
Chapter 5 

Algorithmic details 

In this chapter we describe in more detail the various constituents of the principal curve 

and surface algorithms. 

5.1. Estimation of curves and surfaces. 

We described a simple smooth or local averaging procedure in chapter 4. There it was 

convenient to describe the smoother as a method of averaging in p space, although it has 

been pointed out that we can do the smoothing co-ordinate wise. That simplifies the 

treatment here, since we only need to discuss smoothers in their more usual regression 

context. 

Usually a scatterplot smoother is regarded as an estimate of the conditional expectation 

E(Y IX), where Y and X are random variables. For our purposes X may be one or two 

dimensional. We will discuss one dimensional smoothers first, since they are easier to 

implement than two dimensional smoothers. 

5.1.1. One dimensional smoothers. 

The following subset of smoothers evolved naturally as estimates of conditional expectation, 

and are listed in order of complexity and computational cost. 

5.1.1.1 Moving average smoothers. 

The simplest and most natural estimate of E(Y IX) is the moving average smoother. 

Given a sample (vi, Zi), i = 1,. . . , n, with the zi in ascending order, we define 

SmOOa8(Y I%)= & C Yj (54 
ZjE[zi-k,zi+rl 

where k = [(ns - 1)/Z] and s E (O,l] is called the span of the smoother. An estimate of 

the conditional expectation at Zi is the average of the Yj for all those observations with z 

value equal to xi. Since we usually only have one such observation, we average the yj for 
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all those observations with z value close to zi. In the definition above, close is defined in 

the ordinal scale or in ranks. We can also use the interval scale or simply distance, but this 

is computationally more expensive. This moving average smoother suffers from a number 

of drawbacks. It does not produce very smooth fits and does not even reproduce straight 

lines unless the xi are equispaced. It also suffers from bias effects on the boundaries. 

5.1.1.2 Local linear smoothers. 

An improvement on the moving average smoother is the local linear smoother of Friedman 

and Stuetzle (1981). Here the smoother estimates the conditional expectation at xi by 

the fitted value from the least squares line fit of y on z using only those points for which 

xj E (xi-k, xi+t). This suffers less from boundary bias than the moving average and always 

reproduces straight lines exactly. The cost of computation for both of the above smoothers 

is O(n) operations. Of course we can think of fitting local polynomials as well, but in 

practice the gain in bias is small relative to the extra computational burden. 

5.1.1.3 Locally weighted linear smoothers. 

Cleveland (1979) suggested using the local linear smoother, but also suggested weighting 

the points in the neighborhood according to their distance in z from zi. This produces even 

smoother curves at the expense of an increased computation time of O(kn) operations. (In 

the local linear smoother, we can obtain the fitted value at xi+1 from that at xi by applying 

some simple updating algorithm to the latter. If local weighting is performed, we can no 

longer use updating formulae.) 

5.1.1.4 Kernel smoothers. 

The kernel smoother (Ganser and Muller, 1979) applies a weight function to every observa- 

tion in calculating the fit at xi. A variety of weight functions or kernels exist and a popular 

choice is the gaussian kernel centered at xi. They produce the smoothest functions and are 

computationally the most expensive. The cost is O(n*) operations, although in practice 

the kernels have a bounded domain and this brings the cost down to O(en) for some 8 that 

depends on the kernel and the data. 

In all but the kernel smoother, the span controls the smoothness of the estimated 

function. The larger the span, the smoother the function. In the case of the kernel smoother, 

there is a scale parameter that controls the spread of the kernel, and the larger the spread, 

the smoother the function. We will discuss the choice of spans in section 5.4. 
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For our particular application, it was found that the locally weighted linear smoother 

and the kernel smoother produced the most satisfactory results. However, when the sample 

size gets large, these smoothers become too expensive, and we have to sacrifice smoothness 

for computational speed. In this case we would use the faster local linear smoother. 

5.1.2. Two dimensional smoothers. 

There are substantial differences between one and two dimensional smoothers. When we 

find neighbors in two space, we immediately force some metric on the space in the way we 

define distance. In our algorithm we simply use the euclidean distance and assume the two 

variables are in the same scale. 

It is also computationally harder to find neighbors in two dimensions than in one. The 

k-d tree ( Friedman, Bently and Finkel, 1976) is an efficient algorithm and data structure for 

finding neighbors in k dimensions. The name arises from the data structure used to speed 

up the search time - a binary tree. The technique can be thought of as a multivariable 

version of the binary search routine. Friedman et al show that the computation required 

to build the tree is O(kn log n) and the expected search time for the m nearest neighbors 

of any point is O(log n). 

5.1.3. The local planar surface smoother. 

We wish to find Smooth (y 1 zc) where zc is a a-vector not necessarily present in the sample. 

The following algorithm is analogous to the local linear smoother: 

l Build the 2-d tree for the n pairs (zrr,z2i),-- a, (xl,,, 2~~). 

l Find the ns nearest neighbors of zo, and fit the least squares plane through their 

associated y values. 

l The smooth at 20 is defined to be the fitted value at ze. 

This algorithm does not allow updating as in the one-dimensional local linear smoother. 

The computation time for one fitted value is O(log n + ns). For this reason, we can include 

weights at no extra order in computation cost. We use gaussian weights with covariance 

h21 and centered at zo, and h is another parameter of the procedure. 

A simpler version of this smoother uses the (gaussian weighted) average of the y values 

for the ns neighbors. In the one dimensional case, we find that fitting local straight lines 

reduces the bias at the boundaries. In surface smoothing, the proportion of points on the 
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boundary increases dramatically as we go from one to two dimensions. This provides a 

strong motivation for fitting planes instead of simple averages. 

5.2. The projection step. 

The other step in the principal curve and surface procedures is to project each point onto 

the current surface or curve. In our notation we require i(jl(zJ for each i. We have already 

described the exact approach in chapter 3 for principal curves, which we repeat here for 

completeness. 

5.2.1. Projecting by exact enumeration. 

We project Zi into the line segment joining every adjacent pair of fitted values of the curve, 

and find the closest such projection. Into implies that when projecting we do not go beyond 

the two points in question. This procedure is exact but computationally expensive (O(n) 

operations per search.) Nonetheless, we have used this method on the smaller data sets 

(5 150 observations.) There is no analogue for the principal surface routine. 

5.2.2. Projections using the k-d tree. 

At each of the n values of 1 we have a fitted p vector. This is true for either the principal 

curve or surface procedure. We can build a pd tree, and for each xi, find its nearest 

neighbor amongst these fitted values. We then proceed differently for curves and surfaces. 

l For curves we project the point into the segments joining this nearest point and its 

left neighbor. We do the same for the right neighbor and pick the closest projection. 

l For surfaces we find the nearest fitted value as above. Suppose this is at j(j)(if-“). 

We then project xi onto the plane corresponding to this fitted value and get a new 

value A*. (This plane has already been calculated in the smoothing step and is stored.) 

We then evaluate i(jl(A’) and check if it is indeed closer. (This precautionary step 

is similar to projecting xi into the line segments in the case of curves.) If it is, we 

set A?) = A’, f&e we set i!j) = iv-“. * One could think of iterating this procedure, 

which is similar to a gradient search. Alternatively one could perform a Newton- 

Raphson search using derivative information contained in the least squares planes. 

These approaches are expensive, and in the many examples tested, made little or no 

difference to the estimate. 
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5.2.3. Resealing the X’s to arc-length. 

In the principal curve procedure, as a matter of practice, we always rescale the X’s to arc- 

length. The estimated X’s are then measured in the same units as the observations. Let fil 

denotes the resealed ~~)‘s, and suppose iy’ are sorted. We define @ recursively as follows: 

i 

-1’ ” ” ” ” ” ” ” 1 
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Unscaled X 

Figure (5.1) A X plot for the circle example. Along the vertical axis 
we plot the final values for Ii, after resealing the 1% at every iteration 
in the principal curve procedure. Along the horisontal axis we have 
the final i’s using the principal curve procedure with no resealing. 

In general there is no analogue of resealing to arc-length for surfaces. Surface area is the 

corresponding quantity. We can adjust the parameters locally so that the area of a small 

region in parameter space has the same area as the region it defines on the surface. But 

this adjustment will be different in other regions of the surface having the same values for 

one of the parameters. The exceptions are surfaces with zero gaussian curvature. (These 

are surfaces that can be obtained by smoothly denting a hyperplane to form something like 

a corrugated sheet. One can imagine that such a resealing is then possible). 
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Figure (5.2) Each iteration approximately preserves the metric 
from the previous one. The starting curve is unit speed, and so the 
final curve ia approximately so, up to a constant. 

Even though it is not possible to do such a resealing for surfaces, it would be comforting 

to know that our parametrization remains reasonably consistent over the surface as we go 

through the iterations. 

Figure 5.1 demonstrates what happens if we use the principal curve procedure on the 

circle example, and do not rescale the parameter estimates at each iteration. The metric 

gets preserved, up to a scalar. Figure 5.2shows why this is so, The original metric gets 

transferred from one iteration to the next. As long as the curves do not change dramatically 

from one iteration to the next, there will not be much distortion. 

5.3. Span selection. 

We consider there to be two categories of spans corresponding to two distinct stages in the 

algorithm. 

5.3.1. Global procedural spans. 

The first guess for f is a straight line. In many of the interesting situations, the final 

curve will not be a function of the arc length of this initial curve. The final curve is 

reached by successively bending the original curve. We have found that if the initial spans 

of the smoother are too small, the curve will bend too fast, and may get lost! The most 
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successful strategy has been to initially use large spans, and then to decrease them slowly. 

In particular, we start with a span of 0.5n, and let the procedure converge. We then drop 

the span to 0.4n and converge again. Finally the same is done at 0.3n by which time the 

procedure has found the general shape of the curve. We then switch to mean square error 

(MSE) span selection mode. 

5.3.2. Mean squared error spans. 

The procedure has converged to a self consistent curve for the span last used. If we reduce 

the span, the average distance will decrease. This situation arises in regression as well. In 

regression, however, there is a remedy. We can use cross-validation (Stone 1977) to select 

the span. We briefly outline the idea. 

5.3.2.1 Cross-validation in regression. 

Suppose we have a sample of n independent pairs (yi,zi) from the model Y = f(X) + e. 

A nonparametric estimate of f(zo) is f,(ze) = S mooth,(y 1~). The expected squared 

prediction error is 

EPE = E(Y - i(X))’ (5.2) 

where the expectation is taken over everything random (i.e. the sample used to estimate 

f(a) and the future pairs (X,Y)). We use the residual sum of squares, 

RSS(8) = k(Yi - !a(%))‘, 
i=l 

as the natural estimate of EPE. This is however, a biassed estimate, as can be seen by 

letting the span s shrink down to 0. The smooth then estimates yi by itself, and RSS is 

zero. We call this bias due to ouerjitting since the bias is due to the influence yi has in 

forming its own prediction. This also shows us that we cannot use RSS to help us pick the 

span. We can, however, use the cross-validated residual sum of squares (CVRSS). This is 

defined as 

C?‘RSS(s) = g(y; - Smootht)(y 1 zi))‘, (5.3) 
i=l 

where Smooth !I” (y 1 zi) is the smooth calculated from the data with the pair (vi, Zi) re- 

moved, and then evaluated at Zi. It can be shown that this estimate is approximately 

unbiazsed for the true prediction error. In minimizing the prediction error, we also mini- 
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mize the integrated mean square error EMSE given by 

EMSE(e) = E(j,(X) - f(X))2 

since they differ by a constant. We can decompose this expression into a sum of a variance 

and bias terms, namely 

EMS%) = El v~(~.(x)l+ E[( E(h(X) IX) - f(XN2] 
= VAR(e) + BIAS2(s). 

A5 s gets smaller the variance gets larger (averaging over less points) but the hiss gets 

smaller (width of the neighborhoods gets smaller), and vice versa. Thus if we pick s to 

minimize CVRsS(5) we are trying to minimize the true prediction error or equivalently to 

find the span which optimally mixes bias and variance. 

Getting back to the curves, one thought is to cross-validate the orthogonal distance 

function. This, however, will not work because we would still tend to u5e span zero. (In 

general we have more chance of being close to the interpolating curve than any other curve). 

Instead, we crone-validate the co-ordinates separately. 

5.3.2.2 Cross-validation for principal curves. 

Suppose j is a principal curve of h, for which we have an estimate f based on a sample 

Z1,...,Zn. 

A natural requirement is to choose 8 to minimize EMSE(s) given by 

= k %( V&&,(x)) I$(“)) + EhA Ilf(+(x)) - j$t(X))j\2 (5.4) 
j=l 

which is once again a trade-off between bias and variance. Notice that were we to look at the 

closest distance between these curves, then the interpolating curve would be favored. As in 

the regression case, the quantity EPE(e) = Eh IIx - j8(xr(x))l12 estimates EMSE(s) + 

WI, where WI = E 11~ - f(~~(x))((‘. It is thus equivalent to choose 5 to minimize 

EMSE(s) or EPE(8). A5 in the regression case, the cross-validated estimate 

- Smoothpl(zj IXi))2 1 , (5.5) 
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where Xi = Ai( attempts to do this. Since we do not know &, we pick Xi = Aic.t,(ti) 

where I@) is the (non cross-validated) estimate of f. In practice, we evaluate CVRSS(s) 

for a few values of s and pick the one that gives the minimum. 

From the computing angle, if the smoother is linear one can easily find the cross- 

validated fits. In this case fi = Cy for some smoother matrix C, and the cross-validated fit 

o(i) is given by $(<l = &+ e (Wahba 1975). 

There are a number of issues connected with the algorithms that have not yet been 

mentioned, such as a robustness and outlier detection, what to display and how to do it, 

and bootstrap techniques. The next chapter consists of many examples, and we will deal 

with these issues as they arise. 




