
Chapter 7

Conclusion

The three pillars of the thesis are the theoretical results described in Chapter 4, the polygonal line

algorithm proposed in Chapter 5, and the experimental results with the principal graph algorithm

presented in Chapter 6. Below we summarize our main results in these three areas, and briefly

discuss some of the possible areas of future research.

Theory

We proposed a new definition of principal curves with a length constraint. Based on the new defini-

tion, we proved the following two results.

• Existence of principal curves. Principal curves in the new sense exist for all distributions

with final second moments.

• Consistency and rate of convergence. For distributions concentrated on a bounded and

closed convex set, an estimator of the principal curve can be constructed based on a data set

of n i.i.d. sample points such that the expected loss of the estimator converges to the loss of

the principal curve at a rate of n−1/3.

Two interesting open problems are the following.

• Concrete principal curves. It would be of both theoretical and practical interest if concrete

examples of principal curves of basic multivariate densities could be found.

• A more practical constraint. It would be convenient to replace the length constraint with a

practically more suitable restriction, such as a limit on the maximum curvature of the curve,

that is more closely related to the curvature penalty applied in the practical algorithm.
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Algorithm

Our main result here is a practical algorithm to estimate principal curves based on data. Experimen-

tal results on simulated data demonstrate that the polygonal line algorithm compares favorably to

previous methods both in terms of performance and computational complexity.

A possible area of further research is to extend the polygonal line algorithm to find multi-

dimensional manifolds. There are two fundamentally different approaches to extend principal

curves to principal surfaces or to arbitrary-dimensional principal manifolds. In the first approach,

the theoretical model and the algorithm are either extended to include smooth non-parametric sur-

faces [Has84, HS89], or they can be used, without modification, to find arbitrary-dimensional prin-

cipal manifolds [SMS98, SWS98]. The second approach follows the strategy of an iterative PCA

algorithm which finds the ith largest principal component by finding the first principal component

in the linear subspace orthogonal to the first i− 1 principal components. In the second approach,

therefore, the one-dimensional principal curve routine is called iteratively so that in ith iteration,

we compute the principal curve of the data set obtained by subtracting from the data points their

projections to the principal curve computed in the (i−1)th iteration [Del98, CG98b, DM95].

Theoretically, it is not impossible to use the first approach, i.e., to extend the polygonal line

algorithm to find arbitrary-dimensional piecewise linear manifolds. Technically, however, it is not

clear at this point how this extension could be done. The second approach, on the other hand, seems

feasible to be implemented with the polygonal line algorithm. The exact design of the algorithm is

subject of future research.

Applications

We proposed an extended version of the polygonal line algorithm to find principal graphs of data sets

obtained from binary templates of black-and-white images. Test results indicate that the principal

graph algorithm can be used to find a smooth medial axis of a wide variety of character templates,

and to represent hand-written text efficiently.

Here, the main objective of future research is to improve the computational complexity of the

method. At this point the “general purpose” polygonal line algorithm is used as the “main engine”

for the principal graph algorithm. We expect that by incorporating the special features of the highly

structured data obtained from binary templates into the algorithm, the efficiency of the algorithm

can be increased substantially.

110



Bibliography

[AH69] T. M. Alcorn and C. W. Hoggar. Preprocessing of data for character recognition. Mar-

coni Review, 32:61–81, 1969.

[Ale84] K. Alexander. Probability inequalities for empirical processes and a law of the iterated

logarithm. Annals of Probability, pages 1041–1067, 1984.

[Ash72] R. B. Ash. Real Analysis and Probability. Academic Press, New York, 1972.

[Bar87] D. J. Bartholomew. Latent Variable Models and Factor Analysis. Charles Griffin &

Co. Ltd., London, 1987.

[BCJL94] P. V. Balakrishnan, M. C. Cooper, V. S. Jacob, and P. A. Lewis. A study of the classifi-

cation capabilities of neural networks using unsupervised learning: a comparison with

k-means clustering. Psychometrika, 59(4):509–525, 1994.

[BD75] J. Bezdek and J. Dunn. Optimal fuzzy partitions: A heuristic for estimating the parame-

ters in a mixture of normal distributions. IEEE Transactions on Computers, 24(4):835–

838, 1975.

[BDHW97] G. Balzuweit, R. Der, M. Herrmann, and M. Welk. An algorithm for generalized

principal curves with adaptive topology in complex data sets. Technical Report 3/97,

Institut für Informatik, Universität Leipzig, 1997.

[BLL98] P. Bartlett, T. Linder, and G. Lugosi. The minimax distortion redundancy in empirical

quantizer design. IEEE Transactions on Information Theory, 44(5):1802–1813, 1998.

[BP95] J. C. Bezdek and N. R. Pal. An index of topological preservation for feature extraction.

Pattern Recognition, 28(3):381–391, 1995.

[BR92] J. D. Banfield and A. E. Raftery. Ice floe identification in satellite images using math-

ematical morphology and clustering about principal curves. Journal of the American

Statistical Association, 87:7–16, 1992.

111



[BSW96] C. M. Bishop, M. Svensén, and C. K. I. Williams. EM optimization of latent-variables

density models. In David S. Touretzky, Michael C. Mozer, and Michael E. Hasselmo,

editors, Advances in Neural Information Processing Systems, volume 8, pages 465–

471. The MIT Press, 1996.

[BSW98] C. M. Bishop, M. Svensén, and C. K. I. Williams. GTM: The generative topographic

mapping. Neural Computation, 10(1):215–235, 1998.

[BT98] C. M. Bishop and M. E. Tipping. A hierarchical latent variable model for data visual-

ization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3):281–

293, 1998.

[CG92] G. Celeux and G. Govaert. A classification EM algorithm and two stochastic versions.

Computational Statistics and Data Analysis, 14:315–332, 1992.

[CG98a] K. Chang and J. Ghosh. Principal curve classifier – a nonlinear approach to pattern

classification. In IEEE International Joint Conference on Neural Networks, pages

695–700, Anchorage, AL, May 5–9 1998.

[CG98b] K. Chang and J. Ghosh. Principal curves for nonlinear feature extraction and classifi-

cation. In Applications of Artificial Neural Networks in Image Processing III, volume

3307, pages 120–129, San Jose, CA, Jan 24–30 1998. SPIE Photonics West ’98 Elec-

tronic Image Conference.

[Cho94] P. A. Chou. The distortion of vector quantizers trained on n vectors decreases to the

optimum as op(1/n). In Proceedings of IEEE International Symposium on Information

Theory, Trondheim, Norway, 1994.

[Cle79] W. S. Cleveland. Robust locally weighted regression and smoothing scatterplots. Jour-

nal of the American Statistical Association, 74:829–835, 1979.

[DBH96] R. Der, G. Balzuweit, and M. Herrmann. Constructing principal manifolds in sparse

data sets by self-organizing maps with self-regulating neighborhood width. In Pro-

ceedings of the International Conference on Neural Networks, pages 480–483, 1996.

[Del98] P. Delicado. Principal curves and principal oriented points. Technical Report 309,

Department d’Economia i Empresa, Universitat Pompeu Fabra, 1998.

[Deu68] E. S. Deutsch. Preprocessing for character recognition. In Proceedings of the IEE NPL

Conference on Pattern Recognition, pages 179–190, 1968.

112



[DGL96] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.

Springer, New York, 1996.

[Din55] G. P. Dinnen. Programming pattern recognition. In Proceedings of the Western Joint

Computer Conference, pages 94–100, New York, 1955.

[DK82] P. A. Devijver and J. Kittler. Pattern Recognition: a Statistical Approach. Prentice

Hall, Englewood Cliffs, New Jersey, 1982.

[DLR77] A.P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete

data via the EM algorithm. Journal of the Royal Statistical Society Series B, 39:1–38,

1977.

[DM95] D. Dong and T. J. McAvoy. Nonlinear principal component analysis – based on prin-

cipal curves and neural networks. Computers Chem. Engineering, 20(1):65–78, 1995.

[DP97] A. Datta and S. K. Parui. Skeletons from dot patterns: A neural network approach.

Pattern Recognition Letters, 18:335–342, 1997.

[DS96a] T. Duchamp and W. Stuetzle. Extremal properties of principal curves in the plane.

Annals of Statistics, 24(4):1511–1520, 1996.

[DS96b] T. Duchamp and W. Stuetzle. Geometric properties of principal curves in the plane. In

Helmut Rieder, editor, Robust statistics, data analysis, and computer intensive meth-

ods: in honor of Peter Huber’s 60th birthday, volume 109 of Lecture notes in statistics,

pages 135–152. Springer-Verlag, 1996.

[EOS92] E. Erwin, K. Obermayer, and K. Schulten. Self-organizing maps: ordering, conver-

gence properties and energy functions. Biological Cybernetics, 67:47–55, 1992.

[Eve84] B. S. Everitt. An Introduction to Latent Variable Models. Chapman and Hall, London,

1984.

[Fle97] A. Flexer. Limitations of self-organizing maps for vector quantization and multidi-

mensional scaling. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances

in Neural Information Processing Systems: Proceedings of the 1996 Conference, vol-

ume 9, pages 445–451. MIT Press, 1997.

[Fle99] A Flexer. On the use of self-organizing maps for clustering and visualization. In J.M.

Zytkow and J. Rauch, editors, Principles of Data Mining and Knowledge Discovery,

Third European Conference, PKDD’99, Lecture Notes in Artificial Intelligence 1704,

pages 80–88, Prague, Czech Republic, 1999. Springer.

113
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