
Chapter 4 

Theory for principal curves and surfaces 

In this chapter we prove the results referred to in chapter 3. In most cases we deal only 

with the principal curve model, and suggest the analogues for the principal surface model. 

4.1. The projection index is measureable. 

Since the first thing we do is condition on Xl(X), t i might be prudent to check that it is 

indeed a random variable. To this end we need to show that the function Xf : IRP H lR’ 

is measureable. * 

Let f(X) be a unit speed parameterized continuous curve in pspace, defined for X E 

[X,,X1] = A. Let 

where 

D(z) = jn% {d(z, f(X))} Vz E JRp 

d(% f(4) = 112 - f ONI, 
the usual euclidean distance between two vectors. Now set 

M(z) = {A ; 42, f(N) = D(4). 

Since A is compact, M(z) is not empty. Since f, and hence d(z, f(X)) is continuous, MC(z) 

is open, and hence M(z) is closed. Finally, for each z in Rp we define the projection index: 

A# = supM(2) 

X,(z) is attained because M(z) is closed, and we have avoided ambiguities. 

Theorem 4.1 

X,(z) is a measureable function of z. 

* I am grateful to H. Kiinsch of ETH, Ziirich, for getting me started on this proof. 
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Proof 

In order to prove that Xf(z) is measureable we need to show that for any c E A, the set 

{z 1 At(z) 5 c} is a measureable set. 

Now z E {z IX,(z) 5 c} +=+ f or any X E (c, Xr] there exists a X’ E [&cl such 

that d(z, f(X)) > d(z, f(X’)). (i.e. if there was equality then by our convention we choose 

Xf(z) = X > c.) In symbols we have 

12 IA# 5 cl = n u b Id(z,f(4) > d(%f(X’))) 
XE(C,Xll A’E[AO,C] 

dd 
= A, 

The first step in the proof is to show that 

where Q is the set of rational numbers. Since for each X 

u (2 142, f(4) ’ d(z, fV’))l 2 u {z (d(z, f(X)) > d(z, f(Q)}, 
X’E[Xo,cl X$[hCl”Q 

it follows that B, E A,. We need to show that B, > A,. Suppose z E A, i.e. for any given 

X E (c,Xr] 3 X E [Xe,c] such that 

For any given such X and X’ we can find an c > 0 such that 

d(z, f(X)) = 42, f@‘)) + e 

Now since f is continuous and the rationals are dense in R’ we can find a Xi E Q such 

that Xb 5 X’ and d(f(X’), f($,)) < c . (If X’ E Q we need go no further). This implies that 

d(z, f(X)) > d(z, f(J!b)) by the Pythagorean property of euclidean distance. This in turn 

implies that z E B, and thus & C B,, and therefore A, = B,. 
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The second step is to show that 

Now clearly B, c D,. Suppose then that z E D,, i.e. for every X, E (c, XI] n Q, there 

is a Ai E [X,,c] n Q such that d(z,f(X,)) > d(z,f(Xb)). Once again by continuity off and 

because the rationals are dense in R’ we can find another A; E Q, A; > A, such that 

for all X E [A,, A;]. This means that 

for every A, E (c,Xr] nQ. In other words 

and we have that D, = Be. Finally, each of the sets in D, is a half space, and thus 

measureable, D, is a countable union and intersection of measurable sets, and is thus itself 

measurable. I 

4.2. The stationarity property of principal curves. 

We first prove a result for straight lines. This will lead into the result for curves. The 

straight line theorem says that a principal component line ia a critical point of the expected 

distance from the points to itself. The converse is also true. 

We first establish come more notation. Suppose f(X) : 6 H $ ia a unit speed con- 

tinuously differentiable parametrized curve in IRP, where A is an interval in IR’. Let g(X) 

be defined similarly, without the unit speed restriction. An z perturbed version of f is 

fC ‘kf f(X) + q(X). Suppose X has a continuous density in IRP which we denote by h, and 
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let D’(h,f,) be defined as before by 

D*(hfc) = E/s 11X - f&#))ll* 

where At=(X) parametrizes the point on fC closest to X. 

Definition 

The curve f is a critical point of the &tance function in the class 5 iff 

dD*h fc) 
de 

=o VgEQ. 
r=O 

(We have to show that this derivative exists.) 

Theorem 4.2 

Let f(X) = EX + Xuc with Ilt)oll = 1, and suppose we restrict g(X) to be line= as well. 

So g(X) = Aa, JJuJJ = 1 and 9 = t, the class of all unit speed straight lines. Then f is a 

critical point of the distance function in f.? iff uc is an eigenvector of C = COV(X). 

Note: 

l WLOG we assume that EX = 0. 

l Ilull = 1 is simply for convenience. 

Proof 

The closest point from z to any line Xw through the origin is found by projecting z onto 

ts and has parameter value 

Then 

Upon taking expected values we get 

We now apply the above to fC instead of tw, but first make a simplifying assumption. We 

can assume w.1.o.g that we = cl since the problem is invariant to rotations. 
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We split u into a component u, = ccl along cl and an orthogonal component v* . Thus 

u = cue + w* where e’Iv* = 0. So fC = A((1 + cc)q + co*). We now plug this into (4.1) to 

get 

D*(h, fL) = tr C - 
((1 + cc)el + cu’)‘ZC((l + cc)er + err’) 

(1 + cc)’ + c* 
= tr c _ (1 + ce)*erI;Cel + 2e(l+ ce)dICn* + c*tP’Du’ 

(1+ cq + c* 

Differentiating w.r.t. e and setting e = 0 we get 

(4.2) 

dD*(h, fe) 
de I = -2eiCv’. cc0 

If el is a principal component of C then this term is zero for all w’ and hence for all U. 

Alternatively, if this term, and hence the derivative, is zero for all u and hence all u*‘er = 0, 

we have 
tP’Ce1 = 0 V u*‘el = 0 

*Ccl = ccl 

=ker is an eigenvector of II 

I 

Note: 

Suppose u is in fact another eigenvector of C, with eigenvalue d, then 

D*(h, A) - D*(h, f) = &k: -d*) 

This shows that f might be a maximum, a minimum or a saddle point. 

Theorem 4.3 

Let 9 be the class of unit speed differentiable curves defined on A, a closed interval of the 

form [o, b]. The curve f is a principal curve of h iff f is a critical point of the distance 

function in the class 5. 

We make some observations before we prove theorem 4.3. Figure 4.lillustrates the situation. 

The curve f6 wiggles about f and approaches f as c approaches 0. In fact, we can see that 

the curvature of ft is close to that of f for small e. The curvature of fC is given by 

l/‘j*(X) = f:‘N . WI 
llf:w12 
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Figure (4.1) jc(A) depicted as a function of j(X). 

where N(X) is the normal vector to the curve at A. Thus l/rj<(X) 5 I\j:‘(X)ll / \lj:(X)ll* since 

the curve is not unit speed and so the acceleration vector is slightly off normal. Therefore 

we have rj<(X) 2 IIf’ + cg’(X)II* / /f”(A) + cg”ll which converges to rj(X) as c + 0. 

The theorem is stated only for curves f defined on compact sets. This is not such a 

restriction as it might seem at first glance. The notorious epace filling curves are excluded, 

but they are of little interest anyway. If the density h has infinite support, we have to boz it 

in lRr in order that f, defined on a compact set, can satisfy either statement of the theorem. 

(We show this later.) In practice thii is not a restriction. 

Proof of theorem 4.3. 

We use the dominated convergence theorem (Chung, 1974 pp 42) to show that we can 

interchange the orders of integration and differentiation in the expression 

-$D*(Ml = $ Eh 1(X - f~(~j~(X)l(l*. (4.3) 

We need to find a random variable Y which is integrable and dominates almost surely the 

absolute value of 

z, = 
IIX - mjp)ll)* - J/x - f(QWlJ2 

f 
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for all E > 0. Notice that by definition 

if this limit exists. Now 

z, 5 
I/x - feOj(X))I12 - 11x - fPj(X))l12 

c 

Expanding the first norm we get 

)1x - f&j(X))l12 = )1x - f(~j(X))1/*+f* /jr(xf(X))lj2 -2e (x - f(~j(W) Y7(~j(Xh 

and thus 

where Yr is some bounded random variable. 

Similarly we have 

& 2 
11x - f&jc(X))I12 - I/x - f(~j~W)jj2 

e 

We expand the first norm again, and get 

zc 2 -2 (x - m,<(x))) * gP j.(X)) + z ((go j<(x)ll~* 
1 yz 

where Y2 is once again some bounded random variable. These two bounds satisfy the con- 

ditions of the dominated convergence theorem, and so the interchange is justified. However, 

from the form of the two bounds, and because f and g are continuous functions, we see 

that the limit lirx~~c Z, exists whenever Arc(X) is continuous in c at e = 0. Moreover, this 

limit is given by 

= -2 (x - f(~j(XN) d~j(X)). 
We show in lemma 4.3.1 that this continuity condition is met almost surely. 
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We denote the distribution function of Aj(X) by hx, and get 

-$*@, f.11 = -2 EhA ( E (X IX j(X) = 4 - f(4) - id-% (4.4) 
r=O 

If f(A) is a principal curve of h, then E (X I At(X) = A) = f(X) for all X in the support 

of hA, and thus 

-$“(h,fe)~ = 0 V differentiable g. 
c=o 

Alternatively, suppose that 

for all differentiable g. In particular we COL rid pick g(X) = E(X IAt = A) -f(X). Then 

Ehr E(X - f(x) ( I A j(X) = 4 * P(4) = 0 (4.5) 

and consequently j is a principal curve. This choice of g, however, might not be differen- 

tiable, so some approximation is needed. 

Since (4.5) holds for all differentiable g we can use different g’s to knock ofl different 

pieces of E(X I At(X) = A) - f(X). I n ac we can do it one co-ordinate at a time. For f t 

example, suppose E(X1 IAj(X) = A) p t is osi ive for almost every X E (Xc,Xr). We suggest 

why such an interval will always exist. We will show that Xl(z) is continuous at almost 

every z. The set {X I At(X) = X E (X0, Xl)} is th e set of X which exist in an open connected 

set in the normal plane at A, and these normal planes vary smoothly as we move along the 

curve. Since the density of X1 is smooth, it does not change much as we move from one 

normal plane to the next, and thus its expectation does not change much either. We then 

pick a differentiable 91 so that it is also positive in that interval, and zero elsewhere, and 

set 92 E ..a E gP E 0. We apply the theorem and get E(X1 IXj(X) = A) = fl(X) for 

X E (Xe,Xr). We can do this for all such intervals, and for each co-ordinate, and thus the 

result is true. I 

Corollary 

If a principal curve is a straight line, then it is a principal component. 
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Proof 

If f is a principal curve, then theorem 4.3 is true for all g, in particular for g(X) = Xv. We 

then invoke theorem 4.2. I 

In order to complete the proof, we need to prove the following 

Lemma 4.3.1 

The projection function Xj,(z) is continuous at E = 0 for almost every z in the support of 

h. 

Proof 

Let us consider first where it will not be continuous. Suppose there are two points on f 

equidistant from z, and no other points on f are as close to z. Thus 3 X, > X1 , Xl(z) = X0 

and 112 - f(Ao)ll = ((2 - f(Xl)(l. It is easy to pick g in this situation such that At.(z) is not 

continuous at c = 0. We call such points ambiguous. However, we prove in lemma 4.3.2 

that the set of all ambiguity points for a finite length differentiable curve has measure zero. 

We thus exclude them. 

Suppose w > 0 is given, and there is no point on the curve as close to z as f(Xf(z)) = 

f(Xo). Thus 112 - ~(&)I[ < llz - f(Xr)ll V X1 E [a,b] n (Xo - w,Xu + w)‘. (Notice that at 

the boundaries the w interval can be suitably redefined.) Since this interval is compact, 

and the distance functions are differentiable, we can find a 6 > 0 such that 112 - f(Xo)ll 5 

llz - f(h)11 - 6. Let ~4 = supXE[o,b] IIg(A)ll and CO = 6/(2M). Then 112 - fL(Ao)II < 

112 - f@l)(( v Xl E [a$] n (X0 - (4x0 + wy and Ve 5 ~0. This implies that XjC(z) E 

(Xc - w, Xc + w), and the continuity is established. I 

Lemma 4.3.2 

The set of ambiguity points has probability measure zero. 

Proof 

We prove the lemma for a curve in a-space, but the proof generalizes to higher dimensions. 

Referring to figure 4.2, suppose o is an ambiguity point for the curve f at A. We draw the 

circle with center o and tangent to f at A. This means that f must be tangent to the circle 

somewhere else, say at t(Y). If ) on the normal at f(X) is also an ambiguity point, we can 

draw a similar circle for it. But this contradicts the fact that f(X) is the closest point. to o, 
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Figure 4.2 There are at most two ambiguity points on the normal 
to the curve; one on either side of the curve. 

since the circle for b lies entirely inside the circle for o, and by the ambiguity of b we know 

the curve must touch this inner circle somewhere other than at f(A). 

Let I(X) be an indicator function for the set of ambiguity points. Since there are at 

most two at each A, we have that E(I(X) I xi(X) = A) = 0. But this also implies that the 

unconditional expectation is zero. I 

Corollary 

The projection index At(z) is continuous at almost every z. 

Proof 

We show that if At(z) is not continuous at z, then z is an ambiguity point. But this set 

has measure zero by lemma 4.3.2. 

If Xj(z) is not continuous at z, there exists a ee > 0 such that for every 6 > 0 3 ZJ 

such that IIz - z~)l < S but l~j(z) - ~j(q)J > co. Letting 6 go to zero, we see that z must 
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Figure 4.3 The set of points to the right of j(a) that project there 
has measure rero. 

be equidistant to At(z) and at least one other point on the curve with pro&&ion index at 

least cc from X j(2). a 

Theorem 4.3 proves the equivalence of two statements: f is a principal curve and f 

is a critical value of the distance function. We needed to assume that f is defined on a 

compact set A. This means that the curve has two ends, and any data beyond the ends 

might well project at the endpoints. This leaves some doubt as to wether the endpoint can 

be the average of these points. The next lemma shows that for either statement of the 

theorem to be true, some truncation of the support of h might be necessary (if the support 

is unbounded). 

Lemma 4.3.3 

If f is a principal curve, then (z - f(Aj(z))) . j’(Xj(z)) = 0 8.8. for z in the support of 

h. If- = 0 V differentiable g, then the same is true. By j’(a) we mean the 
r=O 

derivative from the right, and similarly from the left for f’(b). 

Proof 

If Xl(z) E (a,b) the proof is immediate. Suppose then that At(z) = o. Rotate the cp 

ordinates so that j’(o) = er. No points to the left of j(a) project there. Suppose f is a 
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principal curve. Thii then implies that the set of points that are to the right of f(a) and 

project at f(a) has conditional measure zero, else the conditional expectation would be to 

the right. Thus they also have unconditional measure zero. 

Alternatively, suppose that there is a set of z of positive measure to the right of f(a) 

that projects there. We can construct g such that g(a) = f’(a), and zero everywhere else. 

For such a choice of g it is clear that the derivative cannot be zero. However, this choice of 

g is not continuous. But we can construct a version of g that is differentiable and does the 

same job as g. We have then reached a contradiction to the claim that w =o v 

differentiable g. 
SC0 

a 

4.3. Some results on the subclass of smooth principal curves. 

We have defined a subset 7,(h) of principal curves. These are principal curves for which 

At(z) is a continuous function at each z in the support of h. In the previous section we 

showed that irAt is not continuous at z, then z is an ambiguity point. We now prove the 

converse: no points of continuity are ambiguity points. This will prove that the continuity 

constraint indeed avoids ambiguities in projection. 

In figure 4.4a the curve is smooth but it wraps around so that points close together 

might project to completely different parts of the curve. This reflects a global property of 

the curve and presents an ambiguity that is unsatisfactory in a summary of a distribution. 

Theorem 4.4 

If Xi(z) is continuous at z, then z is not an ambiguity point. 

Proof 

We prove by contradiction. Suppose we have an z, and X1 # Xz such that 

112 - f(W = 112 - f(X*)ll 

= d(z, f) 

It is easy to see that if X1 yields the closest point on the curve for Z, then Xl is the position 

that yields the minimum for all z,, = cqf(X1) + (1 - cq)~ for Q E (0,l). Similarly for X2. 

Now the idea is to let ~1 and az get arbitrarily small, and thus llz,, - z,,II geta small, but 

x j(“aJ - x j(4 = constant and this violates the continuity of At(.) a 

Figure 4.4b represents the other ambiguous situation, this time caused by a local 

property of the curve. We consider only points inside the curve. If such points can occur at 
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(4 (b) 

Figure 4.4 The continuity constraint avoids global ambiguities (a) 
and local ambiguities (b) in projection. 

the center of curvature, then there is no unique point of projection on the curve. By inside 

we mean that the inner product (z - f(Xf(z))) . (cr(Ar(z)) - j(Xt(z))) is non-negative, 

where cr(X) is the center of curvature of j at the point j(X). 

Theorem 4.5 

If Xi(z) is continuous at z, then z is not at the center of curvature of j at A. 

Proof 

The idea of the proof is illustrated in figure 4.4b. If a point at cr(X) projects at A, then it 

will project at many other points immediately around A, since locally j(A) behaves like the 

arc of a circle with center c,(X). This would contradict the continuity of XI. Furthermore, 

if a point at t beyond c,(X) projects at A, we would expect that points on either side of z 

would project to different harts of the curve, and this would also contradict the continuity 

OfXf. 
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We now make these ideas precise. Assume z projects at Xi(z) = &, where 

and 6 2 0. Thus z is on or beyond the center of curvature of j at Xo. Let q(X) dz 1) j(X) - zll. 

By hypothesis q(X) 2 q(X0) with equality holding iff X = As. (Otherwise there would be at 

least two points on the curve the same distance from z and this would violate the continuity 

of At). This implies that 

(1) qV0) = 0 

(2) q”(X0) > 0 for a strict minimum to be achieved. 

We evaluate these two conditions: 

q’(X0) = j’(A0) * (j&lo) - 4 

q”(X0) = f”(Xo) * (f(Ao) - z) + f’(Xo) - fV0) 
= - Ilf”(~O)II 6 
50 

which contradicts (2) above. 

4.4. Some results on bias. 

The principal curve procedure is inherently biased. There are two forms of bias that can 

occur concurrently. We identify them as model bias and estimation bias. 

Model bias occurs in the framework of a functional model, where the data is generated 

from a model of the form z = j(X) + e, and we wish to recover j(X). In general, starting 

at j(X), the principal curve procedure will not have j(X) as its solution curve, but rather 

a biased version thereof. This bias goes to zero with the ratio of the noise variance tothe 

radius of curvature. 

Estimation bias occurs because we use scatterplot smoothers to estimate conditional 

expectations. The hiss is introduced because we average over neighborhoods, and this 

usually has a flattening effect. 
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I 

Figure 4.5 The data is generated from the arc of a circle with 
radius p and with iid N(0,u2Z) errors. The location on the circle is 
selected uniformly. 

4.4.1. A simple model for investigating bias. 

The scenario we shall consider is the arc of a circle in P-space. This can be parametrized 

by a unit speed curve j(X) with constant curvature l/p, where p is the radius of the circle: 

m = P-0/P) 
( 1 p sin(Vp) ’ (4.6) 

for X E [-X,,Xf] E [-x.p,rp]. For th e remainder of this section we will denote intervals of 

the type [-Ae,Ae] by A@. 

The points z are generated as follows: First a X is selected uniformly from A!. Given 

this value of X we pick the point z from some smooth symmetric distribution with first two 

moments (j(X),a’I) where u has yet to be specified. Intuitively it seems that more mass 

gets put outside the circle than inside, and so the circle, or arc thereof, that gets closest 

to the data has radius larger than p. Consider the points that project onto a small arc of 

the circle (see figure 4.5). They lie in a segment which fans out from the origin. As we 

shrink this arc down to a point, the segment shrinks down to the normal to the curve at 

that point, but there is always more mass outside the circle than inside. So when we take 

conditional expectations, the mean lies outside the circle. 

One would hope that the principal curve procedure, operating in distribution space 
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and starting at the true curve, would converge to this minimizing distance circle in this 

idealized situation. It turns out that this is indeed the case. 

Figure 4.5 depicts the situation. We have in mind situations where the ratio u/p is 

small enough to guarantee that P(lel > p) = 0. This effectively keeps the points local; 

they will not project to a region on the circle too far from where they were generated. 

Theorem 4.6 

Let j(X), X E A/ be the arc of a circle as described above. The parameter X is distributed 

uniformly in the arc, and given X, z= j(X) + e where the components of e are iid with mean 

0 variance u2. We concentrate on a smaller arc A0 inside A,, and assume that the ratio 

a/p is small enough to guarantee that all the points that project into A# actually originated 

from somewhere within Af. 

Then f-8 E(+f(z)EAs)= o 0 
where 

re = r* sWl2) 
e/2 ’ 

X~fp = 612 and 

Finally r’ + p as o/p -+ 0. 

r’ = [iore 

= Ed-- 

(4.7) 

Lemma 4.6.1 

Suppose Xf = xp. (We have a full circle.) The radius of the circle, with the same center 

as f(X), that minimizes the expected squared distance to the points is* 

r*= E\/(p+e#+ei 

’ P. 

Also r* --* p aa u/p --) 0. 

* I thank Art Owen for suggesting this result. 
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Proof of lemma 4.6.1 

The situation is depicted in Figure 4.5. For a given point z the squared distance from a 

circle with radius r is the radial distance and is given by 

d2(z, r) = (11~11 - r)2. 

The expected drop in the squared distance using a circle with radius r instead of p is given 

by 
EAD’(z,r,p) = Ed2(z,p) - Ed2(z,r) 

= E(ll~ll - ~1~ - E(ll4l - r12 
We now condition on X = 0 and expand (4.8) to get 

(4.8) 

Differentiating w.r.t. r we see that a maximum is achieved for 

rr = P E d(l -t cl/p)’ + (en/p)2 

2 P E II+ edpI 

2 P I E(1 + edp)l (Jensen) 

=P 

with strict inequality iff Var(q/p) = u2/p2 = 0. Note that 

EAD’(z,r*,p) = (P - Edo2 (4.9) 

which is non-negative. 

When we condition on some other value of X, we can rotate the system around so that 

X = 0 since the distance is invariant to such rotations, and thus for each value of X the same 

r’ maximizes EAD2(z,r,p IX), and thus maximizes EAD’(z,r,p). I 

Note: We can write the expression for r* as 

r* = P E If----= (1+ cl) + ez (4.10) 
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where ei = ei/p, ei y (O,S), and 6 = u/p. Expanding the square root expression using the 

Taylor’s expansion we get 

r* FJ p + u2/(2p). (4.11) 

This yields an expected squared distance of 

Ed’(X,r*) EJ uz - u4/(4p2) 

which is smaller than the usual u2. This expression was also obtained by Efron (1984). 

Proof of theorem 4.6. 

We will show that in a segment of size 4 the expected distance from the points in the 

segment to their mean converges to the expected radial distance as 4 + 0. If we consider 

all such segments of size 4, the conditional expectations will lie on the circumference of 

a circle. By definition the conditional expectations miniie the squared distances to the 

points in their segments, and hence in the limit the radial distance in each segment. But 

so did r’, and the results follow. 

Suppose that 4 is chosen so that 2x14 is a positive integer. We divide the circle up 

into segments each with arc angle 4. Consider E (z 1 Xi(z) E A+), where A+ and X+ are 

defined above. 

Figure 48depicts the situation. The points are symmetrical about the zr-axis, so the 

expectation will be of the form (r,O)‘. By the rotational invariance of the problem, if we 

End these conditional expectations for each of the segments in the circle, we end up with a 

circle of points, spaced 4 degrees apart with radius r. 

We first show that as 4 + 0, r --) r*. In order to do this, let ua compare the distance 

of points from their mean vector r = (r, 0)’ in the segment, to their radial distance from the 

circle with radius r. If we let r(z) denote the radial projection of z onto the circle, we have 

Elk - E(z IXf(4 E 4)’ I+(4 E 41 = Elk- rj2 I$(4 EM 
2 E I(= - +)J2 1 At(z) E 41 

(4.12) 

Also, we have 

E[(z - r12 IQ(“) E 41 
= E b - r(4)’ I Xfb) E AA+ E [(r(z) - r12 I Xf(4 E 41 
- 2 E (IN - 4 12 - 44 co4tW) I Q(4 E 4) 

(4.13) 
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Figure 4.6 The conditional expectation of z, given At(z) E A+. 

where +(z) are the angles as depicted in figure 4.6. The second term on the right of (4.13) 

is smaller than (r4/2)2. We treat separately the case when z is inside the circle, and when 

z is outside. 

l When z is inside the circle, 4(z) is acute and hence cos(G(z)) > 0. Thus 

E lb - r)* I X j(z) E 41 

I E I@ - r(4)’ I X j(z) E Ad+ O(4) 

l When z is outside the circle, q(z) is obtuse and cos(+(z)) < 0. Since - cos($(z)) = 

sin($(z) - x/2) and from the figure 9(z) - n/2 5 +/4, we have that -cos($(z)) 5 

sin(+/4) = O(4). Now E [(]r(z) - rl . ]z - r(z)]) ] At(z) E A+] is bounded since the 

errors are assumed to have finite second moments. Thus (4.14) once again holds. 

So from (4.12) and (4.14) , as I$ + 0, the expected squared radial distance in the segment 

and the expected squared distance to the mean vector converge to the same limit. Suppose 

E (z (Xj(z) = 0) = r** 
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Since the conditional expectation r” minimizes the expected squared distance in the seg- 

ment, this tells us that a circle with radius r** minimizes the radial distance in the segment. 

Since, by rotational symmetry, this is true for each such segment, we have that r” minimizes 

E+ Wdl - 4” I+) = 4 = E(ll4l - 4”. 

This then implies that r** = r* by lemma 4.6.1 and thus 

;y E(z IXj(z) E A#) = E(z [Xl(z) = 0) 

= r* 

This is the conditional expectation of points that project to a an arc of size 0 or simply a 

point. In order to get the conditional expectation of points that project onto an arc of size 

0, we simply integrate over the arc: 

E(z IXj(z) E Ae) = Ex~(~)GQ E(x Ixj(“) = A) 

Suppose X corresponds to an angle z, then 

E(z Pj(4 = 4 = 
( 

r* cos(z) 
r*sin(z) 

Thus 

(4.15) 

Corollary 

The above results generalize exactly for the situation where data is generated from a sphere 

in IIt’. The sphere that gets closest to the data has radius 

and this is exactly the conditional expectation of 21 for points whose projection is at (p, 0,O)‘. 
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Corollary 

If the data is generated from the circumference of a circle as above, the principal curve 

procedure converges after one iteration if we start at the model. This is also true for the 

principal surface procedure if the data is generated from the surface of a sphere. 

Proof 

After one iteration, we have a circle with radius r’. All the points project at exactly the 

same position, and so the conditional expectations are the same. This is also true for the 

principal surface procedure on the sphere. I 

4.4.2. From the circle to the helix. 

The circle gives us insight into the behaviour of the principal curve procedure, since we 

can imagine any smooth curve as being made up of many arcs of circles. Equation (4.15) 

clearly separates and demonstrates the two forms of bias: 

. Model bias since r* 2 p. 

l Estimation bias since the coordinate functions are shrunk by a factor sin(B/2)/(6/2) 

when we average within arcs or spans of size 8. 

For a sufficiently large span, the estimation bias will dominate. Suppose that in the present 

setup, o = p/4. Then from (4.11) we have that r* = 1.031~. From (4.7) we see that 

a smoother with span corresponding to 0.27~ or 14% of the observations will cancel this 

effect. This is considered a small span for moderate sample sizes. Usually the estimation 

bias will tend to flatten out curvature. This is not always the case, as the circle example 

demonstrates. In this special setup, the center of curvature remains fixed and the result of 

flattening the co-ordinate functions is to reduce the radius of the circle. The central idea is 

still clear: model bias is in a direction away from the center of curvature, and estimation 

bias towards the center. 

We can consider a circle to be a flattened helix. We show that as we unflatten the helix, 

the effect of estimation bias changes from reducing the radius of curvature to increasing it. 

To fix ideas we consider again the circle in IR’. As we have observed the result of 

estimation and model bias is to reduce the expected radius from 1 to r (for a non-zero span 
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smoother such that r < 1). Thus we have 

10 = 
r cos(X) 

( ) rsin(X) ’ 

with Il&(X)II E r. The reparameterized curve is given by 

j= 
r cos(A/r) 

( ) r sin(X/r) ’ 

and by definition the radius of curvature is r < 1. Here the center of curvature remains the 

same, but this is not usually the case. 

A unit speed helix in lRs can be represented by 

cos(X/c) 

f(X) = sill(X/c) 

( 1 bX/c 

wherec2=l+b2. Itisessytocheckthatrj=1+b2, so even though the helix looks like a 

circle with radius 1 when we look down the center, it has a radius of curvature larger than 

1. This is because the osculating plane, or plane spanned by the normal vector and the 

velocity vector, makes an angle with the zr - zs plane. In the csse of a circle, the effect of 

the smoothing was to shrink the co-ordinates by a factor r. For a certain span smoother, 

the helix co-ordinates will become (r cos(X/c), r sin(X/c), bX/c)‘. Notice that straight lines 

are preserved by the smoother. Thus the new unit speed curve is given by 

r cos(X/c’) 

j(X) = rsin(X/c’) , 

i 1 bX/c’ 

where c* = r2 + b2. The radius of curvature is now (r2 + b2)/r. If we look at the difference 

in the radii we get 
r2 + b2 

‘? - rf = 
-1+b2 

= (1 L r)(b2 - r) 
r 

> 0 if b2 > r 

This satisfies our intuition. For small b the helix is almost like a circle and so we expect 

circular behaviour. When b gets large, the helix is stretched out and the smoothed version 

has a larger radius of curvature. 



Chapter -(: Theory for principal curves and surfaces 59 

4.4.3. One more bias demonstration. 

We conclude this section with one further example. So far we have discussed bias in a rather 

oversimplified situation of constant curvature. 

3C’ I I ’ ‘-I 
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Figure 4.7 The thick curve is the the principal curve using conditional expectations at the 

model, and shows the model bias. The two dashed cuTyes show the compounded effect of model 

and estimation bias at spans of 39% and 40%. 

A sine wave in R2 does not have constant curvature. In parametric form we have 

j(X) = Xr ( 1 sin(Xr) ’ 

A simple calculation shows that the radius of curvature rj(X) is given by 

1 sin(Xa) 
qq = (1 + coss(xs))s/s ’ 

and achieves a minimum radius of 1 unit. The model for the data is X = f(X) + c where 

x - U[O, 21 and c - 1(&I/4) independent of X. Figure 4.7shows the true model (solid 

curve), and the points are a sample from the model, included to give an idea of the error 

structure. The thick curve is E(X ] xi(X) = X). H ere is a situation where the model 

bias results in a curve with more curvature, namely a minimum radius of 0.88 units. .This 
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curve was found by simulation, and is well approximated by 1/0.88sin(Xx). There are two 

dashed curves in the figure. They represent E (X ) X!(X) E Ad(X)), where A,(X) represents 

a symmetric interval of length eA about X (Boundary effects were eliminated by cyclically 

extending the range of X.) We see that at s = 30% the estimation bias approximately 

cancels out the model bias, whereas at s = 40% there is a residual estimation bias. 

4.5. Principal curves of elliptical distributions. 

We have seen that for elliptical distributions the principal components are principal curves. 

Are there any more principal curves ? We first of all consider the uniform disc with no holes. 

For this distribution we propose the following: 

Figure (4.8) The only principal curves in jr=(h) of a uniform disk 
are the principal components. 

Proposition 

The only principal curves in 7,(h) are straight lines through the center of the disk. 

An informal proof of this claim is ss follows: 

l Any principal curve must enter the disk once and leave it once. This must be true 

since if it were to remain inside it would have to circle around. But this would violate 

the continuity constraint imposed by z(h) since there would have to exist points at 
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the centers of curvature of the curve at some places. Furthermore, it cannot end inside 

the disk for re=ns similar to those used in lemma 4.3.3. 

l The curve enters and leaves the disk normal to the circumference. For symmetry 

reasons this must be true. As it enters the disk there must be equal mass on both 

sides. 

l The curve never bends (see figure 4.8). At the first point of curvature, the normal 

to the curve will be longer on one side than the other. The set of points that project 

at this spot will not be conditionally uniformly distributed along the normal. This 

is because the set is the limit of a sequence of segments with center at the center of 

curvature of the curve at the point in question. Also, all points in the segment will 

project onto the arc that generates the segment; if not the continuity constraint would 

be violated. So in addition to the normal being longer, it will have more mass on the 

long side as well. This contradicts the fact that the mean lies on the curve. 

Thus the only curves allowed are straight lines, and they will then have to pass through the 

center of the disk. 

Suppose now that we have a convex combination of two disks of different radii but the 

same centers. A similar argument can be used to show that once again the only principal 

curves are the lines through the center. This then generalizes to any mixture of uniform 

disks and hence to any spherically symmetric distribution of this form. 

We conjecture that for ellipsoidal distributions the only principal curves are the prin- 

cipal components. 




