections

If the projections ATX are of dimension k > 1:

• Computations get harder (optimisation over kD variables instead of only D).

• Optimising Q yields a k-dimensional subspace, but in some cases it can be preferable to get an
ordered set of k directions. This can be attained by a recursive approach: find the most interesting
direction, remove the structure associated with it, iterate. This leads to projection pursuit density
estimation (see section 3.7.3).

16

Usual starting projections for the optimisation procedure are the principal components or just random
starts. Repeated runs with different starting projections are required to explore the local optima and
provide with “locally most interesting” views of the data. Optima with small domains of attraction, if
such actually occur, are inevitably likely to be missed14.

3.4 Relation to PCA

From the point of view of projection pursuit, PCA yields a set of directions ordered by decreasing
projected variance: the projection index, equation (3.3), is the variance of the projected data and is to
be maximised subject to the constraint that the projection directions are orthonormal. PCA is therefore
a particular case of projection pursuit.

If the covariance matrix of the data set has rank L < D, where D is the dimension of the data space
(in a number of cases this happens because the sample size is smaller than D), the projection pursuit
has to be restricted to the L largest principal components, because if a subspace contains no variation, it
cannot contain any structure. Principal components having a very small variation can be ignored as well
—thus further reducing the space dimension— as they will usually be dominated by noise and contain
little structure.

3.5 Relation to computer tomography

Huber [53] points out the duality between projection pursuit and computer tomography:

• Projection pursuit is reduction to projections: we have some high-dimensional information (a ran-
dom sample of a density) and we seek a reduced set of projections of that density that best approx-
imate it (additive- or multiplicatively).

• Computer tomography is reconstruction from projections: we have a finite (but usually fairly dense
and equispaced) set of 1-D (2-D) projections of a 2-D (3-D) density and we seek a density whose
projections best agree with those we have.

3.6 Exploratory projection pursuit (EPP)

Exploratory projection pursuit (EPP) (Friedman [34]) is a projection pursuit procedure that provides
with a projection index and an optimisation strategy, and thus serves well to illustrate how projection
pursuit works in practice.

We consider first one-dimensional EPP. Let Z a centred and sphered random variable and X = aTZ
a projection. We obtain a new random variable R = 2Φ(X) − 1 ∈ [−1, 1], where Φ(X) is the standard
normal cdf, eq. (B.7). Then R is uniform [−1, 1] if X is standard normal. Hence, nonuniformity of R
in [0, 1] will mean nonnormality of X in (−∞,∞). We take as projection index I(a) the following L2

measure of nonuniformity of R:

I(a) =

∫ 1

−1

(

pR(r)− 1

2

)2

dr =

∫ 1

−1

p2
R(r) dr − 1

2

where pR(r) is the pdf of R, but approximated by a Legendre polynomial expansion. The (projected)
normal minimises I; our problem is max‖a‖=1 I(a). I can be rapidly computed using the recursive
relations for the Legendre polynomials and their derivatives (eq. (E.1)).

Two-dimensional EPP is analogous with aT b = 0 and ‖a‖ = ‖b‖ = 1, i.e. uncorrelated linear
combinations with unit variance. Sphering ensures this.

To avoid suboptimal maxima in the maximisation procedure —which can be visualised as high-
frequency ripple superimposed on the main variational structure of I— a hybrid optimisation strategy is
used:

1. A simple, coarse-stepping optimiser that very rapidly gets close to a substantive maximum (i.e.
within its domain of attraction), avoiding pseudomaxima. It maximises along the coordinate axes,
which for sphered data are the principal components of the original data; see [34] for details.

2. A gradient method (steepest ascent, quasi-Newton) to quickly converge to the solution.

Like many other methods, EPP gives large weight to fluctuations of f in its tails (because the normal
density φ is small there) and is therefore sensitive to outliers and scaling.

14Some algorithms exist that try to avoid nonglobal optima (e.g. EPP, section 3.6).

17

3.6.1 Localised EPP

Localised EPP (Intrator [56]) is a nonparametric classification method for high-dimensional spaces. A
recursive partitioning method is applied to the high-dimensional space and low-dimensional features
are extracted via EPP in each node of the tree using the CART method; an exploratory splitting rule
is used, which is potentially less biased to the training data. Implementation of localised EPP in a
backpropagation network leads to a modified unsupervised delta rule.

Localised EPP is computationally practical and:

• Less sensitive to the curse of the dimensionality due to the feature extraction step.

• Less biased to the training data due to the CART method.

3.7 Projection pursuit regression (PPR)

Projection pursuit regression (PPR) (Friedman and Stuetzle [36]) is a nonparametric regression approach
for the multivariate regression problem (see section F.1) based in projection pursuit. It works by additive
composition, constructing an approximation to the desired response function by means of a sum of
low-dimensional smooth functions, called ridge functions, that depend on low-dimensional projections
through the data15:

f̂(x) =

j
∑

k=1

gk(aT
k x) (3.8)

where each gk is constant on hyperplanes. The PPR algorithm determines {ak, gk}ji=1 as follows:

Starting points: set the projection directions ak to the first principal components (or some random
vectors). The residuals are, initially, ri0 = yi. Set j = 1.

Repeat

1. Assuming {ak, gk}j−1
k=1 determined, compute the current residuals:

ri,j−1 = yi −
j−1
∑

k=1

gk(aT
k xi) = ri,j−2 − gj−1(a

T
j−1xi) i = 1, . . . , n

2. Fit a nonparametric smooth curve16 gj to the residuals {ri,j−1}ni=1 as a function of aT xi for any
a ∈ R

D with ‖a‖ = 1.

3. Projection pursuit step: minimise the sum of squared residuals (the L2-norm) relative to g over a:

aj = arg min
‖a‖=1

n
∑

i=1

(ri,j−1 − g(aT xi))
2 = arg min

‖a‖=1

n
∑

i=1

r2ij . (3.9)

4. Insert aj , gj as the next term in (3.8).

Until the improvement in (3.9) is small.

Notice that:

• The representation (3.8), if it is exact, will only be unique if f is a polynomial.

• Some functions cannot be represented by a sum of the form (3.8) for finite m; e.g. f(x1, x2) = ex1x2 .

Equation (3.8) can be readily implemented by a multilayer perceptron and this allows a neural network
implementation of PPR; see section 6.3 for details.

15We consider only one component of the vector function f of section F.1.
16Friedman and Stuetzle [36] use the Friedman’s supersmoother [33]; see section E for other smoothers.

18

3.7.1 Penalty terms in PPR

Expressing the smoothness constraint on the ridge functions gj by some smoothness measure C, we can
merge steps 2 and 3 in the PPR algorithm:

2–3: (aj , gj) = arg min
g,‖a‖=1

n
∑

i=1

r2ij(xi) + C(g).

This shows that the estimation of the nonparametric ridge functions gj is coupled to the estimation of
the projection directions aj . Therefore, if overfitting occurs when estimating one of the ridge functions
(which is very likely at the beginning), the search for optimal projections will not yield good results. This
can be addressed in several ways:

• Choosing the ridge functions from a very small family of functions (e.g. sigmoids with variable
bias). Then, there is no need to estimate a nonparametric ridge function, but the complexity of the
architecture is increased. This approach is widely used in neural networks.

• Concurrently (instead of sequentially) estimating a fixed number of ridge functions and projection
directions, provided that the ridge functions are taken from a very limited set of functions. It
presents a small additional computational burden and is also widely used in neural networks.

• Partially decoupling the estimation of the ridge functions from the estimation of the projections.

Intrator [58] proposes a combination of all of the above: minimise

n
∑

i=1

r2ij(xi) + C(g1, . . . , gl) + I(a1, . . . ,al)

where

• The partial decoupling of the search of aj from that of gj is achieved by a penalty term based on
a projection index I(a).

• The concurrent minimisation over several aj and gj is expressed in a general way by a penalty term

B(f̂) = C(g1, . . . , gl) + I(a1, . . . ,al).

A neural network implementation of these ideas can be an MLP in which the number of hidden units is
much smaller than that of input units, with a penalty added to the hidden layer; the learning rule takes
the form:

ẇij = −η
(

∂E

∂wij
+
∂I(w)

∂wij
+ contribution of cost/complexity terms

)

where E is the error of the network (for an example, see equation (6.2) for the BCM network with
inhibiting connections).

3.7.2 Projection pursuit density approximation (PPDA)

If f is not just any arbitrary function in R
D but a probability density, additive decompositions are

awkward because the approximating sums are not densities (they do not integrate to 1 in general).
Multiplicative decompositions are better (cf. eq. (3.8)):

f̂(x) =

j
∏

k=1

hk(aT
k x) (3.10)

If j < D, (3.10) is not integrable; then we take

f̂(x) = f0(x)

j
∏

k=1

hk(aT
k x)

where f0(x) is a density in R
D with the same mean and covariance as f .

The construction algorithm is, as in PPR, stepwise, and can be of two types: synthetic, where by
successive modifications to a starting simple density we build up the structure of f ; or analytic, where
by successive modifications to f we strip away its structure.

The quality of approximation of the estimate to f can be measured with various criteria: relative
entropy (B.8), Hellinger distance (B.9), etc. For the relative entropy D(f ||g), Huber [53] proposes the
following algorithms:

19

• Synthetic: start with a Gaussian distribution of the same mean and covariance matrix as f . In each
step, find a new projection direction a maximising D(fa||f̂a), where f̂ is the current estimate and
the subindex a indicates one-dimensional marginalisation of aT x under the corresponding density.
Replace the current estimate by f̂fa/f̂a.

• Analytic: start with f . In each step, replace the current estimate by f̂φa/f̂a, where φ is a Gaussian
distribution of the same mean and covariance matrix as f . Continue until j = D or D(f ||g) = 0,

when f̂ will be the Gaussian density.

3.7.3 Projection pursuit density estimation (PPDE)

Projection pursuit density estimation (PPDE; Friedman, Stuetzle and Schroeder [37]) is appropriate when
the variation of densities is concentrated in a linear manifold of the high-dimensional space. Given the
data sample in R

D, it operates as follows:

1. Sphere the data.

2. Take as starting estimate the standard normal in D dimensions, N (0, I) (B.4).

3. Apply the synthetic PPDA.

3.8 Generalised additive models

A generalised additive model (GAM) (Hastie and Tibshirani [49]) for a D-dimensional density f(x) is:

f̂(x) = α+

D
∑

k=1

gk(xk) (3.11)

GAMs are a particular case of PPR (and as such, they have a neural network implementation; see
section 6.1) with ak = ek and E {gk(xk)} = 0, k = 1, . . . , d, in eq. (3.8), i.e. the projection directions
are fixed to the axis directions and one has to determine the zero-mean ridge functions {gk}Di=1. It is
therefore less general because there is no interaction between input variables (e.g. the function x1x2

cannot be modelled), but it is more easily interpretable (the functions gk(xk) can be plotted); see [47, 48]
for some applications. One could add cross-terms of the form gkl(xk, xl) to achieve greater flexibility but
the combinatorial explosion quickly sets in.

3.8.1 Backfitting

The ridge functions {gk}Di=1 are estimated nonparametrically by the backfitting algorithm:

Start with some initial estimates of {gk}Di=1, perhaps obtained parametrically.

Repeat

For j = 1, . . . , D:

1. Compute the current residuals: ri,j = yi −
∑

k 6=j gk(xk,i), i = 1, . . . , n.

2. Fit a nonparametric smooth curve17 gj to the residuals {ri,j}ni=1 as a function of xk.

Until some stopping criterion is satisfied.

That is, one keeps iterating over each of the D variables, smoothing the residuals not explained by
the D − 1 predictors remaining.

The GAM itself is fitted by the local scoring algorithm, a natural generalisation of the iterative least
squares procedure for the linear case of (3.11), which applies backfitting.

17Hastie and Tibshirani use the running line smoother.

20

3.8.2 Multivariate adaptive regression splines (MARS)

Multivariate adaptive regression splines (MARS) (Friedman [35]) are an extension to GAMs to allow
interactions between variables:

f̂(x) = α+

d
∑

k=1

Lk
∏

l=1

gkl(xν(k,l)) (3.12)

In this case, the k-th basis function gk =
∏Lk

l=1 gkl(xν(k,l)) is the product of Lk one-dimensional spline
functions gkl each depending on one variable xν . The number of factors Lk, the labels ν(k, l) and the knots
for the one-dimensional splines are determined from the data. Basis functions are added incrementally
during learning by sequential forward selection.

21

4 Principal Curves and Principal Surfaces

Principal curves (Hastie and Stuetzle [46]) are smooth 1-D curves that pass through the middle of a
p-dimensional data set, providing a nonlinear summary of it. They are estimated in a nonparametric
way, i.e. their shape is suggested by the data.

Principal curves can be considered as a generalisation of regression (see fig 6):

• Linear regression minimises the sum of squared deviations in the response variable y = ax+ b (i.e.
in the vertical direction in an X-Y graph). Thus changing the roles produces a different regression
line (dotted line).

• The first principal component is a regression line symmetrical with all the variables, minimising
orthogonal deviation to that line.

• Nonlinear regression can use a variety of methods (see appendix F.3) to produce a curve that
attempts to minimise the vertical deviations (the sum of squared deviations in the response variable)
subject to some form of smoothness constraint.

• Principal curves are a natural generalisation for nonlinear, symmetric regression: they attempt to
minimise the sum of squared deviations in all the variables (i.e. the orthogonal or shortest distance
from the curve to the points) subject to smoothness constraints.

PSfrag replacements

a. Linear, nonsymmetric: regression line.

b. Linear, symmetric: principal-component line.
c. Nonlinear, nonsymmetric: regression curve.

d. Nonlinear, symmetric: principal curve.

PSfrag replacements

a. Linear, nonsymmetric: regression line.

b. Linear, symmetric: principal-component line.

c. Nonlinear, nonsymmetric: regression curve.
d. Nonlinear, symmetric: principal curve.

PSfrag replacements

a. Linear, nonsymmetric: regression line.
b. Linear, symmetric: principal-component line.

c. Nonlinear, nonsymmetric: regression curve.

d. Nonlinear, symmetric: principal curve.

PSfrag replacements

a. Linear, nonsymmetric: regression line.
b. Linear, symmetric: principal-component line.

c. Nonlinear, nonsymmetric: regression curve.

d. Nonlinear, symmetric: principal curve.

Figure 6: Principal curves as generalised (nonlinear, symmetric) regression. (a) The linear regression line
minimises the sum of squared deviations in the response variable (or in the independent one, for the dashed
line). (b) The principal-component line minimises the sum of squared deviations in all the variables. (c)
The smooth regression curve minimises the sum of squared deviations in the response variable, subject
to smoothness constraints. (d) The principal curve minimises the sum of squared deviations in all the
variables, subject to smoothness constraints. From Hastie and Stuetzle [46].

We say that a curve is self-consistent with respect to a dataset if the average of all data points that
project onto a given point on the curve coincides with the point on the curve. More formally, let f(λ) be
a smooth curve in R

D parameterised by its arc length λ ∈ R. For any data point x0 ∈ R
D we seek the

nearest point λ(x0) = λ0 in the curve in Euclidean distance18, i.e. its orthogonal projection on the curve.
If E {x|λ(x) = λ0} = f(λ0) then f is self-consistent for the distribution x. We can then say that principal
curves pass through the middle of the data in a smooth way and are self-consistent for that dataset. This
definition poses several questions so far unanswered in the general case:

18For definiteness, in the exceptional case where there are several nearest points, we take the one with largest λ.

22

• For what kinds of distributions do principal curves exist?

• How many different principal curves exist for a given distribution?

• What are their properties?

These questions can be answered for some particular cases:

• For ellipsoidal distributions the principal components are principal curves.

• For spherically symmetric distributions any line through the mean is a principal curve.

• For 2-D spherically symmetric distributions a circle with centre at the mean and radius E {‖x‖} is
a principal curve.

The following properties of principal curves are known:

• For a model of the form x = f(λ) + ε, with f smooth and E {ε} = 0, f seems not to be a principal
curve in general. This means that the principal curve is biased for the functional model, although
the bias seems to be small and to decrease to 0 as the variance of the errors gets small relative to
the radius of curvature of f .

• If a straight line f(λ) = u0 +λv0 is self-consistent, then it is a principal component (i.e. u0 = 0 and
v0 is an eigenvector of the covariance matrix). In other words, linear principal curves are principal
components.

Principal curves depend critically on the scaling of the features, as all projection techniques do.
Current algorithms also depend on the degree of smoothing.

4.1 Construction algorithm

1. Let j ← 0 the iteration index and start with some smooth prior summary of the data f0(λ) (typically
the first principal component).

2. Projection step: project the distribution onto the candidate curve fj(λ).

3. Averaging step19: let fj+1(λ0) = E {x|λ(x) = λ0}, the conditional expectation, and reparameterise
this in terms of arc length λ.

4. If fj(λ(x)) = fj+1(λ(x)) for all points x, the curve is self-consistent and thus it is a principal curve;
finish.

Otherwise, take as fj+1(λ) a smooth or local average of the p-dimensional points, where the definition
of local is based on the distance in arc length from a fixed point (or any other parameterisation of
a 1-D curve) of the projections of the points onto the previous curve; goto 2.

Observe that:

• The construction algorithm converges to the first principal component if conditional expectations
are replaced by least-squares straight lines. Principal curves are then local minima of the distance
function (sum of squared distances).

• For probability distributions, both operations —projection and average or conditional expectation—
reduce the expected distance from the points to the curve; for discrete data sets this is unknown.

• The construction algorithm has not been proven to converge in general.

4.2 Extension to several dimensions: Principal surfaces

Principal curves can be naturally extended to several dimensions and they are then called principal
surfaces. However, once again the curse of the dimensionality makes smoothing in several dimensions
hard unless data are abundant. Further investigation is required to see whether principal surfaces are of
interest for very high-dimensional problems.

19For discrete data sets, the averaging step has to be estimated (by means of a scatterplot smoother).

23

5 Topologically Continuous Maps

This term includes several related techniques mainly used for visualisation of high-dimensional data, of
which the most well-known are Kohonen’s self-organising maps. The objective of these techniques is to
learn in an unsupervised manner a mapping from a space of fixed dimension (sometimes called lattice
or latent space) onto the high-dimensional data space that embeds the data distribution. Therefore,
the common element in them is the concept of topological or topographic map, which basically means a
continuous mapping, i.e. a mapping that assigns nearby images in the codomain to nearby points in the
domain.

The term “topologically continuous maps” is not very appropriate, because it has some undesirable
connotations in the mathematical theory of topological spaces; the similar term “topographic maps” is
not very satisfactory either. “Self-organising maps,” although somewhat vague, would probably be a
better election, but unfortunately it is too linked to Kohonen’s maps in the literature.

5.1 Kohonen’s self-organising maps

Let {tn}Nn=1 a sample in the data space R
D. Kohonen’s self-organising maps (SOMs) [69] can be consid-

ered as a form of dimension reduction in the sense that they learn, in an unsupervised way, a mapping
between a 2-D lattice20 and the data space. The mapping preserves the two-dimensional topology of the
lattice when adapting to the manifold spanned by the sample. One can visualise the learning process as
a plane sheet that twists around itself in D dimensions to resemble as much as possible the distribution
of the data vectors.

5.1.1 The neighbourhood function

In a SOM, like in vector quantisation [41], we have a set of reference or codebook vectors {µi}Mi=1

in data space R
D, initially distributed at random21, but each of them is associated to a node i in a

2-D lattice —unlike in vector quantisation, in which no topology exists. Assume we have defined two
distances (typically Euclidean) dD and dL in the data space and in the lattice, respectively. The topology
of the lattice is determined by the neighbourhood function hij . This is a symmetric function with
values in [0, 1] that behaves as an “inverse” distance in the lattice: given a node i, hii = 1 for any node
i and for any other node j, hij is smaller the farther apart node j is from node i in the lattice. The
neighbourhood of node i is composed of those nodes for which hij is not negligibly small. In practice,
usually hij = exp(−d2

L(i, j)/2σ2), where σ would quantify the range of the neighbourhood.

5.1.2 Kohonen learning22

A competitive learning rule is applied iteratively over all data vectors until convergence is achieved. Given
a data vector tn, let µi∗ be the reference vector closest to tn in data space:

i∗ = arg min
j∈lattice

dD(µj , tn).

Learning occurs as follows (where t is the iteration index and α(t) ∈ [0, 1] is the learning rate):

µnew
i = µold

i + α(t)h
(t)
i∗i(tn − µold

i) = (1− ρ)µold
i + ρtn (5.1)

i.e. reference vector µi is drawn a distance ρ = α(t)h
(t)
i∗i toward data vector tn. The update affects only

vectors whose associated nodes lie in the neighbourhood of the winner i∗ and its intensity decreases
with the iteration index t because both α(t) and the range of h(t) must decrease with t (for convergence
considerations).

Intuitively one sees that the reference vectors µi will become dense in regions of R
D where the tn are

common and sparse where the tn are uncommon, thus replicating the distribution of the data vectors.

5.1.3 Summary

Kohonen learning creates an L-dimensional arrangement such that:

20In the typical case, but the idea is valid for L-dimensional topological arrangements.
21Or perhaps one can take a random set of the data vectors, or the first principal components.
22This is online learning. A batch version also exists.

24

• The number density of reference vectors in data space is approximately proportional to the data
probability density.

• The mapping from the L-dimensional arrangement into data space is topologically continuous.

5.1.4 Disadvantages

KSOMs have proven successful in many practical applications, particularly in visualisation. However,
due to their heuristic nature they have a number of shortcomings:

• No cost function to optimise can be defined.

• No schedules for selecting α(t) and h(t) exist that guarantee convergence in general.

• No general proofs of convergence exist.

• No probability distribution function (generative model for the data) is obtained. The L-dimensional
manifold in data space is defined indirectly by the location of the reference vectors; for intermediate
points one has to interpolate.

5.2 Generative modelling: density networks

In generative modelling, all observables in the problem are assigned a probability distribution to which
the Bayesian machinery is applied. Density networks (MacKay [74]) are a form of Bayesian learning that
attempts to model data in terms of latent variables [29]. First we will introduce Bayesian neural networks,
then the density networks themselves and we will conclude with GTM, a particular model based in density
networks.

5.2.1 Bayesian neural networks

Assume we have data D which we want to model using parameters w and define the likelihood L(w) =
p(D|w) as the probability of the data given the parameters. Learning can be classified into [76]:

• Traditional (frequentist), e.g. the MLP: no distribution over the parameters w is assumed; we
are interested in a single value w∗ which is often found as a maximum likelihood estimator:

w∗ = arg max
w
{lnL(w) +R(w)} (5.2)

where R(w) is a regularisation term, such as the quadratic regulariser with (hyper)parameter α

R(w) =
1

2
α
∑

i

w2
i . (5.3)

New data D′ is predicted as p(D′|w∗).

• Bayesian, e.g. density networks: a probability distribution over the model parameters is obtained,
based in a prior distribution p(w) that expresses our initial belief about their values, before any
data has arrived. Given data D, we update this prior to a posterior distribution using Bayes’ rule:

p(w|D) =
p(D|w)p(w)

p(D)
∝ L(w)p(w). (5.4)

New data D′ is predicted as

p(D′|D) =

∫

p(D′|w)p(w|D) dw

Traditional learning can be viewed as a maximum a posteriori probability (MAP) estimate of Bayesian
learning (cf. eq (5.2)):

w∗ = arg max
w

p(w|D) = arg max
w

ln {L(w)p(w)} = arg max
w
{lnL(w) + ln p(w)}

with a prior p(w) = exp(R(w)). For the quadratic regulariser (5.3) the prior would be proportional to a
Gaussian density with variance 1/α.

The Bayesian approach presents the advantage over the frequentist one of finding a full distribution
for the parameters. However, this is earned at the expense of introducing the prior, whose selection is
often criticised as being arbitrary.

25

PSfrag replacements

x1

x2 x

Latent space of dimension L = 2

Prior p(x)

y

Induced p(t|w)

t1

t2

t3

t

y(x;w)

Data space of dimension D = 3

Manifold Y

Figure 7: “Jump” from the latent space into the data space.

5.2.2 Density networks

We want to model a certain distribution p(t) in data space R
D, given a sample {tn}Nn=1 drawn inde-

pendently from it, in terms of a small number L of latent variables. The likelihood and log-likelihood
(MacKay calls them evidence and log-evidence) are:

L(w) = p(D|w) =
N
∏

n=1

p(tn|w) l(w) = ln p(D|w) =
N
∑

n=1

ln p(tn|w).

We define the following functions in some convenient way for the problem being considered:

• A prior distribution on L-dimensional latent space R
L: p(x), x ∈ R

L.

• A smooth mapping y from the latent space onto an L-dimensional23 manifold Y in data space, with
parameters w (for example, if y is an MLP, w would be the weights and biases):

y : R
L −→ Y ⊂ R

D

x 7−→ y(x;w)

This jump from L to D dimensions is the key for the dimension reduction.

• The error functions Gn(x;w) = ln p(tn|x,w) = ln p(tn|y). For example:

– The softmax classifier for a classification problem with I classes:

p(t = i|x,w) = yi(x;w) =
efi(x;w)

∑I
j=1 e

fj(x;w)

where {fi}Ii=1 are functions of x parameterised by w.

– The linear logistic model (single sigmoidal neuron) in a binary classification problem:

p(t = 1|x,w) = y1(x;w) =
1

1 + e−w·x

which is a particular case of the softmax classifier.

– A function of the Euclidean squared distance ‖tn − y‖2, as in the GTM model, eq. (5.9).

Using Bayes’ rule, we can compute the posterior in latent space:

p(x|tn,w) =
p(tn|x,w)p(x)

p(tn|w)
(5.5)

23Perhaps less than L-dimensional if the mapping is singular.

26

with normalisation constant

p(tn|w) =

∫

p(tn|x,w)p(x) dx. (5.6)

Applying Bayes’ rule again (5.4), we find the posterior in parameter space:

p(w|{tn}Nn=1) =
p({tn}Nn=1|w)p(w)

p({tn}Nn=1)

with p({tn}Nn=1|w) =
∏N

n=1 p(tn|w) = L(w). Learning of the parameters w by maximum likelihood can
take place using gradient descent on the log-likelihood; from eq. (5.6):

∇w{ln p(tn|w)} =
1

p(tn|w)

∫

eGn(x;w)p(x)∇wGn(x;w) dx =

∫

p(x|tn,w)∇wGn(x;w) dx = Ep(x|tn,w) {∇wGn(x;w)} (5.7)

i.e. the gradient of the log-likelihood is the expectation of the traditional backpropagation gradient
∇wGn(x;w) over the posterior p(x|tn,w) of eq. (5.5).

From the computational point of view, integral (5.6) is analytically difficult for most priors p(x). The
log-likelihood and its derivatives can be approximated by Monte Carlo sampling24:

l(w) =

N
∑

n=1

ln

∫

eGn(x;w)p(x) dx ≈
N
∑

n=1

ln
1

R

R
∑

r=1

eGn(xr;w) (5.8a)

∇wl(w) ≈
N
∑

n=1

∑R
r=1 e

Gn(xr;w)∇wGn(x;w)
∑R

r=1 e
Gn(xr;w)

(5.8b)

where {xr}Rr=1 would be random samples from p(x), but still this is a very costly process because the
sampling depends exponentially on the dimension of the integral, L.

Summary Density networks provide a framework for generative modelling which can be adapted to
specific problems by conveniently selecting:

• The dimension of the latent space L.

• The prior in latent space p(x), as simple as possible to allow easy integration of the error function.

• The smooth mapping y(x;w), if possible differentiable on w to allow using standard optimisation
techniques.

• The error function p(t|x;w).

• The optimisation algorithm for maximising the posterior in parameter space p(w|{tn}Nn=1).

Relationship with MLPs and autoassociators In MLPs, the outputs are conditioned over the
values of the input variables and there is no density model of the input variables. Conversely, in density
modelling (or generative modelling) a density of all observable quantities is constructed. Target outputs
are specified, but not inputs.

Density networks can be considered as the generative half of an autoassociator (from the bottleneck
to the output). The recognition mapping (from the input to the bottleneck), responsible for the feature
extraction, plays no role in the probabilistic model (see fig. 10).

5.2.3 Generative topographic mapping (GTM)

The generative topographic mapping (GTM), put forward by Bishop, Svensén and Williams [7] as a
principled view of Kohonen’s SOMs, is a density network based on a constrained Gaussian mixture
model and trained with the EM algorithm. No biological motivation is intended.

In GTM, the dimension of the latent space is assumed small (usually 2) and the various features of
the general framework of density networks are selected as follows:

24
∫

Q(x)p(x) dx ≈ 1
K

∑K
i=1 Q(xi) for a sample {xi}

K
i=1 of the pdf p(x).

27

• Error functions Gn(x;w): p(t|x,w) is a spherical Gaussian N (y(x;W), β−1I) centred on y(x;W)
with variance β−1 (for convenience of notation, we separate the parameters w into the mapping
parameters W and the variance parameter β):

p(t|x,W, β) =

(

β

2π

)
D
2

exp

(

−β
2
‖y(x;W)− t‖2

)

(5.9)

which behaves as a noise model for y(x;W) that extends the manifold Y to R
D: a given data vector

t could have been generated by any point x with probability p(t|x,W, β).

• Prior in latent space:

p(x) =
1

K

K
∑

i=1

δ(x− xi) (5.10)

where {xi}Ki=1 stand on a regular grid25 in latent space. This prior choice is equivalent to a Monte
Carlo approximation of (5.6) for an arbitrary p(x). Then, from eq. (5.6):

p(t|W, β) =
1

K

K
∑

i=1

p(t|xi,W, β) (5.11)

is a constrained mixture of Gaussians (because the Gaussians lie on the L-dimensional manifold Y
in data space), and

l(W, β) =

N
∑

n=1

ln

{

1

K

K
∑

i=1

p(tn|xi,W, β)

}

which is just eq. (5.8a). If y was linear and p(x) Gaussian, then p(t) would also be Gaussian and
GTM would reduce to a particular case of factor analysis in which all the variances are equal (to
β−1).

• Mapping selection: generalised linear model y(x;W) = Wφ(x) with W a D×M matrix of weights
and φ an M × 1 vector of basis functions26 (see appendix G). This turns the M step of the
optimisation into a matrix equation, see (5.13).

Typically, Gaussians with explicitly set parameters are used as basis functions:

– Centres drawn from the grid in latent space.

– Variances chosen accordingly, based on the known distance between centres.

Although the actual shape of the basis functions is probably unimportant as long as they are
localised.

Generalised linear networks are universal approximators, but their use limits the dimension L of
the latent space because the number of basis functions M required to attain a given accuracy grows
exponentially with L. This can be a serious disadvantage in some cases.

The number of sample points xi, K, must be bigger than M in order to obtain a smooth mapping
y; in [7] it is suggested to take K

M = O(100). Because K is not a parameter of the model, increasing
it does not favour overfitting.

• The model parameters W and β are determined by maximum likelihood, which provides us with
the following objective function:

l(W, β) = ln

N
∏

n=1

p(tn|W, β) =

N
∑

n=1

ln p(tn|W, β) (5.12)

to which a regularisation term (a prior on the parameters W) could be added to control the mapping
y. The mixture distribution (5.11) suggests using the EM algorithm to maximise the log-likelihood:

25The reason to position the points xi in the nodes of a regular grid is to facilitate visualisation of the posterior (5.15) in
a computer screen.

26An additional column with biases wk0 can be added to W, and consequently an additional fixed component φ0(xi) = 1
to φ.

28

E step: computation of responsibilities Rin, see eq. (5.14).

M step27: taking partial derivatives of L w.r.t. the parameters W and β one obtains:

– A matrix equation28,29 for W:

ΦT GoldΦ(Wnew)T = ΦT RoldT (5.13)

solvable for Wnew using standard matrix inversion techniques.

– A reestimation formula for β:

1

β
=

1

ND

N
∑

n=1

K
∑

i=1

Rin(W, β)‖y(xi;W)− tn‖2.

Where:

– Φ = (φij) is a K ×M matrix of constants: φij = φj(xi).

– T = (t1 . . . tN)T is an N ×D matrix of constants.

– R = (Rin) is a K ×N matrix of posterior probabilities or responsibilities:

Rin(W, β) = p(xi|tn,W, β) =
p(tn|xi,W, β)

∑K
i′=1 p(tn|xi′ ,W, β)

(5.14)

.

– G is a diagonal K ×K matrix with elements gii(W, β) =
∑N

n=1Rin(W, β).

Because the EM algorithm increases the log-likelihood monotonically [23], the convergence of GTM
is guaranteed. According to [7], convergence is usually achieved after a few tens of iterations.
As initial weights one can take the first L principal components of the sample data {tn}. After
convergence, the value of 1/β∗ should be small for the approximation to be good.

An online version of the M step is obtained by decomposing the objective function over the data
points, l =

∑N
n=1 ln, and using the Robbins-Monro procedure [85]:

w
(t+1)
kj = w

(t)
kj + α(t)

(

∂ln
∂wkj

)(t)

β(t+1) = β(t) + α(t)

(

∂ln
∂β

)(t)

.

If the learning rate α(t) is an appropriately decreasing function of the iteration step t, convergence
to an extremum of l is assured.

Posterior probabilities and visualisation Fixed W∗, β∗ and given a point tn in data space, eq. 5.4
gives the posterior distribution for xi, which can be considered as the “inverse” mapping of y:

p(xi|tn,W
∗, β∗) =

p(tn|xi,W
∗, β∗)

∑K
i′=1 p(tn|xi′W∗, β∗)

= Rin (5.15)

i.e. the responsibility of xi given tn. Thus, while many visualisation techniques provide just a single
responsible point xi for tn, GTM provides a full posterior distribution p(xi|tn), as a result of the Bayesian
approach. This can be a considerable amount of data; to simplify it, one can summarise this distribution
by its mean, but this can be misleading if it is multimodal ([7] gives actual examples of this situation).

Magnification factors The local magnification factor, i.e. the relation between the volume elements
in the manifold Y and in the latent space, can be computed analytically for GTM [8]:

dV ′

dV
=

√

det(ΨT WT WΨ) ψjk =
∂φj

∂xk
dV =

D
∏

k=1

dxk

The local magnification factor may contain information on the clustering properties of the data, as it
seems to be small near the center of a cluster and high in the cluster boundaries. Therefore it could be
useful to highlight boundaries.

28Or, using the centroid K×D matrix M = (µik) instead of the responsibility matrix, one has RT = GM. The centroids
are defined as:

µi =

∑N
n=1 Rintn
∑N

n=1 Rin

.

29If a quadratic regulariser (5.3) is added to l(W, β), equation (5.13) becomes:

(ΦT GoldΦ −
α

β
I)(Wnew)T = ΦT RoldT

for a constant regularisation (hyper)parameter α. Notice that equation (15) in [7] is incorrect.

29

SOM GTM

Internal representation of
manifold

Nodes {i} in L-dimensional ar-
ray, held together by neighbour-
hood function h

Point grid {xi} in L-dimensional
latent space that keeps its topol-
ogy through smooth mapping y

Definition of manifold in
data space

Indirectly by locations of refer-
ence vectors

By mapping y

Objective function No Yes, based on log-likelihood

Self-organisation Difficult to quantify Smooth mapping y preserves to-
pology

Convergence Not guaranteed Yes. Batch: EM algorithm; on-
line: Robbins-Monro

Smoothness of manifold Depends on α(t) and h(t) Depends on basis functions pa-
rameters and prior distribution
p(x)

Generative model No; hence no density function Yes, p(t|W, β)

Additional parameters to
select

α(t), h(t) arbitrarily α(t) annealed by Robbins-Monro
schedules (in online version)

Speed of training Comparable (according to [7])

Magnification factors Approximated by the difference
between reference vectors

Exactly computable anywhere

Table 1: Comparison between GTM and Kohonen’s SOM.

Extensions to GTM The basic generative model of GTM can be extended to:

• Deal with missing values (unobserved components in the data vectors) if they are missing at random,
because the objective function L can be obtained by integrating out the unobserved values.

• Mixtures of GTM models of the form p(t) =
∑

l p(l)p(t|l), where p(t|l) is the lth model (with its
independent set of parameters) and p(l) a discrete distribution that provides the mixing coefficients
of the model. The mixture is, again, trainable by maximum likelihood using the EM algorithm.

Conclusions GTM is effective for visualisation purposes, and has the advantage over Kohonen’s SOMs
of having a solid theoretical basis (see table 1 for a comparison between GTM and KSOMs). But as it
stands, it doesn’t seem suitable for hard dimension reduction problems, in which the dimension of the
latent space will be large enough as to make the number of basis functions M exceedingly big. Perhaps
a different choice of the mapping able to cope with the curse of the dimensionality could overcome this
difficulty.

And, as with any dimension reduction technique, there is no insight about what the dimension L of
the latent space should be. In GTM, the choice of the latent space is driven by:

• Prior knowledge about the problem. For example, in the problem of multiphase flows in oil pipelines
to which Bishop et al. apply GTM [6], it is known in advance that the points in data space have
been generated by a random process with only two degrees of freedom —even though the dimension
of the data space is 12.

• Other constraints, e.g. the fact that the dimension of the latent space must not exceed 2 or 3 for
visualisation.

30

6 Neural Network Implementation of Some Statistical Models

In this section, we will see that many of the algorithms of the previous sections can be implemented in
a natural way by neural networks, with a clever election of the architecture and learning algorithm. We
will also present the implementation of some new projection indices (e.g. Intrator’s BCM neuron with
objective function [59, 58, 57]).

6.1 Architectures based on a two-layer perceptron

PSfrag replacements

wjw1

y = ϕ(v, β)

Output

Hidden

Input
xDx1

v1 vj

β

Figure 8: Two-layer perceptron with one output unit.

Consider the two-layer (nonlinear) perceptron of fig. 8. It has D input units, j hidden units and
only one output unit. The activation function for each unit, gk, is (in general) different. The output
is a general function of the activation of the hidden layer, v, and the weights of the second layer, β:
y = f(ϕ(v,β)). The following particular cases of this network implement several of the techniques
previously mentioned [12]:

• Projection pursuit regression (cf. eq. (3.8)):

ϕ(v,β) = vT 1, vk = gk(wT
k x) ⇒ y =

j
∑

k=1

gk(wT
k x).

The activation functions gk are determined from the data during training; wk represent the projec-
tion directions.

Incidentally, this shows that continuous functions gk can be uniformly approximated by a sigmoidal
MLP of one input. Therefore, the approximation capabilities of MLPs and PP are very similar [25,
63].

This architecture admits generalisations to several output variables [84] depending on whether the
output share the common “basis functions” gk and, if not, whether the separate gk share common
projection directions wk.

• Generalised additive models:

j = D, wk0 = 0, wk = ek, ϕ(v,β) = vT 1 + w0 ⇒ y = w0 +

D
∑

k=1

gk(xk)

• Kernel estimation (section E.3.3), using radial basis functions:

y = w0 +

j
∑

k=1

wkτ
−Dϕ

(‖x− µk‖
τ

)

where ϕ is a radial basis function (spherically symmetric, e.g. a multivariate Gaussian density)
centred in µk ∈ R

D and with scale parameter τ . There are variations based on regularisation and
wavelets.

31

6.2 Principal component analysis networks

There exist several neural network architectures capable to extract PCs (see fig. 9), which can be classified
in (see [26] or [11] for more details):

• Autoassociators (also called autoencoders, bottlenecks or n-h-n networks), which are linear two-layer
perceptrons with n inputs, h hidden units and n outputs, trained to replicate the input in the output
layer minimising the squared sum of errors, and typically trained with backpropagation. Bourlard
and Kamp [9] and Baldi and Hornik [2] showed that this network finds a basis of the subspace
spanned by the first h PCs, not necessarily coincident with them30; see [11, 15] for applications.

• Networks based in Oja’s rule [77] with some kind of decorrelating device (e.g. Kung and Diaman-
taras’ APEX [72], Földiák’s network [32], Sanger’s Generalised Hebbian Algorithm [88]).

PSfrag replacements

Linear autoassociator APEX network

W

C

n input units

h < n hidden,
output units

n output units

Figure 9: Two examples of neural networks able to perform a principal component analysis of its training
set: left, a linear autoassociator, trained by backpropagation; right, the APEX network, with Hebbian
weights W and anti-Hebbian, decorrelating weights C. In both cases, the number of hidden units
determines how many principal components are kept.

Linear autoassociators can be extended by including nonlinear activation functions and several layers
(see fig. 10). Surprisingly, this approach has found little success, possibly due to the difficulty to train
this network.

PSfrag replacements

Generative
mapping G

Recognition
mapping R

D

D

L

Linear

Sigmoidal

Figure 10: Autoencoder, implemented as a four-layer nonlinear perceptron where L < D and x̂ =
G(R(x)).

6.3 Projection pursuit learning network (PPLN)

Hwang et al. [54] propose the two-layer perceptron depicted in fig. 11 with a projection pursuit learning
(PPL) algorithm to solve the multivariate nonparametric regression problem of section F.1. The outputs

30If necessary, the true first principal directions can be obtained from the projections of the data on this basis by other
method (e.g. numerical methods, or any of the other PCA networks). The computational effort for this second step is now
much smaller, as the number of dimensions should have decreased substantially compared to the original one. However, in
many applications, any basis —not necessarily the principal components one— will be enough for practical purposes.

32

PSfrag replacements

Input

Output

Hidden

y1 yq

x1 xD

g1 gj

w1D wjD

βq1 βqj

w1

Figure 11: Two-layer perceptron with several output units.

of this perceptron can be expressed as:

yl =

j
∑

k=1

βlkgk(xT wk − wk0) = ĝl(x) =

j
∑

k=1

βlkgk

(

xT ak − µk

sk

)

, l = 1, . . . , q

where ak = wk

‖wk‖ and wk0 is the bias of the k-th hidden unit. The argument of gk, x
T
ak−µk

sk
, is a translated

(µk) and scaled (sk) one-dimensional projection.
In backprojection learning (BPL), the gk are usually sigmoids and all the weights in the network

are estimated simultaneously by gradient descent. Hwang et al. propose a projection pursuit learning
algorithm based on PPR (see section 3.7) that trains the weights sequentially (i.e. it can be considered
that neurons are added to the hidden layer one at a time):

• ŷl = E {yl|x} = E {yl}+
∑j

k=1 βlkgk(xT ak) with E {yl} = 1
n

∑n
i=1 yil, for l = 1, . . . , q, and E {gk} =

0, E
{

g2
k

}

= 1 and ‖ak‖ = 1, for k = 1, . . . , j. {gk}jk=1 are unknown smooth functions.

• Estimate projection directions {ak}, projection strengths {βlk} and unknown smooth functions
{gk} via LS minimisation of the loss function

L2 ({ak}, {βlk}, {gk}) =

q
∑

l=1

Wl E
{

(yl − ŷl)
2
}

=

q
∑

l=1

Wl E

(

yl − E {yl} −
j
∑

k=1

βlkgk(xT ak)

)2

where {Wl}ql=1 are response weightings to specify relative contributions of each output (typically
Wl = 1/ var {yl}, where the variances are either known or, more frequently, estimated from the

data). Expressing L2 as function of the residual functions Rl(k) = yl−E {yl}−
∑j

k 6=m βlmgm(xT am):

L2 =

q
∑

l=1

Wl E
{

(Rl(k) − βlkgk(xT ak))2
}

• Learn unit by unit and layer by layer cyclically after all patterns are presented according to the
following algorithm:

For each unit k = 1, . . . , j:
Assign initial guesses to ak, gk and {βlk}ql=1.
Repeat

Repeat “several times”
Estimate iteratively ak.
Given the new value of ak, estimate gk.

Given the most recent values for ak and gk, estimate {βlk}ql=1.
Until L2 is minimised according to a certain stopping criterion.

33

This training algorithm presents a clear difference with conventional training of neural networks,
in which all weights are updated at the same time.

Hwang et al. use as stopping criterion
|Lnew

2 −Lold
2 |

Lold
2

< ξ = 0.005.

The estimation of the different sets of parameters is as follows:

– {βlk}ql=1 given ak and gk: L2 is quadratic in βlk for fixed gm, βim and am, m 6= k; then, a
linear LS minimisation ∂L2/∂βlk = 0 yields:

β̂lk =
E
{

Rl(k)fk(xT ak)
}

E {f2
k (xT ak)} , l = 1, . . . , q

– gk given ak and {βlk}ql=1: use a 1-D data smoother:

1. Construct an unconstrained nonsmooth estimate g∗k satisfying

min
γki

L2 =

q
∑

l=1

Wl E
{

(

Rl(k) − βlkγki

)2
}

with γki = gk(xT
i ak):

g∗k(xT
i ak) =

∑q
l=1WlβlkRl(k)
∑q

l=1Wlβ2
lk

2. Find a smooth curve ĝk that best represents the scatterplot {(zki, g
∗
k(zki))}ni=1 with zki =

xT
i ak. Hwang et al. propose the use of the supersmoother (section F.3.4) or a smoother

based on Hermite functions (section E.3.7).

– ak given {βlk}ql=1 and gk: by Gauss-Newton nonlinear LS method, because L2 is not quadratic
in ak.

• Forward growing procedure: hidden neurons are added one at a time. After the parameters of
the hidden neuron k are estimated, the parameters of previous neurons are fine-tuned by backfitting
(see section 3.8.1), which is fast and easy because the output units are linear.

• A backward pruning procedure could also be implemented, in which overfitting neurons are
removed one at a time by fitting all models of decreasing size ̃ = j∗ − 1, j∗ − 2, . . . , j for j∗ > j (if
j∗ neurons have already been obtained).

6.3.1 Performance of PPL compared to that of BPL

Although approximation theorems of the form “any noise-free square-integrable function can be approx-
imated to an arbitrary degree of accuracy” exist for both BPL [18, 50, 51, 52] and PPL (see section 6.1),
nothing is said about the number of neurons required in practice. Hwang et al. report some empirical
results (based on a simulation with D = 2, q = 1):

• PPL (with Hermite polynomials or with the supersmoother) outperforms BPL in learning accuracy
(MSE of estimation on test data set for equal number of hidden neurons), learning parsimony
(number of hidden neurons required to attain a fixed MSE) and —unless Gauss-Newton BPL is
used— particularly in learning speed (CPU time employed for training with fixed MSE).

• In PPL, the Hermite polynomials normally outperform the supersmoother.

6.3.2 Parametric PPR

Backfitting in (nonparametric) PPR presents two problems:

• It is difficult to choose the smoothing parameter.

• It either converges very slowly or has a large bias even with noise-free data.

Zhao and Atkeson [101] propose parametric PPR with direct training to achieve improved training speed

and accuracy: f̂(x) =
∑j

k=1

∑P
l=1 clkG(xT ak, tl), where ak are the direction projections, tl are equispaced

knots in the range of the projections of the n data points and are fixed for all directions, and G(s, t) are

34

one-dimensional weight functions usually depending on |s − t|. The ideal G is very similar to a cubic
spline smoother, as its asymptotic form for large N is:

G(s, t) =
1

f(t)h(t)
K

(

s− t
h(t)

)

h(t) =

(

λ

Nf(t)

)1/4

K(u) =
1

2
e
− |u|√

2 sin

(|u|√
2

+
π

4

)

where tl has local density f(t), h(t) is the local bandwidth and K(u) is the kernel function of eq. (F.2),
depicted in fig. 12.

PSfrag replacements

a1 aj

x1 xD

f̂(x)

j directions

K(x)

x

P parallel hyperplanes
evenly distributed

-0.1

0

0.1

0.2

0.3

0.4

-10 -5 0 5 10

PSfrag replacements

a1

aj

x1

xD

f̂(x)

j directions

K(x)

x

P parallel hyperplanes
evenly distributed

Figure 12: Kernel function for parametric PPR.

f̂(x) has jP linear parameters clk and jD nonlinear parameters for the D-dimensional directions ak.

We can consider f̂ as a two-layer perceptron (fig. 12) with activation functionK, fixed location parameters
tl and nodes grouped in j directions, trainable as an MLP and that achieves dimension reduction if j < D.

Zhao and Atkeson propose an efficient training algorithm with direct search for all parameters and
good initial values:

Repeat “several times”

1. Optimise simultaneously clk and ak by a nonlinear LS method, stopping before convergence.

2. LS fit for clk with ak fixed as in 1.

Good initial estimates for the directions ak can be obtained if the first and second derivatives of the
target functions at the data points are known (difficult). Otherwise, backfitting with a simple smoother
can provide approximate initial directions.

Grouping hidden units (i.e. number of hyperplanes) from H = jP into j groups of P reduces the
number of parameters of the net by a fraction of j but keeps constant (asymptotically) the number of
cells in D-dimensional space (the hidden layer partitions the space in cells produced by the intersecting
hyperplanes xT ak). This means the accuracy is the same as for a two-layer perceptron but with fewer
neurons, so that training is easier and generalisation ability better.

Since H ≈ DC1/D, where C is the number of cells, the number of hidden units grows linearly with
the dimension for fixed accuracy: the curse of dimensionality has been reduced.

6.4 Cascade correlation learning network (CCLN)

Figure 13 shows a cascade correlation learning network (CCLN). CCLN [30] is a supervised learning
architecture that dynamically grows layers of hidden neurons with fixed nonlinear activations (e.g. sig-
moids), so that the network topology (size, length) can be efficiently determined. The Cascor training
algorithm is as follows: given a new candidate unit hk,

1. Train input-to-hidden (hidden layer) units using criterion of maximum correlation R between the
candidate unit’s value hk and all the residual output errors ei = yi − ŷi:

∆w = η
∂R

∂w
maxR =

q
∑

i=1

E
{

(hk − hk)(ei − ei)
}

=
1

n

n
∑

l=1

q
∑

i=1

E
{

(h
(l)
k − hk)(e

(l)
i − ei)

}

where hk and ei are the averages over all n training patterns.

35

PSfrag replacements

Input

Output

Hidden
h2h1

R

LMS

y1 y2

x1 x2 x3

Figure 13: Cascade correlation learning network (CCLN).

CCLN PPLN

Inputs to the new hidden unit From input units and all
previous hidden units: in-
creasing dimension

From input units only: fixed dimen-
sion

High-order nonlinearity employed
in residual error approximation

Input connections Input connections and nonparame-
tric, trainable activation functions

Activation function Fixed Variable: trainable, nonparametric

Suitable for Classification (not always) Regression and classification

Retraining of the hidden layer No Yes (backfitting)

Table 2: CCLNs vs PPLNs.

2. (Re)train output-to-hidden (output layer) units from the new and all the previous hidden units
using MSE criterion and speedy quickprop.

Hwang et al. [55] give a comparison between CCLN and PPLN:

• Each new hidden unit (from a pool of candidate units) receives connections from the input layer but
also from all the previous hidden units, which provide with high-order linearity in approximating
the residual error.

• Therefore, the input dimension of the candidate hidden unit increases but the nonlinear activation
remains fixed, thus making training more and more difficult (weight search in high-dimensional
space).

• The maximum correlation criterion pushes the hidden units to their saturated extreme values in-
stead of the active region, making the decision boundary (classification) or the interpolated surface
(regression) very zigzag. Thus, it is not suitable for regression and sometimes not for classification
either.

• Fast retraining of output layer using MSE and speedy quickprop, as there is no need to backpropagate
errors through hidden units (hidden layer not retrained).

Table 2 compares CCLNs with PPLNs.

6.5 BCM neuron using an objective function

6.5.1 The BCM neuron

Figure 14 shows the BCM neuron (Bienenstock, Cooper and Munro [4]). Let x ∈ R
D be the input to

the neuron and c = xT w ∈ R its output. We define the threshold θw = E
{

(xT w)2
}

= E
{

c2
}

and

36

the functions31 φ̂(c, θw) = c2 − 1
2cθw and φ(c, θw) = c2 − cθw. φ has been suggested as a biologically

plausible synaptic modification function to explain visual cortical plasticity. Because the threshold θw
is dynamic and depends on the projections in a nonlinear way, it will always move itself to a position
such that the distribution will never be concentrated at only one of its sides (see fig. 14). Thus, the
distribution has part of its mass on both sides of θw, which makes it a plausible projection index that
seeks multimodalities.

PSfrag replacements

Lw(c)

c

0
1
2
θw

3
4
θw

φ

θw

w1 w2 wD

x1 x2 xD

c = xT w

PSfrag replacements

Lw(c)

c

0

1
2
θw

3
4
θw

φ

θw

w1

w2

wD

x1

x2

xD

c = xT w

PSfrag replacements

Lw(c)

c

0 1
2
θw

3
4
θw

φ

θw

w1

w2

wD

x1

x2

xD

c = xT w

Figure 14: The BCM neuron and its associated functions φ (synaptic) and Lw (loss).

A loss function is attached to the BCM neuron, so that learning of the weights seeks to minimise the
average loss or risk. If the risk is a smooth function its minimisation can be accomplished by gradient
descent. Different loss functions will yield different learning procedures.

Let us consider the family of loss functions

Lw(x) =

∫ x
T
w

0

φ̂(s, θw) =
1

3
c3 − 1

4
E
{

c2
}

c2 = c2
(

c

3
− θw

4

)

= Lw(c)

and the risk

Rw = E {Lw(x)} =
1

3
E
{

c3
}

− 1

4
E
{

c2
}2

Then, the learning rule is:

dwi

dt
= −µ∂Rw

∂wi
= µ

(

E
{

c2xi

}

− E
{

c2
}

E {cxi}
)

= µE {φ(c, θw)xi} =⇒
dw

dt
= −µ∇wRw = µE {φ(c, θw)x} (6.1)

where µ is a time-decaying learning rate.

6.5.2 Extension to nonlinear neuron

Turning the linear BCM neuron into a nonlinear one we achieve:

• Insensitivity to outliers by means of a sigmoidal activation function (cf. eq. (B.1)): c = σ(xT w), as
σ′ ≈ 0 for outliers (points away from the mean lie in the flat part of the sigmoid).

• Ability to shift the distribution so that the part of it that satisfies c < θw will have its mode at 0,
by means of a bias: c = σ(xT w + w0). From a biological viewpoint, the bias w0 can be identified
as spontaneous activity.

Therefore

Lw(x) = σ2(c)

(

σ(c)

3
− θw

4

)

−∇wRw = E {φ(σ(c), θw)σ′(c)x} .

6.5.3 Extension to network with feedforward inhibition

Adding inhibition connections between j BCM neurons (see fig. 15), the inhibited activity for neuron k

is ck = ck − η
∑

l 6=k cl, the threshold θ
k

w = E
{

c2k
}

and the risk Rk = 1
3 E
{

c3k
}

− 1
4 E
{

c2k
}2

, with a total

31Intrator uses a different definition of these functions in some papers (e.g. [57]): φ̂(c, θw) = c2 − 2
3
cθw, φ(c, θw) =

c2 − 4
3
cθw.

37

PSfrag replacements

Input

Hidden

Inhibiting connections

Figure 15: BCM neurons with inhibiting connections. Compare this figure with figure 9.

risk R =
∑j

k=1Rk. The learning rule for linear neurons is:

ẇk = −µ∇wk
R = −µ ∂R

∂wk
= −µ

E
{

φ(ck, θ
k

w)x
}

− η
∑

l 6=k

E
{

φ(cl, θ
l

w)x
}

and for nonlinear neurons with activation ck = σ
(

ck − η
∑

l 6=k cl

)

is:

ẇk = −µ

E
{

φ(ck, θ
k

w)σ′(ck)x
}

− η
∑

l 6=k

E
{

φ(cl, θ
l

w)σ′(cl)x
}

 =

− µE

φ(ck, θ
k

w)σ′(ck)x− η
∑

l 6=k

φ(cl, θ
l

w)σ′(cl)x

(6.2)

Intrator used a BCM feedforward inhibition network with speech data [57] and facial images [60].

6.5.4 Conclusions

• Uses low-order polynomial moments, which are efficiently computable and not very sensible to
outliers, due to the addition of the sigmoidal activation function.

• Natural extension to multidimensional projection pursuit using the feedforward inhibition network.

• The gradient optimisation is O(Nn), i.e. linear with dimension and number of projections sought.

38

7 Conclusions and Future Work

We have defined the problem of dimension reduction as the search for an economic coordinate repre-
sentation of a submanifold of a high-dimensional Euclidean space, a problem so far not yet solved in
a satisfactory and general way. We have then given an overview of several well-known techniques for
dimension reduction, as well as straightforward implementations of some of them using neural networks.

The two major issues that remain open are:

• To overcome the curse of the dimensionality, which demands huge sample sizes to obtain reasonable
results. Most of the techniques reviewed still suffer of this to an extent.

• To determine the intrinsic dimension of a distribution given a sample of it. This is central to the
problem of dimension reduction, because knowing it would eliminate the possibility of over- or
underfitting.

Finally, we would like to conclude by mentioning a number of further techniques related to dimen-
sion reduction that have not been included in this work due to lack of time. These would include the
Helmholtz machine [19, 20], some variations of self-organising maps (growing neural gas [39, 40], Bayesian
approaches [96, 97], etc.), population codes [100], and curvilinear component analysis [22], among others.

39

A Glossary

• Backfitting algorithm: an iterative method to fit additive models, by fitting each term to the
residuals given the rest (see section 3.8.1). It is a version of the Gauss-Seidel methods of numerical
linear algebra.

• BCM: Bienenstock-Cooper-Munro model of neuron selectivity.

• BPL: Backpropagation Learning.

• CART: Classification and Regression Trees.

• CCLN: Cascade Correlation Learning Network.

• cdf, F (x): cumulative distribution function.

• EPP: Exploratory Projection Pursuit.

• Equivariant procedure: one that correspondingly transforms its answer under a transformation of
its input: φ = g(θ)⇒ φ̂ = g(θ̂).

Invariant procedure: one that does not transform its answer under a transformation of its input:
φ = g(θ)⇒ φ = g(θ̂).

• GAM: Generalised Additive Model.

• HMM: Hidden Markov Models.

• iid: independent identically distributed.

• LS: Least Squares.

• MAP: Maximum a posteriori Probability.

• MARS: Multivariate Adaptive Regression Splines.

• MDS: Multidimensional Scaling.

• MLP: Multilayer Perceptron.

• Needleplot: plot of a sample {Xi}ni=1 so that each point gets the same part of the density mass, i.e.
we put a needle at the value of each observation Xi to get an impression of the distribution of the
sample. It is a very noisy estimate of the density. It is equivalent to a sum of discrete Dirac deltas
located at the observations.

• PC: Principal Component.

• PCA: Principal Component Analysis.

• pdf, f(x): probability distribution function or density.

• pmf, fi: probability mass function.

• PP: Projection Pursuit.

• PPDA: Projection Pursuit Density Approximation.

• PPDE: Projection Pursuit Density Estimation.

• PPL: Projection Pursuit Learning.

• PPLN: Projection Pursuit Learning Network.

• PPR: Projection Pursuit Regression.

• RBF: Radial Basis Function.

40

B Notation

• Kronecker delta:

δij =

{

1 i = j

0 i 6= j

• Indicator function:

IM(x) =

{

1 x ∈M
0 otherwise.

• Sigmoid function:

σ(x) =
1

1 + e−x
(B.1)

• Lp-norm of a vector v: ‖v‖p =
(

∑D
i=1|vi|p

)1/p

. Often, we will just write ‖·‖ to mean ‖·‖2.
‖v‖∞ = maxi |vi|.

• D-sphere centred in the origin with radius R: S
D
R = {x ∈ R

D : ‖x‖2 ≤ R} (for the hollow sphere
replace ≤ by =).

• D-hypercube centred in the origin with side 2R: C
D
R = {x ∈ R

D : ‖x‖∞ ≤ R} = [−R,R]D (for the
hollow hypercube replace ≤ by =).

• Half-space of R
D: H

D = {x ∈ R
D : xD ≥ 0}.

• Coordinate unit vectors in R
D: {ei}Di=1, eij = δij , i, j = 1, . . . , D.

• Vector of ones (of whichever dimension): 1 = (1, . . . , 1)T .

• Identity matrix (of whichever dimension): I.

• J = 1
n

(

I− 1
n11T

)

for In×n, 1n×1 and n ∈ N. J verifies J2 = 1
n2 J, J = JT , J1 = 0.

• Square orthogonal matrix: Q−1 = QT .

• A projection Π : R
D −→ R

D of base B = im Π and direction D = kerΠ is represented by a square
matrix ΠD×D, which is symmetrical (Π = ΠT) and idempotent (Π2 = Π). The following properties
hold:

– R
D = B ⊕ D; dimB = j, dimD = D − j. Therefore Π is of rank j and can be represented in

coordinates of B by a matrix AD×j (AT : R
D −→ R

j). The projection will be orthogonal if
the column vectors of A (basis of B) are orthonormal.

– Πz = Π(x + y) = x where z ∈ R
D, x ∈ B and y ∈ D.

– The matrix of the projection on a unit vector v is Π = vvT .

• Matrix representation of a sample of n vectors {x1, . . . ,xn} in R
D: XD×n = (x1, . . . ,xn). The

columns are coordinate vectors and the rows are univariate samples.

• Translation of a sample of n vectors {x1, . . . ,xn} in R
D by vector t ∈ R

D:

– Vector form: x′
i = x + t

– Matrix form: XD×n = (x1, . . . ,xn), X′ = X + t1T .

• Mean x and covariance matrix ΣD×D = (σij) of a sample of n vectors {x1, . . . ,xn} in R
D:

– Vector form: x = 1
n

∑n
i=1 xi, Σ = E

{

(x− E {x})(x− E {x})T
}

= 1
n

∑n
i=1 xix

T
i − xxT .

– Matrix form: XD×n = (x1, . . . ,xn), x = 1
nX1, Σ = 1

nX
(

I− 1
n11T

)

XT = XJXT .

• Square root of a positive semidefinite symmetric square matrix B: B1/2 = A ⇔ AAT = B. If
B = diag (bi), then B1/2 = diag

(√
bi
)

; otherwise, using a spectral decomposition of B: B =

UΛUT = UΛ1/2Λ1/2UT ⇒ B1/2 = UΛ1/2. Note that B1/2 is not unique: B1/2Q for Q orthogonal
is also valid.

41

• Order statistics of a sample {Xi}ni=1: {X(i)}ni=1 with X(1) ≤ · · · ≤ X(n). It is a handy notation to
deal with ordered data.

• Average operator:

E {X} =

1
n

∑n
i=1Xi if X = {Xi}ni=1 is a sample

∑

iXifi if X is a discrete random variable with pmf f
∫

xf(x) dx if X is a continuous random variable with pdf f .

• Moment of order m of univariate density f(u):

µm(f) = E {um} =

(

dm

dtm

)

t=0

E
{

etu
}

.

In particular, µ1 = µ = E {X} is the mean of f and var {X} = σ2(X) = µ2 − µ2
1 its variance.

• Cumulant of order m of univariate density f(u):

km(f) =

(

dm

imdtm

)

t=0

ln E
{

eitu
}

i =
√
−1. (B.2)

In particular, k1 = µ1 (mean), k2 = µ2 − µ2
1 (variance), k3 = µ3 − 3µ1µ2 + 2µ3

1 (skewness) and
k4 = µ4 − 4µ3µ1 − 3µ2

2 + 12µ2
1µ2 − 6µ4

1 (kurtosis). For a random variable with zero mean and
unit variance k1 = 0, k2 = 1, k3 = µ3 and k4 = µ4 − 3 (e.g. for N (0, 1), the standard normal,
k1 = k3 = k4 = 0, k2 = 1).

• Pdf of the multivariate Gaussian or normal distribution in D dimensions N (µ,Σ) with mean
µ ∈ R

D and covariance matrix ΣD×D > 0:

φ(x) =
1

√

det(2πΣ)
e−

1
2 (x−µ)T

Σ
−1(x−µ) =

1
√

(2π)D det(Σ)
e−

1
2 (x−µ)T

Σ
−1(x−µ). (B.3)

Pdf of the standard multivariate N (0, I):

φ(x) =
1

(2π)D/2
e−

1
2‖x‖

2

. (B.4)

Pdf of the one-dimensional normal distribution N (µ, σ) with mean µ ∈ R and variance σ2 ∈ R
+:

φ(x) =
1√
2πσ

e−
1
2

(x−µ)2

σ2 . (B.5)

Pdf of the standard normal N (0, 1):

φ(x) =
1√
2π
e−

1
2 x2

. (B.6)

Cdf of the standard normal N (0, 1):

Φ(x) =

∫ x

−∞
φ(t) dt =

∫ x

−∞

1√
2π
e−

1
2 t2 dt. (B.7)

• Lp-norm of a function f : ‖f‖p =
(∫

fp(x) dx
)1/p

. Often, we will just write ‖·‖ to mean ‖·‖2.

• Lp(R
D) space: space of random D-dimensional variables X such that E {xp} < ∞. Convergence

Xn → X in Lp means E {Xn −X}p → 0 when n→∞.

It is also the space of functions f : R
D −→ R such that ‖f‖2p < ∞. p = 2 is the space of

square-integrable functions.

• Criteria to measure goodness of approximation of one function g to another one f (e.g. g can be a
density estimate of the density f of a random variable X):

– Sum of squares (L2-norm): ‖f − g‖22.

42

– Relative entropy (or Kullback-Leibler distance):

D(f ||g) = Ef

{

ln
f(X)

g(X)

}

(B.8)

which is a distance but not a metric, because D(f ||g) 6= D(g||f) in general.

– Hellinger distance:

H(f, g) =

∫

(

√

f(x)−
√

g(x)
)2

dx. (B.9)

– Mean Squared Error (pointwise error criterion), given a sample {Xi}ni=1:

MSEx(g) = E
{

(g(x)− f(x))2
}

= Var{g(x)}+ Bias2{g(x)} (B.10)

where Bias = E {g(x)} − f(x). This shows the bias-variance decomposition.

– Mean Integrated Squared Error (global error criterion), given a sample {Xi}ni=1:

MISE(g) = E
{

‖g − f‖22
}

= E

{∫

(g(x)− f(x))2 dx

}

=

∫

MSEx(g) dx.

• Entropy of a random variable X:

H(X) = E

{

ln
1

f(X)

}

(B.11)

If X is a continuous random variable, its entropy is often called differential entropy h(X).

Conditional entropy of random variable X given random variable Y :

H(Y |X) = −Ef(X,Y){ln f(Y |X)} (B.12)

Mutual information between random variables X and Y :

I(X;Y) = H(X)−H(X|Y) (B.13)

43

C Properties of the Covariance Matrix

ΣD×D is symmetric semidefinite positive (Σ ≥ 0) and admits a spectral decomposition

Σ = UΛUT (C.1)

with U = (u1, . . . ,uD) orthogonal, Λ = diag (λi) and λi ≥ 0, i = 1, . . . , D; ui is the normalised
eigenvector of Σ associated to eigenvalue λi.

C.1 Transformation of the covariance matrix under transformations of the
sample

Using the spectral decomposition (C.1) of the covariance matrix and the matrix notation introduced in
section B, it is very easy to construct table 3, in which a ∈ R − {0}, t ∈ R

D, D = diag (di) is diagonal,
Q is orthogonal, the primes denote the new entity after the transformation f and the symbol 6= is used
to indicate that the subsequent transformation is complex (not obviously related to f).

Transformation X′ = f(X) x′ Σ′ U′ u′ Λ′ λ′

Translation X + t1T x + t Σ U same Λ same

Rotation QX Qx QΣQT QU rotated Λ same

XQ xQ Σ− x′(x′)T 6= 6= 6= 6=
Axis scaling DX Dx DΣD 6= 6= 6= 6=
Uniform axis scaling aX ax a2Σ U same a2Λ scaled

Affine aX + t1T ax + t a2Σ U same a2Λ scaled

Centring X− x1T 0 Σ U same Λ same

PCA UT (X− x1T) 0 Λ I {ei}Di=1 Λ same

Sphering Σ−1/2(X− x1T) 0 I I {ei}Di=1 I 1

Table 3: Transformation of the covariance matrix under transformations on the sample.

C.2 Centring, scaling, sphering and PCA

Assume XD×n is a sample of n vectors in R
D with mean E {X} and covariance matrix Σ = (σij),

and that the spectral decomposition of Σ is Σ = UΛUT with U orthogonal and Λ diagonal. Let
AD×j = (a1, . . . ,aj), ak ∈ R

D a set of j projection directions.

• Centring is a procedure by which we translate the sample X so that its mean is at the origin:
X′ = X− E {X} = X(I− 1

n11T)⇒ E {X′} = 0.

Centring is inherited by any set of projections: E {X} = 0⇒ E
{

AT X
}

= AT E {X} = 0.

• Scaling achieves unit variance in each axis by dividing componentwise by its standard deviation σi:
X′ = diag

(

σ−1
i

)

X⇒ σ′
ii = 1 ∀i.

• Sphering is an affine transformation that converts the covariance matrix (of the centred sample) into
a unit variance matrix, thus destroying all the first- and second-order information of the sample:
X′ = Σ−1/2(X− E {X})⇒ E {X′} = 0 and Σ′ = I, where32 Σ−1/2 = UΛ−1/2UT .

Sphering is inherited by any orthogonal set of projections: E {X} = 0 and cov {X} = I ⇒
cov

{

AT X
}

= E
{

(AT X)(AT X)T
}

= AT E
{

XXT
}

A = AT A = I.

• PCA is another affine transformation that converts the covariance matrix (of the centred sample)
into a diagonal matrix, thus decorrelating the variables but preserving the variance information:
X′ = UT (X− E {X})⇒ E {X′} = 0, Σ′ = Λ.

PCA and sphering are both translation and rotation invariant, i.e. applying a translation and a
rotation to the data and then performing PCA or sphering produces the same results as performing them
on the original data.

32Actually, X′ = QΣ−1/2(X− E {X}) with Q orthogonal will produce the same result. The case Q = I is the canonical

transformation X′ = Σ−1/2(X − E {X}); the case Q = UT gives X′ = Λ−1/2UT (X − E {X}).

44

D Probability Density Function of a Projected Distribution

Let f(x) a pdf in R
D and Π a projection of base B and direction D, with dimB = j. The orthogonal

projection of the distribution given by f on the subspace B has a new pdf in R
j given by:

fΠ(x) =

∫

D
f(x + y) dy x ∈ B

i.e. the integral for a given point x in the projection subspace B is extended to all points x + y which
project on the same point x. If {ak}jk=1 and {bk}D−j

k=1 are basis of B and D, respectively, the previous
integral is:

fΠ(t) =

∫ ∞

∞
· · ·
∫ ∞

∞
f

(

j
∑

k=1

tkak +

D−j
∑

k=1

λkbk

)

dλ1 . . . dλD−j

with t = (t1, . . . , tj) ∈ R
j .

For the particular case j = 1 and ak = ek we have the marginal densities; e.g. for k = 1:

f(x1) =

∫ ∞

∞
· · ·
∫ ∞

∞
f(x1, . . . , xD) dx2 . . . dxD

For a cloud of points, projected clouds are obtained projecting stepwise on subspace B.

45

E Density Estimation (Density Smoothing)33

In density estimation we have a set of unlabelled data {Xi}ni=1, drawn from an unknown distribution,
which we want to model. The learning of this model is unsupervised in nature (cf. regression smoothing,
appendix F).

A distribution can be characterised by its pdf f(x), which predicts where observations cluster and
occur more frequently and clearly shows skewness and multimodality. Therefore, the problem of density
estimation can be stated as “estimate an unknown density34 f given a sample {Xi}ni=1 of it” (i.e. Xi are
realisations of iid random variables with density f).

E.1 Parametric and nonparametric density estimation

There are two approaches to estimate f :

• Parametric: assume f follows a certain model, equip it with a finite set of parameters and estimate
them. This presents the problem of selecting the model. We will not deal further with it here.

• Nonparametric: no assumptions are made about f ; its shape is dictated by the data {Xi}ni=1.

The main nonparametric density estimation approaches are shortly described next. First (section E.3)
we consider only univariate data {Xi}ni=1 ⊂ R and then (section E.4) we generalise the results to the
multivariate case. For each method, the “local smoothness” and “pdf” properties of the resulting estimate
are given (i.e. whether it is continuous and differentiable, and whether it is a pdf), as well as any problems
they present.

All estimators given are consistent for f , i.e. MSE(f̂h(x))→ 0 when h→ 0 and nh→∞.

E.2 The smoothing parameter

All estimators can be tuned by a smoothing parameter h, such that:

• For small h, the spurious fine structure of the data appears and the estimate is very noisy. In the
limit case h = 0 one obtains a needleplot or a sum of Dirac deltas.

• For large h, all structure is obscured and the estimate is very smooth. In the limit case h =∞ one
obtains a constant function.

A common problem of all density estimation approaches is the optimum selection of the smoothing
parameter. Several methods exist (e.g. cross-validation, bootstrap) to automatically select it from the
data.

E.3 Nonparametric density estimation techniques: Univariate case

E.3.1 Histogram estimation

Divide the real line into bins Bj = [x0 + (j − 1)h, x0 + jh], j ∈ Z, with bin width h > 0 and origin x0.
The estimator is the count of data that fall into each bin:

f̂h(x) =
1

nh
(No. of Xi in same bin as x) =

1

nh

n
∑

i=1

∑

j

IBj
(Xi)IBj

(x)

or, for bins of varying size:

f̂h(x) =
1

n

(No. of Xi in same bin as x)

(width of bin containing x)
.

The histogram is a kernel estimator with uniform kernel.

Local smoothness: Discontinuous in bin boundaries; zero derivative everywhere else.

Problems: The choice of origin can affect the estimate. The next estimators are independent of origin
choice.

33This appendix is mainly based on the books by Silverman [93], Scott [89] and Haerdle [45].
34It is also possible to estimate the cdf F (x) and then obtain from it the pdf f = dF

dx
using the empirical cdf F̂n(x) =

1
n

∑n
i=1 I(−∞,x](Xi). It can be shown that this is an unbiased estimator and has the smallest variance of all unbiased

estimators of the cdf; however, the fact that the cdf is not continuous and that it is difficult to observe skewness or
multimodality in it —particularly with multivariate data— makes it preferable to directly try to estimate the pdf.

46

E.3.2 Naive estimator

The naive estimator is an approximation to the formula f(x) = limh→0 P (x− h < X < x+ h), which
holds by definition of cdf. For small h:

f̂h(x) =
1

2nh
(No. of Xi in (x-h,x+h))

which can be interpreted as “a histogram where every point x is the centre of a bin” (therefore independent
of origin choice).

The naive estimator is a kernel estimator with uniform kernel.

Local smoothness: Discontinuous in Xi ± h; zero derivative everywhere else.

E.3.3 Kernel density estimation

Kernel estimators can be motivated from several points of view, including numerical analysis (as finite
difference approximations to the derivative of the cdf, i.e. the pdf) and signal processing (as convolution
of the pdf with a window function35).

If we define a kernel function K as a nonnegative36, with unit integral (and also typically even),
i.e. a pdf:

K(x) ≥ 0∀x
∫

K(x) dx = 1 and typically K(x) = K(−x)∀x

then the kernel estimator with bandwidth (or window width) h is given by:

f̂h(x) =
1

n

n
∑

i=1

K

(

x−Xi

h

)

i.e. it is a sum of bumps (of shape K and width h) placed at the observations. Table 4 lists some of the
more popular kernels and figure 16 shows their graphical aspect.

Local smoothness, pdf: Inherited from K.

Problems: When applied to data from long-tailed distributions, spurious noise appears in the tails of
the estimate because h is fixed. Smoothing the estimate to avoid this masks the essential detail in
the main body of the distribution (see fig. 17).

E.3.4 Nearest-neighbours estimation

The previous methods count the number of observations in a “box” of width h. In nearest-neighbours
estimation, the amount of smoothing adapts to the local density: the box is wide enough to contain k
samples. k is considerably smaller then the sample size n, typically k ≈ √n.

Given x, arrange distances of Xi to x in descending order: d1(x) ≤ · · · ≤ dn(x). The nearest-
neighbours estimate is:

f̂h(x) =
k

2ndk(x)

dk(x) is bigger in the tails than in the main body, which reduces the problem of undersmoothing in the
tails. However: for x < X(1), dk(x) = X(k) − x, and for x > X(n), dk(x) = x −X(n−k+1); therefore, the

tails of f̂h die away at rate x−1 and f̂h is not integrable and is not a pdf.

Local smoothness: Inherited from dk(x): continuous but discontinuous derivative at 1
2 (X(j) +X(j+k)).

Problems: Heavy tails.

35Actually, the kernel estimator is implemented using the Fast Fourier Transform.
36This is not strictly necessary (e.g. the Dirichlet kernel of table 4, or the kernel by Zhao and Atkeson [101] of fig. 12).

47

Kernel K(u) eff(K), exact to 4 d.p.

Epanechnikov 3
4 (1− u2)I[−1,1](u) 1

Biweight (quartic) 15
16 (1− u2)2I[−1,1](u)

√

3087/3125 ≈ 0.9939

Triangular (1− |u|)I[−1,1](u)
√

243/250 ≈ 0.9859

Gaussian 1√
2π
e−u2/2

√

36π/125 ≈ 0.9512

Uniform (rectangular) 1
2I[−1,1](u)

√

198/125 ≈ 0.9295

Triweight 35
32 (1− u2)3I[−1,1](u)

Cosine π
4 cos

(

π
2u
)

I[−1,1](u)

Dirichlet sin (2N+1)πu
sin πu I[−1,1](u)

Fejér 1
N+1

(

sin (2N+1)πu
sin πu

)2

I[−1,1](u)

Table 4: Some typical kernel functions and their efficiencies.

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

PSfrag replacements

Uniform

Triweight

Triangular

Cosine

Epanechnikov

Biweight

Gaussian

Figure 16: Plot of some typical kernel functions.

Figure 17: The drawback of kernel smoothing. The left picture shows the original distribution (always
in dotted line); in the center picture, kernel smoothing with optimum h is applied and spurious noise
appears in the tail; in the right one, kernel smoothing with a larger h is applied and the estimate is
oversmoothed, producing a large bias in the peak.

48

E.3.5 Generalised k-th nearest-neighbour estimation

It is a kernel estimator evaluated at x with h = dk(x):

f̂h(x) =
1

ndk(x)

n
∑

i=1

K

(

x−Xi

dk(x)

)

The uniform kernel gives ordinary nearest-neighbours estimation.

Local smoothness: Still not differentiable where dk(x) is not.

pdf: Precise integration and tail properties depend on the particular kernel.

E.3.6 Variable (or adaptive) kernel estimator

Define dik as the distance from Xi to the k-th nearest point in the set comprising the other n − 1 data
points. Then the variable kernel estimator is given by:

f̂h(x) =
1

n

n
∑

i=1

1

hdik
K

(

x−Xi

hdik

)

.

h controls the overall degree of smoothing and k the sensitivity to local detail. Data points in regions
where the data are sparse will have flatter kernels associated to them. In other words, local bandwidths
are used to reduce the bias in peaks or valleys of f and to avoid undersmoothing near the boundary of
the interval to which f is restricted.

Local smoothness, pdf: Inherited from K.

E.3.7 Orthogonal series estimation

Assume that f and the weight function w are restricted to the [a, b] interval and let {ϕj}∞j=0 a family of
orthonormal functions in [a, b] with respect to the scalar product:

〈f, g〉 =
∫ b

a

w(x)f(x)g(x) dx

Then 〈ϕjϕk〉 = δjk and the sum
∑∞

j=0 cjϕj(x) with cj = 〈f, ϕj〉 = E {w(x)ϕj(x)} converges pointwise

to f if f ∈ C([a, b]). The “sample” coefficients ĉj = 1
n

∑n
i=1 w(Xi)ϕj(Xi) for j = 0, . . . give a natural,

unbiased estimate of f : f̂(x) =
∑∞

j=0 ĉjϕj(x). However,
∑∞

j=0 ĉjϕj(x) converges to 1
n

∑n
i=1 δ(x−Xi)

because ĉj =
〈

1
n

∑n
i=1 δ(x−Xi), ϕj

〉

. In order to smooth the estimate, we apply a low-pass filter to it,
typically by truncating the series expansion to k terms:

f̂k(x) =

k
∑

j=0

ĉjϕj(x)

where k is the smoothing parameter (k → 0: very smooth, k → ∞: very noisy). In this case the
estimation becomes parametric in the {ĉj}.

More generally, one can define weights {λj}∞j=0 such that λj → 0 when j →∞:

f̂(x) =

∞
∑

j=0

λj ĉjϕj(x)

where the rate at which the {λj} converge to 0 is the smoothing parameter.

Local smoothness, pdf: Depend on the particular series and on the system of weights. In general f̂
will not be nonnegative.

Usual families of orthogonal functions are:

• Fourier series: ϕj(x) = e2πijx in [0, 1] with respect to w(x) = 1, which can be considered as a
Dirichlet kernel (see table 4).

49

• Legendre polynomials: given by Rodrigues’ formula

ϕj(x) = pj(x) =
1

j!2j

dj

dxj
(x2 − 1)j

in [−1, 1] with respect to w(x) = 1, satisfying the recurrence relation

p0 = 1 p1 = x pj =
1

j
((2j − 1)xpj−1 − (j − 1)pj−2) p′j = (2j − 1)pj−1 + p′j−2 j ≥ 2

(E.1)

The normalised Legendre polynomials are
√

j + 1
2pj .

• Hermite polynomials: given by Rodrigues’ formula

ϕj(x) = Hj(x) = (−1)jex2 dj

dxj
e−x2

in [−∞,∞] with respect to w(x) = e−x2

, satisfying the recurrence relation

H0 = 1 H1 = 2x Hj = 2xHj−1 − 2(j − 1)Hj−2 H ′
j = 2jHj−1 j ≥ 2 (E.2)

The normalised Hermite polynomials are Hj/
√

2jj!
√
π.

Series estimators give a compact representation of the estimates of class densities with a low number
of coefficients and are particularly useful for low-dimensional projections.

E.3.8 Maximum penalised likelihood estimator

The likelihood of a curve g as a density underlying the set {Xi}ni=1 of iid observations is

L(g|X1 . . . Xn) =

n
∏

i=1

g(Xi)

which has no finite maximum over the class of all densities; this can be shown by taking g as close as
desired to 1

n

∑n
i=1 δ(x−Xi). We can define a penalised log-likelihood37 as

lα(g) = logL(g)− αR(g)

where:

• L quantifies the goodness of fit.

• R quantifies the roughness of g, e.g. R(g) =
∫

(g′′(x))2 dx.

• α > 0 is the smoothing parameter.

The maximum penalised likelihood estimator is then:

f̂α = arg max
G

lα(g)

where G is the set of functions such that g is a pdf and R(g) <∞.

Local smoothness: As imposed by the search space G.

pdf: Yes, by definition of G.

Problems: Difficult calculation (implicit definition of f̂).

37Something similar is done in the regularised GTM algorithm of section 5.2.3.

50

E.3.9 General weight function estimator

This is a generalisation of all the previous estimators, useful from the theoretical point of view. Consider
a weight function w(x, y) such that w(x, y) ≥ 0 ∀x, y and

∫

w(x, y) dy = 1. The general weight function
estimator is:

f̂(x) =
1

n

n
∑

i=1

w(Xi, x)

The previous estimators can be obtained with a particular election of the weight function w:

• Histogram: w(x, y) =

{

1/h(x) if x, y fall in the same bin

0 otherwise
, where h(x) is the width of the bin

containing x.

• Kernel: w(x, y) = 1
hK

(

y−x
h

)

.

• Orthogonal series: w(x, y) =
∑∞

j=0 λjϕj(x)ϕj(y).

Local smoothness: Inherited from w.

pdf: Yes.

E.4 Nonparametric density estimation techniques: Multivariate case

Several of the methods of section E.3 don’t work well in higher dimensions for different reasons. For
example, in the case of the multivariate histogram:

• Due to its discontinuous nature, it is difficult to visualise even in two dimensions.

• One has to specify not only the origin, but also the bin orientation and the bin length in each
direction. For D dimensions, the bins are hypercubes with volume

∏D
i=1 hi and marginal bin

widths hi.

• It is not possible to draw meaningful contour diagrams of a bivariate histogram.

• If h is too small, the total number of bins becomes very large compared to the sample size, due to
the curse of the dimensionality.

But all density estimation methods suffer in more or less degree from the curse of the dimensionality and
the empty space phenomenon (see section 1.4). This means that:

• It is difficult to estimate the density except for enormous samples.

• The density itself can give a false impression of the likely behaviour of sample data sets.

The methods outlined below are easily extended to D dimensions.

E.4.1 Nearest-neighbour estimation

f̂h(x) =
k/n

V (SD
dk(x))

V (SD
R) = V (SD

1)RD is the volume of the D-dimensional sphere of radius R (see section I.1).

E.4.2 Generalised nearest-neighbour estimation

f̂h(x) =
1

ndD
k (x)

n
∑

i=1

K

(

x−Xi

dk(x)

)

E.4.3 Kernel estimation

The multivariate kernel is usually a radially symmetric unimodal pdf, e.g. N (0, I). The estimator is:

f̂h(x) =
1

nhD

n
∑

i=1

K

(

x−Xi

h

)

If the dispersion of the data is no the same in all directions, it is better to spherise the data than to
complicate the kernel introducing a vector of smoothing parameters hi.

51

E.5 Approximation (sampling) properties

Using the general weight function estimator of section E.3.9 and expanding the unknown density f
in Taylor series, one can find approximated expressions for the mean squared error MSE and mean
integrated squared error MISE (as defined in appendix B) of a given estimator. Table 5 lists the statistics
of several of the smoothers presented; only the order, and not the particular full expression, is given.
The decomposition (B.10) shows the bias-variance trade-off : to have a small bias we need a small
bandwidth h (penalising oversmoothing), but to have a small variance nh has to be large (penalising
undersmoothing). In other words, to have a good estimate we need a small bandwidth with enough
observations. There is therefore an optimal bandwidth h0 that minimises the MSE (and another one for
the MISE).

The table also shows the effect of the curse of the dimensionality on multivariate kernels of order p
and dimension D: for fixed h (in each component) we need a sample size that grows exponentially with
the dimension. This makes difficult the use of kernel smoothers of even small dimension.

Smoother Bias Variance Optimal bandwidth hopt MSEopt, MISEopt

Histogram h 1/nh n−1/3 n−2/3

Kernel h2 1/nh n−1/5 n−4/5

Multivariate kernel h2p 1/nhD n−1/(2p+D) n−2p/(2p+D)

k nearest neighbours (k/n)2 1/k n4/5 n−4/5

Table 5: Statistics for several smoothers (only the order O(·) for n sufficiently large is shown, not the
actual value of the statistic).

Another nasty effect of the curse of the dimensionality occurs when the data are rank-deficient, due
to linear correlations (a very common situation in high dimensions): it can be proven that in this case
the optimal bandwidth goes to zero and the corresponding optimal MISE goes to infinity, however large
the sample size n is [89].

E.5.1 Approximation properties for kernel estimators

It can be proven that, for symmetric kernels, the minimum MISE for the kernel estimator is reached at
h5

opt = β
α2γn

−1, where

α =

∫

t2K(t) dt β =

∫

K2(t) dt γ =

∫

(f ′′(t))
2
dt

and the minimum is MISEopt = 5
4C(K)γ1/5n−4/5, where C(K) = α2/5β4/5. Therefore both hopt and

MISEopt depend on the unknown density f .

Among nonnegative kernels, β and C(K) are minimised by the Epanechnikov kernel Ke(x) of table 4,
which suggests defining the efficiency of a kernel as

eff(K) =

(

C(Ke)

C(K)

)5/4

.

It is remarkable that the efficiency of most kernels is close to 1, as table 4 shows, so there is not much
difference between kernels on the basis of MISE, and other considerations may be taken into account
instead when choosing the kernel (e.g. degree of differentiability or computational effort required). This
fact finds a parallel with radial basis functions in neural networks: the actual shape of the RBFs is
relatively unimportant [5].

For h depending in some way on the sample size n, pointwise as well as global convergence (in
probability for both the uniform and the integration sense) can be proven for kernels satisfying a few
very general conditions [93].

E.6 What method to use?

Silverman [93] proposes the following rule of thumb for choosing the density estimation method:

52

1. First choice: the kernel estimator. It has the only practical drawback being unable to deal satisfac-
torily with the tails of the distribution without oversmoothing the main part of it.

2. Second choice: the variable kernel estimator, if greater accuracy in the tails is required.

53

F Regression Smoothing38

Contrarily to the case of density estimation, in regression smoothing the data are paired: {(xi,yi)}ni=1,
and it is not the distribution of the x or the y that we want to model, but the relationship between both.
The learning is supervised. Table 6 compares density estimation and regression smoothing.

Smoothing Data Objective Learning

Density Unlabelled {xi} ⊂ R
D To model the distribution of X Unsupervised

Regression Paired {(xi,yi)}ni=1 ⊂ R
D × R

q To model the relationship y = f(x) Supervised

Table 6: Density estimation vs. regression smoothing.

F.1 The multivariate regression problem

We consider the following multivariate regression problem [54]:

• Given n pairs of vectors {(xi,yi)}ni=1 that have been generated from unknown models yi = f(xi)+
εi, i = 1, . . . , n, with:

– yi ∈ R
q multivariate response vectors.

– xi ∈ R
D independent or explanatory variables, or predictors, or carriers.

– f : R
D −→ R

q with f = (f1, . . . , fq)
T unknown smooth nonparametric functions.

– εi multivariate random variables with zero mean, independent of xi and often assumed iid.

• Construct estimator f̂ = (f̂1, . . . , f̂q)
T which is a function of the data {(xi,yi)}ni=1 to best ap-

proximate the mean regression curve f(x) = E {Y |X = x} =
∫

yg(x,y) dy/g(x), where g(x,y) is
the joint density and g(x) is the marginal density of x, and use it to predict a new ŷ given a new

independent vector x̂: ŷ = f̂(x̂).

F.2 Parametric and nonparametric regression

As in density estimation, we have two types of regression:

• In parametric multiple regression, the functional form of the regression curve is fixed through
several parameters on whose space an optimum is searched for; for example, linear regression. This
approach is valid if the model (i.e. the chosen curve) is correct —but this can be difficult to verify.

• Nonparametric or model-free methods make a few very general assumptions about the regres-
sion surface. Most nonparametric methods are based on the following two approaches:

– Local averaging (e.g. smoothing by kernel, nearest-neighbours or splines): the estimate of the
regression surface at point x0 is the average of the responses yk of those observations with
predictors xk in a neighbourhood h of x0. Formally, f̂h(x) = 1

n

∑n
i=1Wh(x;x1, . . . ,xn)yi, with

Wh a weight function depending on the smoothing parameter h and the sample {xi}ni=1 of the
explanatory variables.

This has desirable asymptotic properties, but requires many samples in a high-dimensional
space.

– Successive refinement (e.g. polynomial regression, recursive partitioning): a hierarchy of mod-
els of increasing complexity (i.e. degrees of freedom) is formulated. At each step, the model of
the subsequent level of hierarchy that best fits the data is selected.

F.3 Nonparametric regression techniques

Many of the techniques presented here are analogous to those of appendix E.

38This appendix is mainly based in [45, 89].

54

F.3.1 Kernel regression smoothing (the Nadaraya-Watson estimator)

Estimating the joint density g(x,y) with a multiplicative kernel smoother, we obtain the following weight
function:

Wh(x;x1, . . . ,xn) =
1

h

K
(

x−xi

h

)

ĝh(x)

with the following properties:

• Wh depends on the whole sample {xi}ni=1 through the marginal density ĝh(x); the neighbourhood
of x is fixed.

• The observations yi receive more weight in those areas where the corresponding xi are sparse.

• If ĝh(x) = 0, we set f̂h(x) = 0.

• h controls the smoothness of the regression curve:

– If h → 0 then Wh(x) → n if x = xi and is not defined anywhere else, i.e. f̂h(xi) → yi

(interpolation).

– If h→∞ then f̂h(x)→ E {y}.

F.3.2 Nearest-neighbour regression smoothing

Here we have varying neighbourhoods in the x variable:

Wki(x) =

{

n/k if xi is one of the k nearest observations to x

0 otherwise

The number of neighbours k regulates smoothing, so that the larger k is the smoother the estimate is: for
k = n, f̂h(x) = E {y}; for k = 1, f̂h(x) is a step function matching yi for xi and jumping in the middle
between adjacent xi.

F.3.3 Spline regression smoothing

Assume D = 1: x = x ∈ R and x1 ≤ · · · ≤ xn. Reinsch [83] proved that the variational problem (where
λ > 0 is a smoothing parameter)

min
f̂
Sλ(f̂) =

n
∑

i=1

(yi − f̂(xi))
2 + λ‖f̂ ′′‖22 (F.1)

has a unique solution f̂ = f̂h(x) ∈ C2([x1, xn]): the cubic spline, i.e. a set of cubic polynomials pi(x)
between adjacent points xi, xi+1 satisfying boundary conditions

pi(xi) = pi−1(xi)

p′i(xi) = p′i−1(xi)

p′′i (xi) = p′′i−1(xi)

p′′1(x1) = p′′n(xn) = 0

Smoothing grows with λ, from 0 (pure interpolation) to ∞ (least squares linear fit). The shape of the
smoothing spline converges to the kernel [92]:

K(u) =
1

2
e
− |u|√

2 sin

(|u|√
2

+
π

4

)

. (F.2)

Unfortunately, there are theoretical difficulties to extend analytically the variational problem (F.1) to
several dimensions, which prevents using spline regression smoothing for D > 2.

F.3.4 Supersmoother

The supersmoother (Friedman [33]) is a fast, nonparametric, variable bandwidth smoother that provides
piecewise interpolation. However:

• It requires storage of huge regression tables of estimated values {ĝk(xT
i ak)}ni=1 for each ridge function

ĝk, k = 1, . . . , j.

• The derivative ĝ′k must be estimated by first-order finite differences of the estimates {ĝk(xT
i ak)}ni=1

for constant ak, which can become unstable.

55

F.3.5 Orthogonal series regression

Orthogonal series were introduced in section E.3.7. From the point of view of regression, orthogonal
polynomials have the following advantages:

• They provide a smooth interpolation instead of piecewise one.

• Fast and accurate derivatives can be computed using the recursive relations for the polynomials
and their derivatives.

• Contrarily to the supersmoother (section F.3.4), no huge regression tables are needed.

F.3.6 Projection pursuit regression

See section 3.7.

F.3.7 Partitioning methods (regression trees)

Partitioning methods (e.g. CART [10], ID3 [82]) operate as follows:

• Partition the input space into regions according to the data during training (typically with hyper-
planes parallel to the coordinate axes). Binary partitions are common; each region is represented
by a leaf of the binary tree.

• Fit a different mapping in each region (in the simplest case fit a constant).

• Optionally, prune the tree to control the complexity of the model.

56

G Generalised Linear Models

Given a multivariate regression problem (see appendix F) with data {(xi, ti)}ni=1, xi ∈ R
L and ti ∈ R

D,
a generalised linear model learns a mapping of the form y(x) = Wφ(x), where φ is nonlinear and W is
linear:

R
L φ−→ R

M W−→ R
D

x 7−→ φ(x) 7−→ y(x) = Wφ(x).

The linear mapping W can be implemented as a linear, single-layer neural network with biases (see
fig. 18), often called a generalised linear network [5].

PSfrag replacements

Input

Nonlinear φ

Basis functions

Linear W

Output
y1 yD

x1 xL

φ0 = 1
φ1

φM

Biases wk0

Figure 18: Generalised linear network.

Learning is as follows:

• Supervised learning for φ using only the independent variables {xi}ni=1. Typically φ will be a
vector of localised radial basis functions, such as Gaussians:

φj(x) = e
−

‖x−µj‖2

2σ2
j j = 1, . . . ,M

with parameters {µj , σj}Mj=1 to be determined.

• Supervised learning for W using the full data {(xi, ti)}ni=1, according to some criterion. For the
sum of squared errors (L2-norm criterion)

min
W

E(W) =

n
∑

i=1

‖ti −Wφ(xi)‖2

and assuming the φj fixed, E reaches a unique minimum value, given by the solution of the matrix
equation [5]

ΦT ΦWT = ΦT T =⇒ W = [(ΦT Φ)+ΦT T]T

where T = (tik) is N ×D, Φ = (φij) = (φj(xi)) is N × (M + 1) and W = (wkj) is D × (M + 1).

The computation of (ΦT Φ)+, the pseudoinverse matrix of ΦT Φ, can be performed in time O(M 3)
by various standard numerical algorithms39 (see [81] for some of them), and is usually much faster
than gradient descent (backpropagation).

Generalised linear networks are, like the MLP, universal approximators, provided the basis functions
are chosen appropriately. However, the number of basis functions required to obtained a given accuracy
grows exponentially with the dimension L of the space of predictor variables.

39If ΦT Φ is not singular then it is positive definite and Cholesky decomposition can be used; otherwise, one can use the
somewhat slower singular value decomposition.

57

H Manifolds in R
n

This appendix40 briefly formalises the concept of k-dimensional manifold in R
n. The main idea to keep

in mind is that, while a manifold of R
n itself is just a subset of R

n, it has a dimension from a geometrical
point of view. Indeed, a k-dimensional manifold in R

n is a subset of R
n that has only k degrees of

freedom, i.e. that can be described with only k coordinates. For example, if we restrict ourselves to the
case of vector subspaces, a vector subspace of dimension k can be described by a system of k linearly
independent vectors (a basis); the projection of a vector x of the subspace onto that basis gives k real
numbers, which are the coordinates of x in the coordinate system of that basis. Needless to say, the
election of the coordinate system is not unique.

Let us now define more formally the previous ideas. First, we introduce the following naming conven-
tion:

• We will call k-manifold a k-dimensional manifold in R
n.

• We will consider that a mapping is differentiable iff it is continuous and has continuous derivatives
of all orders.

• A diffeomorphism h is a differentiable mapping h : U −→ V between two open sets U, V ⊂ R
n with

differentiable inverse h−1.

Definition H.1. M⊂ R
n is a k-manifold iff for all x ∈M the following condition holds:

(M) There exist two open sets U, V ⊂ R
n with x ∈ U and a diffeomorphism h : U −→ V such that:

h(U ∩M) = V ∩ (Rk × {0}) = {y ∈ V : yk+1 = · · · = yn = 0}.

For example, in R
n:

• A point is a 0-manifold.

• A k-dimensional vector subspace is a k-manifold.

• The hollow n-sphere is an (n− 1)-manifold.

• Any open subset is an n-manifold.

Figure 19 shows two examples of manifolds.

PSfrag replacements MM

x

x

UU hh
V

V

h(x)

h(x)

1-manifold in R
2 2-manifold in R

3

Figure 19: Examples of manifolds.

Most manifolds can be expressed by a functional formula, like the hollow unit n-sphere:
∑n

i=1 x
2
i = 1.

The following theorem helps to find the dimension in those cases.

Theorem H.1. Let A be an open subset in R
n and g : A −→ R

p differentiable. If the Jacobian g′(x) of
g has rank p for g(x) = 0, then g−1(0) is an (n− p)-manifold of R

n.

For example, Sn
1 = g−1(0) for g : R

n −→ R defined as g(x) = ‖x‖2 − 1 =
∑n

i=1 x
2
i − 1.

The following theorem introduces the concept of coordinate system of a manifold.

Theorem H.2. M⊂ R
n is a k-manifold of R

n iff for all x ∈M the following condition holds:

40Which is mainly based in Spivak’s book [94].

58

(C) There exist two open sets U ⊂ R
n, W ⊂ R

k with x ∈ U , and a differentiable one-to-one mapping
f : W −→ R

n such that:

1. f(W) = M ∩ U .

2. The Jacobian f ′(y) has rank k for all y ∈W .

3. f has a continuous inverse f−1 : f(W) −→W .

f is called a coordinate system around x. f and U ∩M define the coordinate neighbourhood
of M. Figure 20 illustrates the point.

PSfrag replacements

x

W

2-dimensional coordinate system

U ∩M

f(x)
f U M

2-manifold

Figure 20: Coordinate system of a 2-manifold in R
3.

Finally we introduce the manifolds-with-boundaries.

Definition H.2. M ⊂ R
n is a k-manifold-with-boundary iff for all x ∈ M either condition (M) or the

following condition hold:

(M’) There exist U , V open subsets of R
n with x ∈ U and a diffeomorphism h : U −→ V such that:

h(U ∩M) = V ∩ (Hk × {0}) = {y ∈ V : yk ≥ 0 and yk+1 = · · · = yn = 0}

and h(x) has its k-th component equal to 0.

This definition separates a manifold M into two disjoint sets:

• The boundary of M, ∂M = {x ∈M : (M’) holds}, which is a (k − 1)-manifold.

• The rest, M− ∂M = {x ∈M : (M) holds}, which is a k-manifold.

Figure 21 gives two examples of manifolds-with-boundaries.

PSfrag replacements

M

M

1-manifold-with-boundary in R
2 2-manifold-with-boundary in R

3

Figure 21: Examples of manifolds-with-boundary. The highlighted points belong to the boundary.

59

I The Geometry of High-Dimensional Spaces41

The geometry of high-dimensional spaces provides a few surprises. Although, in fact, one should say that
the surprises are in the usual, intuitive low-dimensional cases of 1 to 3 dimensions, when compared to
the general (asymptotic) case of higher dimensions.

In the following we will consider the Euclidean space R
D.

I.1 Hypervolumes

• The volume of the D-hypersphere of radius R is V (SD
R) = V (SD

1)RD with dimension-dependent
constant

V (SD
1) =

πD/2

Γ(D
2 + 1)

where Γ(x) is the gamma function.

• The volume of the D-hypercube of side 2R is V (CD
R) = V (CD

1)RD with dimension-dependent
constant V (CD

1) = 2D.

Both volumes depend exponentially on the linear size of the object, but the constants are very different.
This has as an interesting consequence a distortion of the space, as the next section shows.

I.2 Consequences in the limit of high dimensions

• Sphere inscribed in a hypercube: the ratio of the volume of the hypersphere to the volume of the
hypercube is

V (SD
1)

V (CD
1)

=
πD/2

2DΓ(D
2 + 1)

−−−−→
D→∞

0.

That is, with increasing dimension the volume of the hypercube concentrates in its corners and the
centre becomes less important. Table 7) and figure 22 show the volumes V (SD

1), V (CD
1) and the

ratio between them for several dimensions.

• Hypervolume of a thin shell [98]: consider the volume between two concentric spheric shells of
respective radii R and R(1− ε), with ε small. Then the ratio

V (SD
R)− V (SD

R(1−ε))

V (SD
R)

= 1− (1− ε)D −−−−→
D→∞

1.

Hence, virtually all the content of a hypersphere is concentrated close to its surface, which is only a
(D−1)-dimensional manifold (see appendix H). Thus, for data distributed uniformly over both the
hypersphere and the hypercube, most of the data fall near the boundary and edges of the volume.
This example illustrates one important aspect of the curse of the dimensionality, introduced in
section 1.4. Figure 22 illustrates this point for ε = 0.1.

• Tail probability of the multivariate normal : the preceding examples make it clear that most (spher-
ical) neighbourhoods of data distributed uniformly over a hypercube in high dimensions will be
empty. In the case of the standard D-dimensional normal distribution of eq. B.4, the equiprobable
contours are hyperspheres. The probability that a point is within a contour of density ε times the
value at the mode, or, equivalently, inside a hypersphere of radius

√
−2 ln ε, is:

Pr
[

‖x‖2 ≤ −2 ln ε
]

= Pr
[

χ2
D ≤ −2 ln ε

]

(I.1)

because if x = (x1, . . . , xD) is distributed as a standard normal, then xi, i = 1, . . . , D are univariate

standard normal and ‖x‖2 =
∑D

i=1 x
2
i is distributed as a χ2 distribution with D degrees of freedom.

Equation I.1 gives the probability that a random point will not fall in the tails, i.e. that it will fall
in the medium- to high-density region. Figure 22 shows this probability for ε = 0.01 (a radius of 3
standard deviations) and several dimensions: notice how around D = 5 the probability mass of a
multivariate normal begins a rapid migration into the extreme tails. In very high dimensions the
entire sample will be in the tails!

41This appendix is greatly based in chapter 1 of Scott’s book [89].

60

• Diagonals in hyperspace: consider the hypercube [−1, 1]D and let any of the diagonal vectors
from the centre to a corner be denoted by v. Then v is one of the 2D vectors of the form
(±1,±1, . . . ,±1)T . The angle between a diagonal vector v and a coordinate axis ei is given by

cos θD =
vei

‖v‖‖ei‖
=
±1√
D
−−−−→
D→∞

0.

Thus, the diagonals are nearly orthogonal to all coordinate axes for large D.

Pairwise scatter diagrams essentially project the multivariate data onto all the 2-dimensional co-
ordinate planes. Hence, any data cluster lying near a diagonal in hyperspace will be mapped into
the origin in every paired scatterplot, while a cluster along a coordinate axis will be visible in some
plot. Thus the choice of coordinate systems is critical in data analysis: 1- or 2-dimensional intuition
is valuable but not infallible when continuing on to higher dimensions.

D 1 2 3 4 · · · 10

V (SD
1) 2 π 4

3π
π2

2 · · · π5

120 ≈ 2.55

V (CD
1) 2 4 8 16 · · · 1024

V (SD
1)

V (CD
1)

1 π
4

π
6

π2

32 · · · π5

122880 ≈ 0.0025

Table 7: Volumes of unit D-hypersphere and D-hypercube.

0

1

2

3

4

5

6

0 5 10 15 20 25 30

PSfrag replacements

Dimension D

V (SD
1)

V (CD
1)

V (S
D
1)

V (CD
1) Relative hypervolume

of a thin shell

Pr

[

multivariate normal point
not in the tails

]

Figure 22: Dependence of several geometric quantities with the dimension (of course, only natural num-
bers D = 1, 2, . . . are meaningful). See the main text for an explanation.

61

J Multidimensional Scaling42

Multidimensional Scaling (MDS) is a set of mathematical techniques that enable a researcher to uncover
the hidden structure of data. It has applications in Psychology, Sociology, Anthropology, Economy,
Educational Research, etc.

Suppose we have a set of I objects (e.g. several auditory stimuli) and that a measure of the similarity
of these objects between themselves is known. This measure, called proximity, is a number that indicates
how similar or how dissimilar two objects are or are perceived to be. It can be obtained in different ways,
e.g. by asking people to judge the psychological closeness of the stimulus objects. What MDS does is to
draw a spatial representation or map in which each object is represented by a point and the distances
between points resemble as faithfully as possible the original similarity information; i.e. the larger the
dissimilarity between two objects, the farther apart they should be in the spatial representation. This
geometrical configuration of points reflects the hidden structure of the data and often makes it much
easier to understand.

Let us consider an example. Confusions among 36 auditory Morse code signals were collected by
Rothkopf [86]. Each signal consists of a sequence of dots and dashes, such as -.- for K and ..--- for
2. Subjects who did not know Morse code listened to a pair of signals (produced at a fixed rapid rate
by machine and separated by a quiet period of 1.4 seconds), and were required to state whether the
two signals they heard were the same or different. Each number in table 8 is the percentage of roughly
150 observers who responded “same” to the row signal followed by the column signal. This matrix is
roughly symmetric, with diagonal entries large and off-diagonal entries small, as expected, and contains
the proximities data.

A B C · · · 0
A 82 04 08 03
B 06 84 37 04
C 04 38 87 12
· · · · · ·
0 09 03 11 94

Table 8: Rothkopf’s data on similarities among Morse code symbols.

Figure 23 (left) shows the result of applying MDS to the proximities of table 8 (from Shepard [91]) using
a two-dimensional map. The 36 circles represent the points found and are labelled with the corresponding
Morse code. In this case, MDS clearly shows that the data are governed by a sort of length parameter,
the number of components of the signal, as well as by the individual numbers of dots and dashes.

J.1 Two-way MDS43

Formally, assume the input data is a (roughly) symmetric matrix of I × I containing the proximities:
∆ = (δij). For an L-dimensional map, the output data will be a set of points {xi}Ii=1 ∈ R

L, referred to
some unimportant coordinate system, such that the distances dij = d(xi,xj) ∀i, j = 1, . . . , I (typically
Euclidean) are as close as possible to a function f of the corresponding proximities, f(δij). MDS is called
metric if f is linear, otherwise it is called nonmetric. f can be plotted together with the pairs (δij , dij)
in a scatter (or Shepard) diagram, that plots the distance in L-dimensional space versus the proximities.
If the proximities are dissimilarities (i.e. dissimilar objects have a large proximity value), it will be a
rising pattern; otherwise, it will be a falling one. For example, in the Morse code case the proximities
are similarities; the corresponding falling scatter diagram is shown in fig. 23 (right).

The computational procedure is as follows: define an objective function stress to be minimised by f :

f -stress(∆,X, f) =

√

∑

i,j (f(δij)− dij)
2

scale factor

where the scale factor will typically be
∑

i,j d
2
ij . Then, for X = (x1, . . . ,xI), find the function that

produces the minimum stress:

stress(∆,X) = min
f
f -stress(∆,X, f).

42This appendix draws largely from Kruskal’s book [71].
43In three-way MDS we have K matrices ∆k = (δij,k), which can correspond to different measures of the proximities

(e.g. in different times or by different subjects).

62

PSfrag replacements

A

B

C

D

E

F G

H

I

J

K

L

M

N

OP

Q

R

S

T

U

V

W

X

Y

Z

0

1

2
3

4

5

6

7

8

9

.-

-...

-.-.

-..

.

..-.
--.

....

..

.---

-.-

.-..

--

-.

---.--.

--.-

.-.

...

-

..-

...-

.--

-..-

-.--

--..

.----

..---

...--

....-

....

-....

--...

---..

----.

DASHES

D
O
T
S

N
U

M
B

E
R

O
F

C
O

M
P

O
N

E
N

T
S

PSfrag replacements

10

20

30

40

50

60

70

80

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Interpoint distance

P
er

ce
n
t

“
sa

m
e”

ju
d
g
m

en
ts

Figure 23: Left: 2D map resulting from the Morse code similarities and Shepard’s interpretation of it.
Right: Scatter diagram corresponding to the map.

Once f has been determined, the optimal map X̂ is found as

stress(∆, X̂) = min
X

stress(∆,X).

Any solution map X̂ can be freely translated and rotated (perhaps to appear in a more aesthetical
way) without changing the value of the stress; therefore the actual coordinate system in the map is
meaningless.

Degeneracy can happen if the objects have a natural clustering and the dissimilarities between objects
in different clusters are (almost) all larger than the dissimilarities within each cluster. In this case,
(almost) all points of a single cluster will converge to a single location, the stress will converge to 0 and
the scatter diagram will be a staircase.

If each of the objects has an associated value vi, (linear) regression can be performed on the generated
map to further help to interpret the data: {(xi, vi)}Ii=1.

J.2 Selection of the map dimension

Obviously, the larger the dimension of the map is, the smaller the stress will be; however, one should keep
L as small as possible so that (1) the map can be visualised and (2) no more than necessary dimensions
are used (to avoid false interpretations).

Also, to assure an adequate degree of statistical stability, the dimension cannot be arbitrarily large
for a given sample size. A convenient rule of thumb is that the number of (significant) pairs of objects
should be at least twice the number of parameters to be estimated:

I(I − 1)

2
≥ 2IL =⇒ I ≥ 4L+ 1

Too large or too small the dimension of the map can give a misleading view of the data. For example,
points apparently clustered in a 2D map can actually lie far apart in a 3D one. A simple way to embed
information from the original data in the map is to draw a line between every pair of objects whose
proximity exceeds some threshold value: the presence of long, haphazardly crossing lines will indicate a
discrepancy between closeness in the data and closeness in the space. Clusters will only be valid if they

63

are consonant with the lines, i.e. points within a cluster should be well connected with each other and
poorly connected with those outside the cluster.

Sometimes the lines can connect many points in some nonlinear shape, like in figure 24, which suggests
that only one curvilinear dimension would be enough to give a reasonable description of the data. This
is called the horseshoe phenomenon.

PSfrag replacements

Figure 24: The horseshoe phenomenon.

J.3 Problems of MDS

• It is difficult to select the appropriate dimension of the map; one must try several.

• MDS does a much better job in representing large distances (the global structure) than small ones
(the local structure).

• Contrarily to principal component analysis, in MDS one cannot obtain an (L−1)-dimensional map
out of an L-dimensional one by dropping one coordinate (or, in general, by linearly projecting along
some direction).

64

References

[1] D. Asimov, The grand tour: A tool for viewing multidimensional data, SIAM J. Sci. Stat. Comput.,
6 (1985), pp. 128–143.

[2] P. Baldi and K. Hornik, Neural networks and principal component analysis: Learning from
examples without local minima, Neural Networks, 2 (1989), pp. 53–58.

[3] R. Bellman, Adaptive Control Processes: A Guided Tour, Princeton University Press, Princeton,
1961.

[4] E. L. Bienenstock, L. N. Cooper, and P. W. Munro, Theory for the development of neuron
selectivity: Orientation specificity and binocular interaction in visual cortex, J. Neurosci., 2 (1982),
pp. 32–48.

[5] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford University Press, New York,
Oxford, 1995.

[6] C. M. Bishop, M. Svensén, and C. K. I. Williams, EM optimization of latent-variable density
models, in Advances in Neural Information Processing Systems, D. S. Touretzky, M. C. Mozer, and
M. E. Hasselmo, eds., vol. 8, MIT Press, Cambridge, MA, 1996, pp. 465–471.

[7] , GTM: A principled alternative to the self-organising map, in Advances in Neural Information
Processing Systems, M. C. Mozer, M. I. Jordan, and T. Petsche, eds., vol. 9, MIT Press, Cambridge,
MA, 1997.

[8] , Magnification factors for the GTM algorithm, tech. rep., Neural Computing Research Group,
Aston University, 1997.

[9] H. Bourlard and Y. Kamp, Autoassociation by the multilayer perceptrons and singular value
decomposition, Biological Cybernetics, 59 (1988), pp. 291–294.

[10] L. J. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and Regression
Trees, Wadsworth, Belmont, Calif., 1984.

[11] M. Á. Carreira-Perpiñán, Compression neural networks and feature extraction: Application to
human recognition from ear images, Master’s thesis, Facultad de Informática, Technical University
of Madrid, Sept. 1995.

[12] B. Cheng and D. M. Titterington, Neural networks: A review from a statistical perspective,
Statistical Science, 9 (1994), pp. 2–30 (with comments, pp. 31–54).

[13] H. Chernoff, The use of faces to represent points in k-dimensional space graphically, J. Amer.
Stat. Assoc., 68 (1973), pp. 361–368.

[14] D. Cook, A. Buja, and J. Cabrera, Projection pursuit indexes based on orthonormal function
expansions, Journal of Computational and Graphical Statistics, 2 (1993), pp. 225–250.

[15] G. W. Cottrell, P. W. Munro, and D. Zipser, Image compression by backpropagation: A
demonstration of extensional programming, in Advances in Cognitive Science, N. E. Sharkey, ed.,
vol. 2, Abbex, Norwood, NJ, 1988.

[16] T. M. Cover and J. A. Thomas, Elements of Information Theory, Wiley Series in Telecommu-
nications, John Wiley & Sons, New York, London, Sydney, 1991.

[17] J. D. Cowan, G. Tesauro, and J. Alspector, eds., Advances in Neural Information Processing
Systems, vol. 6, Morgan Kaufmann, San Mateo, 1994.

[18] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control, Signals and
Sys., 2 (1989), pp. 304–314.

[19] P. Dayan and G. E. Hinton, Varieties of Helmholtz machine, Neural Networks, 9 (1996),
pp. 1385–1403.

[20] P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel, The Helmholtz machine, Neural
Computation, 7 (1995), pp. 889–904.

65

[21] P. Dayan and R. S. Zemel, Competition and multiple cause models, Neural Computation, 7
(1995), pp. 565–579.

[22] P. Demartines and J. Hérault, Curvilinear Component Analysis: a self-organizing neural net-
work for nonlinear mapping of data sets, IEEE Trans. Neural Networks, 8 (1997), pp. 148–154.

[23] A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data
via the EM algorithm, Journal of the Royal Statistical Society, B, 39 (1977), pp. 1–38.

[24] P. Diaconis and D. Freedman, Asymptotics of graphical projection pursuit, Annals of Statistics,
12 (1984), pp. 793–815.

[25] P. Diaconis and M. Shahshahani, On nonlinear functions of linear combinations, SIAM J. Sci.
Stat. Comput., 5 (1984), pp. 175–191.

[26] K. I. Diamantaras and S.-Y. Kung, Principal Component Neural Networks. Theory and Appli-
cations, Wiley Series on Adaptive and Learning Systems for Signal Processing, Communications,
and Control, John Wiley & Sons, New York, London, Sydney, 1996.

[27] G. H. Dunteman, Principal Component Analysis, no. 07–069 in Sage University Paper Series on
Quantitative Applications in the Social Sciences, Sage Publications, Beverly Hills, 1989.

[28] G. Eslava and F. H. C. Marriott, Some criteria for projection pursuit, Statistics and Com-
puting, 4 (1994), pp. 13–20.

[29] B. S. Everitt, An Introduction to Latent Variable Models, Monographs on Statistics and Applied
Probability, Chapman & Hall, London, New York, 1984.

[30] S. E. Fahlman and C. Lebiere, The cascade-correlation learning architecture, in Advances in
Neural Information Processing Systems, D. S. Touretzky, ed., vol. 2, Morgan Kaufmann, San Mateo,
1990, pp. 524–532.

[31] M. K. Fleming and G. W. Cottrell, Categorization of faces using unsupervised feature ex-
traction, in Proc. Int. J. Conf. on Neural Networks, vol. II, 1990, pp. 65–70.

[32] P. Földiák, Adaptive network for optimal linear feature extraction, in Proc. Int. J. Conf. on Neural
Networks, vol. I, 1989, pp. 401–405.

[33] J. H. Friedman, A variable span smoother, Tech. Rep. 5, Stanford University, 1984.

[34] , Exploratory projection pursuit, J. Amer. Stat. Assoc., 82 (1987), pp. 249–266.

[35] , Multivariate adaptive regression splines, Annals of Statistics, 19 (1991), pp. 1–67 (with
comments, pp. 67–141).

[36] J. H. Friedman and W. Stuetzle, Projection pursuit regression, J. Amer. Stat. Assoc., 76
(1981), pp. 817–823.

[37] J. H. Friedman, W. Stuetzle, and A. Schroeder, Projection pursuit density estimation, J.
Amer. Stat. Assoc., 79 (1984), pp. 599–608.

[38] J. H. Friedman and J. W. Tukey, A projection pursuit algorithm for exploratory data analysis,
IEEE Trans. Computers, C–23 (1974), pp. 881–889.

[39] B. Fritzke, Growing cell structures —a self-organizing network for unsupervised and supervised
learning, Neural Networks, 7 (1994), pp. 1441–1460.

[40] , Some competitive learning methods, draft, Institute for Neural Computation, Ruhr-
Universität Bochum, 5 Apr. 1997.

[41] R. M. Gray, Vector quantization, IEEE ASSP Magazine, (1984), pp. 4–29.

[42] P. Hall, On polynomial-based projection indices for exploratory projection pursuit, Annals of
Statistics, 17 (1989), pp. 589–605.

[43] W. J. Hardcastle, F. E. Gibbon, and K. Nicolaidis, EPG data reduction methods and their
implications for studies of lingual coarticulation, J. of Phonetics, 19 (1991), pp. 251–266.

66

[44] W. J. Hardcastle, W. Jones, C. Knight, A. Trudgeon, and G. Calder, New developments
in electropalatography: A state-of-the-art report, J. Clinical Linguistics and Phonetics, 3 (1989),
pp. 1–38.

[45] W. Härdle, Smoothing Techniques with Implementations in S, Springer Series in Statistics,
Springer-Verlag, Berlin, 1991.

[46] T. J. Hastie and W. Stuetzle, Principal curves, J. Amer. Stat. Assoc., 84 (1989), pp. 502–516.

[47] T. J. Hastie and R. J. Tibshirani, Generalized additive models, Statistical Science, 1 (1986),
pp. 297–318 (with comments).

[48] , Generalized additive models: Some applications, J. Amer. Stat. Assoc., 82 (1987), pp. 371–
386.

[49] , Generalized Additive Models, no. 43 in Monographs on Statistics and Applied Probability,
Chapman & Hall, London, New York, 1990.

[50] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks, 4
(1991), pp. 251–257.

[51] K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal
approximators, Neural Networks, 2 (1989), pp. 359–366.

[52] , Universal approximation of an unknown mapping and its derivatives using multilayer feed-
forward networks, Neural Networks, 3 (1990), pp. 551–560.

[53] P. J. Huber, Projection pursuit, Annals of Statistics, 13 (1985), pp. 435–475 (with comments,
pp. 475–525).

[54] J.-N. Hwang, S.-R. Lay, M. Maechler, R. D. Martin, and J. Schimert, Regression mod-
eling in back-propagation and projection pursuit learning, IEEE Trans. Neural Networks, 5 (1994),
pp. 342–353.

[55] J.-N. Hwang, S.-S. You, S.-R. Lay, and I.-C. Jou, The cascade-correlation learning: A pro-
jection pursuit learning perspective, IEEE Trans. Neural Networks, 7 (1996), pp. 278–289.

[56] N. Intrator, Localized exploratory projection pursuit, in Proceedings of the 23rd Conference on
the Interface between Computer Science and Statistics, Seattle, 1991.

[57] , Feature extraction using an unsupervised neural network, Neural Computation, 4 (1992),
pp. 98–107.

[58] N. Intrator, Combining exploratory projection pursuit and projection pursuit regression with
application to neural networks, Neural Computation, 5 (1993), pp. 443–455.

[59] N. Intrator and L. N. Cooper, Objective function formulation of the BCM theory of visual
cortical plasticity: Statistical connections, stability conditions, Neural Networks, 5 (1992), pp. 3–17.

[60] N. Intrator, D. Reisfeld, and Y. Yeshurun, Face recognition using a hybrid super-
vised/unsupervised neural network, tech. rep., Dept. of Computer Science, Tel-Aviv University,
22 June 1995.

[61] J. E. Jackson, A User’s Guide to Principal Components, Wiley Series in Probability and Math-
ematical Statistics, John Wiley & Sons, New York, London, Sydney, 1991.

[62] I. T. Jolliffe, Principal Component Analysis, Springer Series in Statistics, Springer-Verlag,
Berlin, 1986.

[63] L. K. Jones, On a conjecture of Huber concerning the convergence of projection pursuit regression,
Annals of Statistics, 15 (1987), pp. 880–882.

[64] M. C. Jones, The Projection Pursuit Algorithm for Exploratory Data Analysis, PhD thesis, Uni-
versity of Bath, 1983.

[65] M. C. Jones and R. Sibson, What is projection pursuit?, Journal of the Royal Statistical Society,
A, 150 (1987), pp. 1–18 (with comments, pp. 19–36).

67

[66] H. F. Kaiser, The varimax criterion for analytic rotation in factor analysis, Psychometrika, 23
(1958), pp. 187–200.

[67] N. Kambhatla and T. K. Leen, Fast non-linear dimension reduction, in Cowan et al. [17],
pp. 152–159.

[68] S. Klinke and D. Cook, Kernel-based projection pursuit indices in XGobi, tech. rep., Humboldt-
University of Berlin, error.

[69] T. K. Kohonen, The self-organizing map, Proc. IEEE, 78 (1990), pp. 1464–1480.

[70] A. Krogh, M. Brown, I. S. Mian, K. Sjölander, and D. Haussler, Hidden Markov models
in computational biology, J. of Molecular Biology, 235 (1994), pp. 1501–1531.

[71] J. B. Kruskal and M. Wish, Multidimensional Scaling, no. 07–011 in Sage University Paper
Series on Quantitative Applications in the Social Sciences, Sage Publications, Beverly Hills, 1978.

[72] S. Y. Kung, K. I. Diamantaras, and J. S. Taur, Adaptive principal component extraction
(APEX) and applications, IEEE Trans. Signal Processing, 42 (1994), pp. 1202–1217.

[73] A. A. Lubischew, On the use of discriminant functions in taxonomy, Biometrics, 18 (1962),
pp. 455–477.

[74] D. J. C. MacKay, Bayesian neural networks and density networks, Nuclear Instruments and
Methods in Physics Research A, 354 (1995), pp. 73–80.

[75] K. V. Mardia, J. T. Kent, and J. M. Bibby, Multivariate Analysis, Probability and Mathe-
matical Statistics Series, Academic Press, New York, 1979.

[76] R. M. Neal, Bayesian Learning for Neural Networks, Springer Series in Statistics, Springer-Verlag,
Berlin, 1996.

[77] E. Oja, Principal components, minor components, and linear neural networks, Neural Networks, 5
(1992), pp. 927–935.

[78] C. Posse, An effective two-dimensional projection pursuit algorithm, Communications in Statistics
—Simulation and Computation, 19 (1990), pp. 1143–1164.

[79] , Projection pursuit exploratory data analysis, Computational Statistics and Data Analysis,
20 (1995), pp. 669–687.

[80] , Tools for two-dimensional exploratory projection pursuit, Journal of Computational and
Graphical Statistics, 4 (1995), pp. 83–100.

[81] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes
in C: The Art of Scientific Computing, Cambridge University Press, Cambridge, U.K., second ed.,
1992.

[82] J. R. Quinlan, Induction of decision trees, Machine Learning, 1 (1986), pp. 81–106.

[83] C. H. Reinsch, Smoothing by spline functions, Numerische Mathematik, 10 (1967), pp. 177–183.

[84] B. D. Ripley, Neural networks and related methods for classification, Journal of the Royal Statis-
tical Society, B, 56 (1994), pp. 409–437 (with comments, pp. 437–456).

[85] H. Robbins and S. Monro, A stochastic approximation method, Annals of Mathematical Statis-
tics, 22 (1951), pp. 400–407.

[86] E. Z. Rothkopf, A measure of stimulus similarity and errors in some paired-associate learning
tasks, J. of Experimental Psychology, 53 (1957), pp. 94–101.

[87] J. W. Sammon, Jr., A nonlinear mapping for data structure analysis, IEEE Trans. Computers,
C–18 (1969), pp. 401–409.

[88] T. D. Sanger, Optimal unsupervised learning in a single-layer linear feedforward neural network,
Neural Networks, 2 (1989), pp. 459–473.

68

[89] D. W. Scott, Multivariate Density Estimation. Theory, Practice, and Visualization, Wiley Series
in Probability and Mathematical Statistics, John Wiley & Sons, New York, London, Sydney, 1992.

[90] D. W. Scott and J. R. Thompson, Probability density estimation in higher dimensions, in
Computer Science and Statistics: Proceedings of the Fifteenth Symposium on the Interface, J. E.
Gentle, ed., Amsterdam, New York, Oxford, 1983, North Holland-Elsevier Science Publishers,
pp. 173–179.

[91] R. N. Shepard, Analysis of proximities as a technique for the study of information processing in
man, Human Factors, 5 (1963), pp. 33–48.

[92] B. W. Silverman, Some aspects of the spline smoothing approach to non-parametric regression
curve fitting, Journal of the Royal Statistical Society, B, 47 (1985), pp. 1–52.

[93] , Density Estimation for Statistics and Data Analysis, no. 26 in Monographs on Statistics and
Applied Probability, Chapman & Hall, London, New York, 1986.

[94] M. Spivak, Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Cal-
culus, Addison-Wesley, 1965.

[95] D. F. Swayne, D. Cook, and A. Buja, User’s Manual for XGobi, a Dynamic Graphics Program
for Data Analysis Implemented in the X Window System (Release 2), Bellcore, Nov. 1991.

[96] A. Utsugi, Hyperparameter selection for self-organizing maps, Neural Computation, 9 (1997),
pp. 623–635.

[97] , Topology selection for self-organizing maps, Network: Computation in Neural Systems, 7
(1997), pp. 727–740.

[98] E. J. Wegman, Hyperdimensional data analysis using parallel coordinates, J. Amer. Stat. Assoc.,
85 (1990), pp. 664–675.

[99] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, New York, Oxford,
1965.

[100] R. S. Zemel and G. E. Hinton, Developing population codes by minimizing description length,
in Cowan et al. [17], pp. 11–18.

[101] Y. Zhao and C. G. Atkeson, Implementing projection pursuit learning, IEEE Trans. Neural
Networks, 7 (1996), pp. 362–373.

69

