
Chapter 5

The Polygonal Line Algorithm

Given a set of data points Xn = {x1, . . . ,xn} ⊂ R
d , the task of finding a polygonal curve with k

segments and length L which minimizes 1
n ∑n

i=1 ∆(xi, f) is computationally difficult. In this chapter

we propose a suboptimal method with reasonable complexity which also picks the length L and the

number of segments k of the principal curve automatically. We describe and analyze the algorithm

in Section 5.1. Test results on simulated data and comparison with the HS and BR algorithms are

presented in Section 5.2.

5.1 The Polygonal Line Algorithm

The basic idea is to start with a straight line segment f0,n, the shortest segment of the first principal

component line which contains all of the projected data points, and in each iteration of the algorithm

to increase the number of segments by one by adding a new vertex to the polygonal curve produced

in the previous iteration. After adding a new vertex, we update the positions of all vertices in an

inner loop by minimizing a penalized distance function to produce fk,n. The algorithm stops when

k exceeds a threshold. This stopping criterion (described in Section 5.1.1) is based on a heuristic

complexity measure, determined by the number of segments k, the number of data points n, and

the average squared distance ∆n(fk,n). The flow chart of the algorithm is given in Figure 9. The

evolution of the curve produced by the algorithm is illustrated in Figure 10.

In the inner loop, we attempt to minimize a penalized distance function defined as

Gn(f) = ∆n(f)+λP(f) (68)

The first component ∆n(f) is the average squared distance of points in Xn from the curve f defined

by (19) on page 21. The second component P(f) is a penalty on the average curvature of the curve

56

Vertex optimization

Projection

Initialization

Convergence?

∆k > c(n,)?

Add new vertex

START

END

N

Y

Y

N

Figure 9: The flow chart of the polygonal line algorithm.

defined by

P(f) =
1

k +1

k+1

∑
i=1

Pv(vi) (69)

where k is the number of segments of f and Pv(vi) is the curvature penalty imposed at vertex vi. In

general, Pv(vi) is small if line segments incident to vi join smoothly at vi. An important general

property of Pv(vi) that it is local in the sense that it can change only if vi or immediate neighbors of

vi are relocated. The exact form of Pv(vi) is presented in Section 5.1.2.

Achieving a low average distance means that the curve closely fits the data. Keeping P(f) low

ensures the smoothness of the curve. The penalty coefficient λ plays the balancing role between

these two competing criteria. To achieve robustness, we propose a heuristic data-dependent penalty

coefficient in Section 5.1.3.

Gn(f) is a complicated nonlinear function of f so finding its minimum analytically is impossible.

Furthermore, simple gradient-based optimization methods also fail since Gn(f) is not differentiable

at certain points. To minimize Gn(f), we iterate between a projection step and a vertex optimiza-

tion step until convergence (Figure 9). In the projection step, the data points are partitioned into

“nearest neighbor regions” according to which segment or vertex they project. The resulting par-

tition is formally defined in Section 5.1.4 and illustrated in Figure 11. In the vertex optimization

step (Section 5.1.5), we use a gradient-based method to minimize Gn(f) assuming that the parti-

tion computed in the previous projection step does not change. Under this condition the objective

function becomes differentiable everywhere so a gradient-based method can be used for finding a

local minimum. The drawback is that if the assumption fails to hold, that is, some data points leave

57

(a) (b) (c)

(d) (e) (f)

Figure 10: The curves fk,n produced by the polygonal line algorithm for n = 100 data points. The data was
generated by adding independent Gaussian errors to both coordinates of a point chosen randomly on a half
circle. (a) f1,n, (b) f2,n, (c) f3,n, (d) f4,n, (e) f8,n, (f) f15,n (the output of the algorithm).

their nearest neighbor regions while vertices of the curve are moved, the objective function Gn(f)

might increase in this step. As a consequence, the convergence of the optimizing iteration cannot be

guaranteed in theory. In practice, during extensive test runs, however, the algorithm was observed

to always converge.

5.1.1 Stopping Condition

According to the theoretical results of Section 4.2, the number of segments k is an important factor

that controls the balance between the estimation and approximation errors, and it should be propor-

tional to n1/3 to achieve the O(n−1/3) convergence rate for the expected squared distance. Although

the theoretical bounds are not tight enough to determine the optimal number of segments for a given

data size, we have found that k ∼ n1/3 works in practice. We have also found that the final value

of k should also depend on the average squared distance to achieve robustness. If the variance of

the noise is relatively small, we can keep the approximation error low by allowing a relatively large

number of segments. On the other hand, when the variance of the noise is large (implying a high

58

estimation error), a low approximation error does not improve the overall performance significantly,

so in this case a smaller number of segments can be chosen. The stopping condition blends these

two considerations. The algorithm stops when k exceeds

c
(

n,∆n(fk,n)
)

= βn1/3 r
√

∆n(fk,n)
(70)

where r is the “radius” of the data defined by

r = max
x∈Xn

∥

∥

∥
x− 1

n ∑
y∈Xn

y
∥

∥

∥
(71)

(included to achieve scale-independence), and β is a parameter of the algorithm which was deter-

mined by experiments and was set to the constant value 0.3.

Note that in a practical sense, the number of segments plays a more important role in determin-

ing the computational complexity of the algorithm than in measuring the quality of the approxima-

tion. Experiments showed that, due to the data-dependent curvature penalty, the number of segments

can increase even beyond the number of data points without any indication of overfitting. While in-

creasing the number of segments beyond a certain limit offers only marginal improvement in the

approximation, it causes the algorithm to slow down considerably. Therefore, in on-line applica-

tions, where speed has priority over precision, it is reasonable to use a smaller number of segments

than indicated by (70), and if “aesthetic” smoothness is an issue, to fit a spline through the vertices

of the curve (see Section 6.2.2 for an example).

5.1.2 The Curvature Penalty

The most important heuristic component of the algorithm is the curvature penalty P(vi) imposed at

a vertex vi. In the theoretical algorithm the average squared distance ∆n(x, f) is minimized subject

to the constraint that f is a polygonal line with k segments and length not exceeding L. One could

use a Lagrangian formulation and attempt to optimize f by minimizing a penalized squared error of

the form ∆n(f)+λl(f)2. Although this direct length penalty can work well in certain applications, it

yields poor results in terms of recovering a smooth generating curve. In particular, this approach is

very sensitive to the choice of λ and tends to produce curves which, similarly to the HS algorithm,

exhibit a “flattening” estimation bias towards the center of the curvature.

Instead of an explicit length penalty, to ensure smoothness of the curve, we penalize sharp

angles between line segments. At inner vertices vi, 2 ≤ i ≤ k, we penalize the cosine of the angle

of the two incident line segment of vi. The cosine function is convex in the interval [π/2,π] and

its derivative is zero at π which makes it especially suitable for the steepest descent algorithm. To

make the algorithm invariant under scaling, we multiply the cosines by the squared radius (71) of

the data. At the endpoints (vi, i = 1,k +1), we keep the direct penalty on the squared length of the

59

first (or last) segment as suggested by the theoretical model. Formally, let γi denote the angle at

vertex vi, let π(vi) = r2(1 + cosγi), let µ+(vi) = ‖vi − vi+1‖2, and let µ−(vi) = ‖vi − vi−1‖2. Then

the penalty imposed at vi is defined by

Pv(vi) =



















µ+(vi) if i = 1,

π(vi) if 1 < i < k +1,

µ−(vi) if i = k +1.

(72)

Although we do not have a formal proof, we offer the following informal argument to support

our observation that the principal curve exhibits a substantially smaller estimation bias if the pro-

posed curvature penalty is used instead of a direct length penalty. When calculating the gradient of

the penalty with respect to an inner vertex vi, it is assumed that all vertices of the curve are fixed

except vi. If a direct penalty on the squared length of the curve is used, the gradient of the penalty

can be calculated as the gradient of the local length penalty at vi (1 < i < k +1) defined as

Pl(vi) = l(si−1)
2 + l(si)

2 = ‖vi −vi−1‖2 +‖vi −vi+1‖2.

This local length penalty is minimized if the angle at vi is π, which means that the gradient vector

induced by the penalty always points towards the center of the curvature. If the data is spread equally

to the two sides of the generating curve, the distance term cannot balance the inward-pulling effect

of the penalty, so the estimated principal curve will always produce a bias towards the center of the

curvature. On the other hand, if we penalize sharp angles at vi and at the two immediate neighbors

of vi (the three angles that can change if vi is moved while all other vertices are fixed), the minimum

is no longer achieved at π but at a smaller angle.

Note that the chosen penalty formulation is related to the original principle of penalizing the

length of the curve. At inner vertices, penalizing sharp angles indirectly penalizes long segments.

At the endpoints (vi, i = 1,k + 1), where penalizing sharp angles does not translate to penalizing

long line segments, the penalty on a nonexistent angle is replaced by a direct penalty on the squared

length of the first (or last) segment. Also note that although the direct length penalty yields poor

results in terms of recovering a smooth generating curve, it may be used effectively under different

assumptions.

5.1.3 The Penalty Factor

One important issue is the amount of smoothing required for a given data set. In the HS algorithm

one needs to determine the penalty coefficient of the spline smoother, or the span of the scatterplot

smoother. In our algorithm, the corresponding parameter is the curvature penalty factor λ. If some

a priori knowledge about the distribution is available, one can use it to determine the smoothing

60

parameter. However, in the absence of such knowledge, the coefficient should be data-dependent.

Based on heuristic considerations explained below, and after carrying out practical experiments, we

set

λ = λ′ · k

n1/3
·
√

∆n(fk,n)

r
(73)

where λ′ is a parameter of the algorithm which was determined by experiments and was set to the

constant value 0.13.

By setting the penalty to be proportional to the average distance of the data points from the

curve, we avoid the zig-zagging behavior of the curve resulting from overfitting when the noise is

relatively large. At the same time, this penalty factor allows the principal curve to closely follow

the generating curve when the generating curve itself is a polygonal line with sharp angles and the

data is concentrated on this curve (the noise is very small).

In our experiments we have found that the algorithm is more likely to avoid local minima if a

small penalty is imposed initially and the penalty is gradually increased as the number of segments

grows. The number of segments is normalized by n1/3 since the final number of segments, according

to the stopping condition (Section 5.1.1), is proportional to n1/3.

5.1.4 The Projection Step

Let f denote a polygonal line with vertices v1, . . . ,vk+1 and line segments s1, . . . ,sk, such that si

connects vertices vi and vi+1. In this step the data set Xn is partitioned into (at most) 2k +1 disjoint

sets V1, . . . ,Vk+1 and S1, . . . ,Sk, the nearest neighbor regions of the vertices and segments of f, re-

spectively, in the following manner. For any x ∈ R
d let ∆(x,si) be the squared distance from x to si

(see definition (21) on page 21), let ∆(x,vi) = ‖x−vi‖2, and let

Vi =
{

x ∈ Xn : ∆(x,vi) = ∆(x, f), ∆(x,vi) < ∆(x,vm), m = 1, . . . , i−1
}

.

Upon setting V =
Sk+1

i=1 Vi, the Si sets are defined by

Si =
{

x ∈ Xn : x 6∈V, ∆(x,si) = ∆(x, f),∆(x,si) < ∆(x,sm),m = 1, . . . , i−1
}

.

The resulting partition is illustrated in Figure 11.

5.1.5 The Vertex Optimization Step

In this step we attempt to minimize the penalized distance function (68) assuming that none of

the data points leave the nearest neighbor cell of a line segment or a vertex. This is clearly an

incorrect assumption but without it we could not use any gradient-based minimization method since

the distance of a point x and the curve is not differentiable (with respect to the vertices of the

61

iV

Si

Si+1
is

i

v
v

1

Vi+1

Si-2

s

i-

2
s

1

1
vi+1

i-S1i-

i-

V

i+

s i-1

Figure 11: A nearest neighbor partition of R
2 induced by the vertices and segments of f. The nearest point

of f to any point in the set Vi is the vertex vi. The nearest point of f to any point in the set Si is a point of the
line segment si.

curve) if x falls on the boundary of two nearest neighbor regions. Also, to check whether a data

point has left the nearest neighbor cell of a line segment or a vertex, we would have to execute a

projection step each time when a vertex is moved, which is computationally infeasible. Technically,

this assumption means that the distance of a data point x and a line segment si is measured as if si

were an infinite line. Accordingly, let s′i be the line obtained by the infinite extension of the line

segment si, let

σ+(vi) = ∑
x∈Si

∆(x,s′i),

σ−(vi) = ∑
x∈Si−1

∆(x,s′i−1),

and

ν(vi) = ∑
x∈Vi

∆(x,vi)

where ∆(x,s′i) is the Euclidean squared distance of x and the infinite line s′i as defined by (20) on

page 21, and define

∆′
n(f) =

1
n

(

k+1

∑
i=1

ν(v)+
k

∑
i=1

σ+(vi)

)

.

In the vertex optimization step we minimize a “distorted” objective function G′
n(f) = ∆′

n(f)+

λP(f). Note that after every projection step, until any data point crosses the boundary of a nearest

neighbor cell, the “real” distance function ∆n(f) is equal to ∆′
n(f), so Gn(f) = G′

n(f).

62

The gradient of the objective function G′
n(f) with respect to a vertex vi can be computed locally

in the following sense. On the one hand, only distances of data points that project to vi or to the two

incident line segments to vi can change when vi is moved. On the other hand, when the vertex vi is

moved, only angles at vi and at neighbors of vi can change. Therefore, the gradient of G′
n(f) with

respect to vi can be computed as

OviG
′
n(f) = Ovi

(

∆′
n(f)+λP(f)

)

= Ovi

(

∆n(vi)+λP(vi)
)

where

∆n(vi) =



































1
n

(

ν(vi)+σ+(vi)
)

if i = 1

1
n

(

σ−(vi)+ν(vi)+σ+(vi)
)

if 1 < i < k +1

1
n

(

σ−(vi)+ν(vi)
)

if i = k +1

(74)

and

P(vi) =



































1
k +1

(

Pv(vi)+Pv(vi+1)
)

if i = 1

1
k +1

(

Pv(vi−1)+Pv(vi)+Pv(vi+1)
)

if 1 < i < k +1

1
k +1

(

Pv(vi−1)+Pv(vi)
)

if i = k +1.

(75)

Once the gradients OviG
′
n(f), i = 1, . . . ,m, are computed, a local minimum of G′

n(f) can be

obtained by any gradient-based optimization method. We found that the following iterative mini-

mization scheme works particularly well. To find a new position for a vertex vi, we fix all other

vertices and execute a line search in the direction of −OviG
′
n(f). This step is repeated for all vertices

and the iteration over all vertices is repeated until convergence. The flow chart of the optimization

step is given in Figure 12.

5.1.6 Convergence of the Inner Loop

In the vertex optimization step G′
n(f) clearly cannot increase. Unfortunately, G′

n(f) does not always

decrease in the projection step. Since the curve is kept unchanged in this step, P(f) is constant but

it is possible that ∆′
n(f) increases. After the projection step it is always true that ∆′

n(f) = ∆n(f) since

every data point belongs to the nearest neighbor cell of its nearest vertex or line segment. Before

the projection step, however, it is possible that ∆′
n(f) < ∆n(f). The reason is that, contrary to our

assumption, there can be data points that leave the nearest neighbor cell of a line segment in the

optimization step. For such a data point x, it is possible that the real distance of x and the curve is

larger than it is measured by ∆n(vi) as indicated by Figure 13.

63

vin

1

1

G’

1

Y

N

i =

i = i +

i > k +

Convergence?

END

START

Y

Minimize ()

N

Figure 12: The flow chart of the optimization step.

si

vi

’d
d

x

si-1

Figure 13: Assume that x belongs to Si−1. The distance of x and the curve is d, while ∆n(vi) measures the
distance as d′.

As a consequence, the convergence of the inner loop cannot be guaranteed. In practice, during

extensive test runs, however, the algorithm was observed to always converge. We found that if there

is any increase in ∆′
n(f) in the projection step, it is almost always compensated by the decrease of

Gn(f) in the optimization step.

5.1.7 Adding a New Vertex

We start with the optimized fk,n and choose the segment that has the largest number of data points

projecting to it. If more than one such segment exist, we choose the longest one. The midpoint

of this segment is selected as the new vertex. Formally, let I =
{

i : |Si| ≥ |S j|, j = 1, . . . ,k
}

, and

` = argmaxi∈I ‖vi −vi+1‖. Then the new vertex is vnew = (v` +v`+1)/2.

64

5.1.8 Computational Complexity

The complexity of the inner loop is dominated by the complexity of the projection step, which

is O(nk). Increasing the number of segments one at a time (as described in Section 5.1.7), the

complexity of the algorithm to obtain fk,n is O(nk2). Using the stopping condition of Section 5.1.1,

the computational complexity of the algorithm becomes O(n5/3). This is slightly better than the

O(n2) complexity of the HS algorithm.

The complexity can be dramatically decreased in certain situations. One possibility is to add

more than one vertex at a time. For example, if instead of adding only one vertex, a new vertex

is placed at the midpoint of every segment, then we can reduce the computational complexity for

producing fk,n to O(nk logk). One can also set k to be a constant if the data size is large, since

increasing k beyond a certain threshold brings only diminishing returns. Also, k can be naturally set

to a constant in certain applications, giving O(nk) computational complexity. These simplifications

work well in certain situations, but the original algorithm is more robust.

Note that the optimization of Gn(vi) can be done in O(1) time if the sample mean of the data

points in Vi, and the sample means and the sample covariance matrices of the data points in Si−1 and

Si are stored. The maintenance of these statistics can be done in the projection step when the data

points are sorted into the nearest neighbor sets. The statistics must be updated only for data points

that are moved from a nearest neighbor set into another in the projection step. The number of such

data points tends to be very small as the algorithm progresses so the computational requirements of

this operation is negligible compared to other steps of the algorithm.

The projection step can be accelerated by using special data structures. The construction we

present here is based on the following two observations. Firstly, when the noise is relatively low

and the line segments are relatively long, most of the data points are very far from the second nearest

line segment compared to their distance from the curve. Secondly, as the algorithm progresses, the

vertices move less and less in the optimization step so most of the data points stay in their original

nearest neighbor sets. If we can guarantee that a given data point x stays in its nearest neighbor set,

we can save the time of measuring the distance between x and each line segment of the curve.

Formally, let δv(j) be the maximum shift of a vertex in the jth optimization step defined by

δv(j) =















∞ if j = 0

max
i=1,...,k+1

∥

∥

∥
v(j)

i −v(j+1)
i

∥

∥

∥
otherwise.

Let the distance between a data point x and a line segment s be

d(x,s) =
√

∆(x,s) = ‖x− s(ts(x))‖.

First we show that the distance between any data point and any line segment can change at most

65

δv(j) in the jth optimization step. Let t1 = ts(j)(x) and t2 = ts(j+1)(x), assume that both s(j) and s(j+1)

are parameterized over [0,1], and assume that d
(

x,s(j)
)

≥ d
(

x,s(j+1)
)

. Then we have

∣

∣

∣
d
(

x,s(j)
)

−d
(

x,s(j+1)
)∣

∣

∣

= d
(

x,s(j)
)

−d
(

x,s(j+1)
)

=
∥

∥

∥
x− s(j)(t1)

∥

∥

∥
−
∥

∥

∥
x− s(j+1)(t2)

∥

∥

∥

≤
∥

∥

∥
x− s(j)(t2)

∥

∥

∥
−
∥

∥

∥
x− s(j+1)(t2)

∥

∥

∥
(76)

≤
∥

∥

∥
s(j)(t2)− s(j+1)(t2)

∥

∥

∥
(77)

=
∥

∥

∥
t2s(j)(0)− (1− t2)s(j)(1)− t2s(j+1)(0)+(1− t2)s(j+1)(1)

∥

∥

∥

≤ t2
∥

∥

∥
s(j)(0)− s(j+1)(0)

∥

∥

∥
+(1− t2)

∥

∥

∥
s(j+1)(1)− s(j)(1)

∥

∥

∥
(78)

≤ δv(j) (79)

where (76) holds because s(j)(t1) is the closest point of s(j) to x, (77) and (78) follows from the

triangle inequality, and (79) follows from the assumption that none of the endpoints of s(j) are

shifted by more than δv(j). By symmetry, a similar inequality holds if d
(

x,s(j)
)

< d
(

x,s(j+1)
)

.

Now consider a data point x, and let s(j)
i1 and s(j)

i2 be the nearest and second nearest line segments

to x, respectively. Then if

d
(

x,s(j)
i1

)

≤ d
(

x,s(j)
i2

)

−2δv(j), (80)

then for any i 6= i1, we have

d
(

x,s(j+1)
i1

)

≤ d
(

x,s(j)
i1

)

+δv(j) (81)

≤ d
(

x,s(j)
i2

)

−δv(j) (82)

≤ d
(

x,s(j)
i

)

−δv(j) (83)

≤ d
(

x,s(j+1)
i

)

(84)

where (81) and (84) follows from (79), (82) follows from (80), and (83) holds since s(j)
i2 is the second

nearest line segment to x. (84) means that if (80) holds, si1 remains the nearest line segment to x

after the jth optimization step. Furthermore, it is easy to see that after the (j + j1)th optimization

step, si1 is still the nearest line segment to x if

d
(

x,s(j)
i1

)

≤ d
(

x,s(j)
i2

)

−2
j+ j1

∑̀
= j

δv(`).

Practically, this means that in the subsequent projection steps we only have to decide whether x

belongs to Si1 , Vi1 , or Vi1+1. So, by storing the index of the first and second nearest segment for each

66

data point x, and computing the maximum shift δv(j) after each optimization step, we can save a lot

of computation in the projection steps especially towards the end of the optimization when δv(j) is

relatively small.

5.1.9 Remarks

Heuristic Versus Core Components

It should be noted that the two core components of the algorithm, the projection and the vertex

optimization steps, are combined with more heuristic elements such as the stopping condition (70)

the form of the penalty term (75) of the optimization step. The heuristic parts of the algorithm have

been tailored to the task of recovering an underlying generating curve for a distribution based on

a finite data set of randomly drawn points (see the experimental results in Section 5.2). When the

algorithm is intended for an application with a different objective, the core components can be kept

unchanged but the heuristic elements may be replaced according to the new objectives.

Relationship with the SOM algorithm

As a result of introducing the nearest neighbor regions Si and Vi, the polygonal line algorithm

substantially differs from methods based on the self-organizing map (Section 3.2.2). On the one

hand, although we optimize the positions of the vertices of the curve, the distances of the data

points are measured from the line segments and vertices of the curve onto which they project, which

means that the manifold fitted to the data set is indeed a polygonal curve. On the other hand, the self-

organizing map measures distances exclusively from the vertices, and the connections serve only as

a tool to visualize the topology of the map. The line segments are not, by any means, part of the

manifold fitted to the data set. Therefore, even if the resulted map looks like a polygonal curve (as

it does if the topology is one-dimensional), the optimized manifold remains the set of codepoints,

not the depicted polygonal curve.

One important practical implication of our principle is that we can use a relatively small number

of vertices and still obtain good approximation to an underlying generating curve.

Relationship of Four Unsupervised Learning a Algorithms

There is an interesting informal relationship between the HS algorithm with spline smoothing, the

polygonal line algorithm, Tibshirani’s semi-parametric model (Section 3.2.1, [Tib92]), and the Gen-

erative Topographic Mapping (Bishop et al.’s [BSW98] principled alternative to SOM described

briefly in Section 3.2.2). On the one hand, the HS algorithm and the polygonal line algorithm

assume a nonparametric model of the source distribution whereas Tibshirani’s algorithm and the

67

GTM algorithm assume that the data was generated by adding an independent Gaussian noise to

a vector generated on a nonlinear manifold according to an underlining distribution. On the other

hand, the polygonal line algorithm and the GTM algorithm “discretize” the underlining manifold,

that is, the number of parameters representing the manifold is substantially less than the number

of data points, whereas the HS algorithm and Tibshirani’s algorithm represents the manifold by the

projection points of all data points. Table 1 summarizes the relationship between the four methods.

“Analogue”
number of nodes = number of points

“Discrete”
number of nodes < number of points

Semi-parametric Tibshirani’s method GTM
Nonparametric HS algorithm with spline smoothing Polygonal line algorithm

Table 1: The relationship between four unsupervised learning algorithms.

Implementation

The polygonal line algorithm has been implemented in Java, and it is available at the WWW site

http://www.iro.umontreal.ca/˜kegl/pcurvedemo.html

5.2 Experimental Results

We have extensively tested the proposed algorithm on two-dimensional data sets. In most experi-

ments the data was generated by a commonly used (see, e.g., [HS89, Tib92, MC95]) additive model

X = Y+ e (85)

where Y is uniformly distributed on a smooth planar curve (hereafter called the generating curve)

and e is bivariate additive noise which is independent of Y.

In Section 5.2.1 we compare the polygonal line algorithm, the HS algorithm, and, for closed

generating curves, the BR algorithm [BR92]. The various methods are compared subjectively based

mainly on how closely the resulting curve follows the shape of the generating curve. We use varying

generating shapes, noise parameters, and data sizes to demonstrate the robustness of the polygonal

line algorithm.

In Section 5.2.2 we analyze the performance of the polygonal line algorithm in a quantitative

fashion. These experiments demonstrate that although the generating curve in model (85) is in

general not a principal curve either in the HS sense or in our definition, the polygonal line algorithm

well approximates the generating curve as the data size grows and as the noise variance decreases.

In Section 5.2.3 we show two scenarios in which the polygonal line algorithm (along with the

HS algorithm) fails to produce meaningful results. In the first, the high number of abrupt changes in

68

the direction of the generating curve causes the algorithm to oversmooth the principal curve, even

when the data is concentrated on the generating curve. This is a typical situation when the penalty

parameter λ′ should be decreased. In the second scenario, the generating curve is too complex (e.g.,

it contains loops, or it has the shape of a spiral), so the algorithm fails to find the global structure of

the data if the process is started from the first principal component. To recover the generating curve,

one must replace the initialization step by a more sophisticated routine that approximately captures

the global structure of the data.

5.2.1 Comparative Experiments

In general, in simulation examples considered by HS, the performance of the new algorithm is

comparable with the HS algorithm. Due to the data dependence of the curvature penalty factor and

the stopping condition, our algorithm turns out to be more robust to alterations in the data generating

model, as well as to changes in the parameters of the particular model.

We use model (85) with varying generating shapes, noise parameters, and data sizes to demon-

strate the robustness of the polygonal line algorithm. All plots show the generating curve, the curve

produced by our polygonal line algorithm (Polygonal principal curve), and the curve produced by

the HS algorithm with spline smoothing (HS principal curve), which we have found to perform

better than the HS algorithm using scatterplot smoothing. For closed generating curves we also

include the curve produced by the BR algorithm [BR92] (BR principal curve), which extends the

HS algorithm to closed curves. The two coefficients of the polygonal line algorithm are set in all

experiments to the constant values β = 0.3 and λ′ = 0.13.

In Figure 14 the generating curve is a circle of radius r = 1, the sample size is n = 100, and

e = (e1,e2) is a zero mean bivariate uncorrelated Gaussian with variance E(e2
i) = 0.04, for i = 1,2.

The performance of the three algorithms (HS, BR, and the polygonal line algorithm) is comparable,

although the HS algorithm exhibits more bias than the other two. Note that the BR algorithm [BR92]

has been tailored to fit closed curves and to reduce the estimation bias. In Figure 15, only half of

the circle is used as a generating curve and the other parameters remain the same. Here, too, both

the HS and our algorithm behave similarly.

When we depart from these usual settings, the polygonal line algorithm exhibits better behavior

than the HS algorithm. In Figure 16(a) the data was generated similarly to the data set of Figure 15,

and then it was linearly transformed using the matrix
(

0.7 0.4
−0.8 1.0

)

. In Figure 16(b) the transformation
(−1.0 −1.2

1.0 −0.2

)

was used. The original data set was generated by an S-shaped generating curve, consist-

ing of two half circles of unit radii, to which the same Gaussian noise was added as in Figure 15. In

both cases the polygonal line algorithm produces curves that fit the generator curve more closely.

This is especially noticeable in Figure 16(a) where the HS principal curve fails to follow the shape

69

Data points
Generating curve
Polygonal principal curve
BR principal curve
HS principal curve

Figure 14: The circle example. The BR and the polygonal line algorithms show less bias than the HS
algorithm.

of the distorted half circle.

There are two situations when we expect our algorithm to perform particularly well. If the dis-

tribution is concentrated on a curve, then according to both the HS and our definitions the principal

curve is the generating curve itself. Thus, if the noise variance is small, we expect both algorithms to

very closely approximate the generating curve. The data in Figure 17 was generated using the same

additive Gaussian model as in Figure 14, but the noise variance was reduced to E(e2
i) = 0.0001 for

i = 1,2. In this case we found that the polygonal line algorithm outperformed both the HS and the

BR algorithms.

The second case is when the sample size is large. Although the generating curve is not neces-

sarily the principal curve of the distribution, it is natural to expect the algorithm to well approximate

the generating curve as the sample size grows. Such a case is shown in Figure 18, where n = 10000

data points were generated (but only 2000 of these were actually plotted). Here the polygonal line

algorithm approximates the generating curve with much better accuracy than the HS algorithm.

70

Data points
Generating curve
Polygonal principal curve
HS principal curve

Figure 15: The half circle example. The HS and the polygonal line algorithms produce similar curves.

5.2.2 Quantitative Analysis

Although in the model (85) the generating curve is in general not the principal curve in our defini-

tion (or in the HS definition), it is of interest to numerically evaluate how well the polygonal line

algorithm approximates the generating curve. In the light of the last two experiments of the previous

section, we are especially interested in how the approximation improves as the sample size grows

and as the noise variance decreases.

In these experiments the generating curve g(t) is a circle of radius r = 1 centered at the origin

and the noise is zero mean bivariate uncorrelated Gaussian. We chose 21 different data sizes ranging

from 10 to 10000, and 6 different noise standard deviations ranging from σ = 0.05 to σ = 0.4. For

each particular data size and noise variance value, 100 to 1000 random data sets were generated.

We run the polygonal line algorithm on each data set, and recorded several measurements in each

experiment (Figure 19 shows the resulted curve in three sample runs). The measurements were then

averaged over the experiments. To eliminate the distortion occurring at the endpoints, we initialized

71

(a) Distorted half circle
Data points
Generating curve
Polygonal principal curve
HS principal curve

(b) Distorted S-shape
Data points
Generating curve
Polygonal principal curve
HS principal curve

Figure 16: Transformed data sets. The polygonal line algorithm still follows fairly closely the “distorted”
shapes.

the polygonal line algorithm by a closed curve, in particular, by an equilateral triangle inscribed in

the generating circle.

For the measure of approximation, in each experiment we numerically evaluated the average

distance defined by

δ =
1

l(f)

Z

min
s

‖f(t)−g(s)‖dt

where the polygonal line f is parameterized by its arc length. The measurements were then aver-

aged over the experiments to obtain δn,σ for each data size n and noise standard deviation σ. The

dependence of the average distance δn,σ on the data size and the noise variance is plotted on a log-

arithmic scale in Figure 20. The resulting curves justify our informal observation made earlier that

the approximation substantially improves as the data size grows, and as the variance of the noise

decreases.

To evaluate how well the distance function of the polygonal principal curve estimates the vari-

ance of the noise, we also measured the relative difference between the standard deviation of the

noise σ and the measured RMSE(f) =
√

∆n(f) defined as

ε =
|σ−RMSE(f)|

σ
.

The measurements were then averaged over the experiments to obtain εn,σ for each data size n and

noise standard deviation σ. The dependence of the relative error εn,σ on the data size and the noise

variance is plotted on a logarithmic scale in Figure 21. The graph indicates that, especially if the

72

Data points
Generating curve
Polygonal principal curve
BR principal curve
HS principal curve

Figure 17: Small noise variance. The polygonal line algorithm follows the generating curve more closely
than the HS and the BR algorithms.

standard deviation of the noise is relatively large (σ ≥ 0.2), the relative error does not decrease

under a certain limit as the data size grows. This suggest that the estimation exhibits an inherent

bias built in the generating model (85). To support this claim, we measured the average radius of

the polygonal principal curve defined by

r =
1

l(f)

Z

‖f(t)‖dt,

where f is parameterized by its arc length. The measurements were then averaged over the experi-

ments to obtain rn,σ for each data size n and noise standard deviation σ. We also averaged the RMSE

values to obtain RMSEn,σ for each data size n and noise standard deviation σ. Then we compared

rn,σ and RMSEn,σ to the theoretical values obtained by HS,

r∗ ≈ r +
σ2

2r
= 1+

σ2

2

73

Data points
Generating curve
Polygonal principal curve
HS principal curve

Figure 18: Large sample size. The curve produced by the polygonal line algorithm is nearly indistinguish-
able from the generating curve.

and

RMSE∗ =
√

∆(f∗) ≈ σ

√

1− σ2

4r2 = σ

√

1− σ2

4
,

respectively. (For the definitions of r∗ and ∆(f∗) see (42) and (43) in Section 3.1.3). Table 2 shows

the numerical results for n = 1000 and n = 10000. The measurements indicate that the average

radius and RMSE values measured on the polygonal principal curve are in general closer to the

biased values calculated on the theoretical (HS) principal curve than to the original values of the

generating curve. The model bias can also be visually detected for large sample sizes and large

noise variance. In Figure 19(c), the polygonal principal curve is outside the generating curve almost

everywhere.

HS and BR pointed out that in practice, the estimation bias tends to be much larger than the

model bias. The fact that we could numerically detect the relatively small model bias supports our

claim that the polygonal line algorithm substantially reduces the estimation bias.

74

(a)
Data points
Generating curve
Polygonal principal curve

(b)
Data points
Generating curve
Polygonal principal curve

(c)
Data points
Generating curve
Polygonal principal curve

Figure 19: Sample runs for the quantitative analysis. (a) n = 20, σ = 0.1. (b) n = 1000, σ = 0.3. (c)
n = 10000, σ = 0.2.

σ 0.05 0.1 0.15 0.2 0.3 0.4
RMSE∗ 0.04998 0.09987 0.14958 0.199 0.29661 0.39192
RMSE1000,σ 0.04963 0.09957 0.148 0.19641 0.28966 0.37439
RMSE10000,σ 0.05003 0.0998 0.14916 0.19797 0.2922 0.378

r 1.0 1.0 1.0 1.0 1.0 1.0
r∗ 1.00125 1.005 1.01125 1.02 1.045 1.08
r1000,σ 1.00135 1.00718 1.01876 1.01867 1.0411 1.08381
r10000,σ 0.99978 1.01038 1.00924 1.01386 1.03105 1.08336

Table 2: The average radius and RMSE values measured on the polygonal principal curve are in general
closer to the biased values calculated on the theoretical (HS) principal curve than to the original values of the
generating curve.

75

0.001

0.01

0.1

1

10 100 1000 10000

av
er

ag
e

di
st

an
ce

n

sigma = 0.05
sigma = 0.1

sigma = 0.15
sigma = 0.2
sigma = 0.3
sigma = 0.4

Figure 20: The average distance δn,σ of the generating curve and the polygonal principal curve in terms of
σ and n. The approximation improves as the data size grows, and as the variance of the noise decreases.

0.0001

0.001

0.01

0.1

1

10 100 1000 10000

re
la

tiv
e

di
ffe

re
nc

e
be

tw
ee

n
th

e
R

M
S

E
 a

nd
 s

ig
m

a

n

sigma = 0.05
sigma = 0.1

sigma = 0.15
sigma = 0.2
sigma = 0.3
sigma = 0.4

Figure 21: The relative difference εn,σ between the standard deviation of the noise σ and the measured
RMSE.

76

5.2.3 Failure Modes

(a)
Data points
Generating curve
Polygonal principal curve
HS principal curve

(b)
Data points
Generating curve
Polygonal principal curve
HS principal curve

(c)
Data points
Generating curve
Polygonal principal curve
HS principal curve

(d)
Data points
Generating curve
Polygonal principal curve
HS principal curve

Figure 22: Abrupt changes in the direction of the generating curve. The polygonal line algorithm over-
smoothes the principal curve as the number of direction changes increases.

We describe two specific situations when the polygonal line algorithm fails to recover the gener-

ating curve. In the first scenario, we use zig-zagging generating curves gi for i = 1,2,3,4 consisting

of 2i line segments of equal length, such that two consecutive segments join at a right angle (Fig-

ure 22). In these experiments, the number of the data points generated on a line segment is constant

(it is set to 100), and the variance of the bivariate Gaussian noise is l2 ·0.0005, where l is the length

77

of a line segment. Figure 22 shows the principal curves produced by the HS and the polygonal line

algorithms in the four experiments. Although the polygonal principal curve follows the generating

curve more closely than the HS principal curve in the first three experiments (Figures 22(a), (b),

and (c)), the two algorithms produce equally poor results if the number of line segments exceeds a

certain limit (Figure 22(d)).

Analysis of the data-dependent penalty term explains this behavior of the polygonal line al-

gorithm. Since the penalty factor λp is proportional to the number of line segments, the penalty

relatively increases as the number of line segments of the generating curve grows. To achieve the

same local smoothness in the four experiments, the penalty factor should be gradually decreased as

the number of line segments of the generating curve grows. Indeed, if the constant of the penalty

term is reset to λ′ = 0.02 in the fourth experiment, the polygonal principal curve recovers the gen-

erating curve with high accuracy (Figure 23).

Data points
Generating curve
Polygonal principal curve

Figure 23: The polygonal principal curve follows the zig-zagging generating curve closely if the penalty
coefficient is decreased.

The second scenario when the polygonal line algorithm fails to produce a meaningful result is

78

when the generating curve is too complex so the algorithm does not find the global structure of

the data. To test the gradual degradation of the algorithm, we used spiral-shaped generating curves

of increasing length, i.e., we set gi(t) = (t sin(iπt), t cos(iπt)) for t ∈ [0,1] and i = 1, . . . ,6. The

variance of the noise was set to 0.0001, and we generated 1000 data points in each experiment.

Figure 24 shows the principal curves produced by the HS and the polygonal line algorithms in four

experiments (i = 2,3,4,6). In the first three experiments (Figures 24(a), (b), and (c)), the polygo-

nal principal curve is almost indistinguishable from the generating curve, while the HS algorithm

either oversmoothes the principal curve (Figure 24(a) and (b)), or fails to recover the shape of the

generating curve (Figure 24(c)). In the fourth experiment both algorithms fail to find the shape of

the generating curve (Figure 24(d)). The failure here is due to the fact that the algorithm is stuck in

a local minima between the initial curve (the first principal component line) and the desired solution

(the generating curve). If this is likely to occur in an application, the initialization step must be re-

placed by a more sophisticated routine that approximately captures the global structure of the data.

Figure 25 indicates that this indeed works. Here we manually initialize both algorithms by a polyg-

onal line with eight vertices. Using this “hint”, the polygonal line algorithm produces an almost

perfect solution, while the HS algorithm still cannot recover the shape of the generating curve.

79

(a)
Data points
Generating curve
Polygonal principal curve
HS principal curve

(b)
Data points
Generating curve
Polygonal principal curve
HS principal curve

(c)
Data points
Generating curve
Polygonal principal curve
HS principal curve

(d)
Data points
Generating curve
Polygonal principal curve
HS principal curve

Figure 24: Spiral-shaped generating curves. The polygonal line algorithm fails to find the generating curve
as the length of the spiral is increased.

80

Data points
Generating curve

Polygonal principal curve
Initial curve

HS principal curve

Figure 25: The performance of the polygonal line algorithm improves significantly if the global structure of
the generating curve is captured in the initialization step.

81

