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Summary. This chapter provides an overview on the self-organised map (SOM) in
the context of manifold mapping. It first reviews the background of the SOM and
issues on its cost function and topology measures. Then its variant, the visualisa-
tion induced SOM (ViSOM) proposed for preserving local metric on the map, is
introduced and reviewed for data visualisation. The relationships among the SOM,
ViSOM, multidimensional scaling, and principal curves are analysed and discussed.
Both the SOM and ViSOM produce a scaling and dimension-reduction mapping
or manifold of the input space. The SOM is shown to be a qualitative scaling
method, while the ViSOM is a metric scaling and approximates a discrete prin-
cipal curve/surface. Examples and applications of extracting data manifolds using
SOM-based techniques are presented.

Key words: Self-organising maps, principal curve and surface, data visuali-
sation, topographic mapping

3.1 Introduction

For many years, artificial neural networks have been studied and used to
construct information processing systems based on or inspired by natural bi-
ological neural structures. They not only provide solutions with improved
performance when compared with traditional problem-solving methods, but
also give a deeper understanding of human cognitive abilities. Among the var-
ious existing neural network architectures and learning algorithms, Kohonen’s
self-organising map (SOM) [35] is one of most popular neural network models.
Developed for an associative memory model, it is an unsupervised learning
algorithm with simple structures and computational forms, and is motivated
by the retina-cortex mapping. Self-organisation in general is a fundamental
pattern recognition process, in which intrinsic inter- and intra-pattern rela-
tionships within the data set are learnt without the presence of a potentially
biased or subjective external influence. The SOM can provide topologically
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preserved mapping from input to output spaces. Although the computational
form and structure of the SOM are very simple, numerous researchers have
already examined the algorithm and many of its properties, there are still
many aspects to be exploited.

In this chapter, we review the background, theories and statistical proper-
ties and present recent advances of the SOM. The SOM is an optimal for vector
quantisation. Its topographical ordering provides the mapping with enhanced
fault and noise tolerant abilities. It also extracts a latent structure of the input
space, which is applicable to many applications such as dimensionality reduc-
tion, data visualisation, clustering and classification. Various extensions of the
SOM have been devised since to extend the mapping as optimal solutions for
a wide range of applications. In particular, the SOM has been linked with
the principal curve and surface [20] and the recently proposed visualisation
induced SOM (ViSOM) [78] has been shown to represent a discrete principal
curve/surface [79]. Such an analogy is explored and demonstrated and the
advantages and shortly comings examined in the context of other methods
such as kernel PCA [66], local linear embedding (LLE) [63] and Isomap [69].
Several examples are presented to highlight the potential of this biologically
inspired model in nonlinear, principled data analysis.

3.2 Biological Background

Kohonen’s self-organising map (SOM) is an abstract mathematical model of
topographic mapping from the (visual) sensory to the cerebral cortex. Mod-
elling and analysing the mapping are important to understanding how the
brain perceives, encodes, recognises, and processes the patterns it receives and
thus, if somewhat indirectly, is beneficial to machine-based pattern recogni-
tion. This section looks into the relevant biological models, from two funda-
mental phenomena involved, lateral inhibition and Hebbian learning, to Will-
shaw and von der Malsburg’s self-organisation retinotopic model, and then
to subsequent Kohonen’s simplified and abstracted SOM model. Basic oper-
ations and the algorithm of the SOM as well as methods for choosing model
parameters are also given.

3.2.1 Lateral Inhibition and Hebbian Learning

Human visual perception and brain make up the most complex cognition
system and the most complex of all biological organs. Visual information is
processed in both retina and brain, but it is widely believed and verified that
most processing is done in the retina, such as extracting lines, angles, curves,
contrasts, colours, and motions. The retina then encodes the information and
sends through optic nerves and optic chiasma, where some left and right nerves
are crossed, to the brain cortex at left or right hemispheres. The retina is a
complex neural network. Human retina has over 100 million photosensitive
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cells (combining rods and cones) processing in parallel the raw images and
codes and renders to just over one million optic nerves to be transmitted to
the brain cortex.

The Perceptron models some cells in the retina, especially the bipolar and
ganglion cells. These cells take inputs from the outputs of cells in the previous
layer. To put many units together and connect them into layers, one may hope
the resulting network, the multi-layer perceptron, will have some functionality
similar to the retina (despite some horizontally interconnections are ignored).
And indeed such a structure has been demonstrated of capable of certain
cognitive and information processing tasks.

Cells in neural networks (either in retina or brain) also connect and interact
horizontally. The experiment on limulus by Haldan K. Hartline (1967 Nobel
Prize Laureate) and his colleagues in 1960s, has confirmed such a processing on
limulus retina. They revealed the so-called lateral inhibition activities among
the retina cells. That is, there exist both short-range excitatory interaction
between close cells and long-range inhibitory interaction between long range
cells. This consequently explains the so-called “Mach band” phenomenon on
the edges or sharp changes of light intensity. Lateral inhibition tells us that
neurons in retina do not just feed the information to upper levels, but also
perform an important visual processing task: edge detection and enhancement.

Neural networks present completely different approaches to computing and
machine intelligence from traditional symbolic AI. The goal is to emulate
the way that natural systems, especially brains, perform on various cognitive
tasks. When a network of simple processing units interconnect to each other,
there are potentially a massive number of synaptic weights available to be
configured and modified such that the network will suit a particular task. This
configuration and modification process is carried out by a learning procedure,
i.e. learning or training algorithm. Traditional pattern recognition approaches
usually require solving some well-defined functions or models, such as feature
extraction, transformation, and discriminant analysis by a series of processing
steps. Neural networks can simply learn from examples. Presented repeatedly
with known examples of raw patterns and with an appropriate learning or
training algorithm, they are able to extract by themselves the most intrinsic
nature of the patterns and are able to perform recognition tasks. They will also
have ability to carry out similar recognition tasks not only on trained examples
but also on unseen patterns. Learning methods and algorithms, undoubtedly
play an important role in building successful neural networks.

Although many learning methods have been proposed, there are two fun-
damental kinds of learning paradigms: supervised learning and unsupervised
learning. The former is commonly used in most feed-forward neural networks,
in which the input-output (or input-target) functions or relationships are built
from a set of examples. While the latter resembles a self-organisation process
in the cortex and seeks inter-relationships and associations among the input.

The most representing supervised learning rule is the error-correction
learning. When presented an input-output pair, learning takes place when
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the error exists between a desired response or target output and the actual
output of the network. This learning rule applies an adjustment, proportional
to this error, to the weights of the neuron concerned. That is, learning from
errors. Derivation of such a rule can be often traced backed to minimising the
mean-square-error function. More details can be found in [21]. A derivative
of supervised learning is so-called reinforcement learning, which is based trail
and error (and reward) [68] and has backings from psychology.

Self-organisation often involves both competition and correlative learn-
ing. When presented with a stimulus, neurons compete among themselves for
the possession or ownership of this input. The winners then strengthen their
weights or their relationships with this input. Hebbian learning is the most
common rule for unsupervised or self-organised learning. The original Hebb’s
statement from his book, The Organization of Behaviour [22], was “When an
axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic changes take place
in one or both cells such that A’s efficiency as one of the cells firing B, is
increased.”

Mathematically Hebbian learning rule can be directly interpreted as,

∂wij(t)
∂t

= αxi(t)yj(t) , (3.1)

where α is a positive learning rate, 0 < α < 1, and x and y are the input and
output of the neural system respectively, or can also be regarded as the outputs
of two neurons. That is, the change of the synaptic weight is proportional to
the correlation between an input and its associated output. If the input and
output coherent, the weight connecting them is strengthened (xy is positive),
otherwise, weakened (xy is either negative or zero).

The Hebbian learning requires some modification before it can be used
in practice, otherwise the weight will easily become saturated or unlimited.
One solution is to add a forgetting term to prevent weights from increas-
ing/decreasing monotonically as in the SOM (see the next subsection). Alter-
native is to normalise the weights. For instance, Oja [54] proposed a weight
normalisation scheme on all weights. This introduces naturally a forgetting
term to the Hebbian rule,

wi(t+ 1) =
wi(t) + αxi(t)y(t)

{
n∑

j=1

[wj(t) + αxj(t)y(t)]2}1/2

≈ wi(t) + αy(t)[xi(t)− y(t)wi(t)] +O(α2) ,

(3.2)

where O(α2) represents second- and high-order terms in α, and can be ignored
when a small learning rate is used.

The resulting Oja’s learning algorithm is a so-called principal component
network, which learns to extract the most variant directions among the data
set. Other variants of Hebbian learning include many algorithms used for
Independent Component Analysis [55, 26].
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Fig. 3.1. Von der Malsburg’s self-organising map model. Local clusters in
a presynaptic sheet are connected to local clusters in a postsynaptic sheet. There
are lateral interconnections within the postsynaptic sheet (solid lines are used to
indicate such connections)

3.2.2 From Von Marsburg and Willshaw’s Model
to Kohonen’s SOM

Stimuli from the outside world are received by various sensory or receptive
fields (e.g. visual-, auditory-, motor-, or somato-sensory), coded or abstracted
by the living neural networks, and projected through axons onto the cerebral
cortex, often to distinct parts of cortex. In other words, the different areas
of the cortex (cortical maps) correspond to different sensory inputs. Topo-
graphically ordered maps have been widely observed in the cortex. The main
structures (primary sensory areas) of the cortical maps are established before
birth (cited in [76, 36]), in a predetermined topographically ordered fashion.
Other more detailed areas (associative areas), however, are developed through
self-organisation gradually during life and in a topographically meaningful or-
der. Therefore studying such topographically ordered projections, which had
been ignored during the early period of neural information processing develop-
ment [37], is clearly important for forming dimension-reduction mapping and
for the effective representation of sensory information and feature extraction.

The self-organised learning behaviour of brains has been studied for a
long time by many people. Many pioneering works include [2, 7, 17, 22, 35,
52, 74, 75, 76]. von der Malsburg and Willshaw [74, 76] first developed, in
mathematical form, self-organising topographical mappings, mainly from two-
dimensional presynaptic sheets to two-dimensional postsynaptic sheets, based
on retinatopic mapping: the ordered projection of visual retina to visual cortex
(see Fig. 3.1).

The model uses short-range excitatory connections between cells so that
activity in neighbouring cells becomes mutually reinforced, and uses long-
range inhibitory interconnections to prevent activity from spreading too far.
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The postsynaptic activities {yj(t), j=1, 2,...Ny}, at time t, are expressed by

∂yi(t)
∂t

+ cyi(t) =
∑

j

wij(t)xi(t) +
∑

k

eiky
∗
k(t)−

∑
k′
bik′y∗k′(t) , (3.3)

where c is the membrane constant, wij(t) is the synaptic strength between cell
iand cell jin pre- and post-synaptic sheets respectively; {xi(t), i=1, 2,...Nx},
the state of the presynaptic cells, equal to 1 if cell iis active or 0 otherwise;
ekj and bkj are short-range excitation and long-range inhibition constants
respectively; and y∗j (t) is an active cell in postsynaptic sheet at time t. The
postsynaptic cells fire if their activity is above a threshold, say,

y∗j (t) =
{
yj(t)− θ , if yj(t) > θ ;
0 , otherwise . (3.4)

The modifiable synaptic weights between pre- and post-synaptic sheets are
then facilitated in proportion to the product of activities in the appropriate
pre- and postsynaptic cells (direct realisation of Hebbian learning):

∂wij(t)
∂t

= αxi(t)y∗j (t), subject to
1
Nx

∑
i

wij = constant , (3.5)

where α is a small constant representing the learning rate. To prevent the
synaptic strengths becoming unstable, the total strength associated with each
postsynaptic cell is limited by normalisation to a constant value after each
iteration.

Kohonen [35] abstracted the above self-organising learning principles and
proposed a much simplified learning mechanism which cleverly incorporates
the Hebb’s learning rule and lateral interconnection rules and can emulate
the self-organising learning effect. Although the resulting SOM algorithm was
more or less proposed in a heuristic manner [40], it is a simplified and gener-
alised model of the above self-organisation process.

In Kohonen’s model, the postsynaptic activities are similar to Eq. (3.3). To
find the solutions of this equation and ensure they are non-negative properties,
a sigmoid type of nonlinear function is applied to each postsynaptic activity:

yj(t+ 1) = ϕ

(
wT

j x(t) +
∑

i

hijyi(t)

)
, (3.6)

where hkj is similar to ekj and bkj , the input is described as a vector as the
map can be extended to any dimensional input. A typical mapping is shown
in Fig. 3.2.

A spatially-bounded cluster or bubble will then be formed among the post-
synaptic activities and will stabilise at a maximum (without loss of generality
which is assumed to be unity) when within the bubble, or a minimum (i.e.
zero) otherwise,
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Fig. 3.2. Kohonen’s self-organising map model. The input is connected to
every cell in the postsynaptic sheet (the map). The learning makes the map lo-
calised, i.e. different local fields will respond to different ranges of inputs. The lateral
excitation and inhibition connections are emulated by a mathematical modification,
i.e. local sharing, to the learning mechanism. (So there are no actual connections
between cells, or in a sense we can say the connections are virtual. Hence grey lines
are used to indicate these virtual connections)

yj(t+ 1) =
{

1 , if neuron j is inside the bubble
0 , otherwise . (3.7)

The bubble is centred on a postsynaptic cell whose synaptic connection
with the presynaptic cells is mostly matched with the input or presynaptic
state, i.e. the first term in the function in Eq. (3.6) is the highest. The range
or size, denoted by η(t), of the bubble depends on the ratio of the lateral
excitation and inhibition. To modify the Hebbian learning rule, i.e. Eq. (3.5),
instead of using normalisation, a forgetting term, βyj(t)wij(t), is added. Let
α = β, and apply the function (3.7), the synaptic learning rule can then be
formulated as

∂wij(t)
∂t

= αyj(t)xi(t)− βyj(t)wij(t) = α[xi(t)− wij(t)]yj(t)

=
{
α[xi(t)− wij(t)], if j ∈ η(t) ;
0, if j /∈ η(t) .

(3.8)

At each time step the best matching postsynaptic cell is chosen accord-
ing to the first term of the function in Eq. (3.6), which is the inner product,
or correlation, of the presynaptic input and synaptic weight vectors. When
normalisation is applied to the postsynaptic vectors, as it usually is, this
matching criterion is similar to the Euclidean distance measure between the
weight and input vectors. Therefore the model provides a very simple com-
putational form. The lateral interconnection between neighbouring neurons
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and the “Mexican-hat” excitatory or inhibitory rules are simulated (mathe-
matically) by a simple local neighbourhood excitation centred on the winner.
Thus the neuron’s lateral interconnections (both excitatory and inhibitory)
have been replaced by neighbourhood function adjustment. The neighbour-
hood function’s width can simulate the control of the exciting and inhibiting
scalars. The constrained (with a decaying or forgetting term) Hebbian learn-
ing rule has been simplified and becomes a competitive learning model. Most
of Kohonen’s work has been in associative memories [32, 33, 34, 35, 36, 37].
In his studies, he has found that the spatially ordered representation of sen-
sory information in the brain is highly related to the memory mechanism, and
that the inter-representation and information storage can be implemented si-
multaneously by an adaptive, massively parallel, and self-organising network
[37]. This simulated cortex map, on the one hand can perform a self-organised
search for important features among the inputs, and on the other hand can
arrange these features in a topographically meaningful order.

3.2.3 The SOM Algorithm

The SOM uses a set of neurons, often arranged in a 2D rectangular or hexag-
onal grid, to form a discrete topological mapping of an input space, X∈ �n.
At the start of the learning, all the weights {wr1, wr2, . . . ,wrm} are initialised
to small random numbers. wri is the weight vector associated to neuron i and
is a vector of the same dimension, n, of the input. m is the total number of
neurons. ri is the location vector of neuron i on the grid. Then the algorithm
repeats the following steps.

• At each time t, present an input, x(t), select the winner,

v(t) = argmin
k∈Ω

‖x(t) −wk(t)‖ . (3.9)

• Updating the weights of winner and its neighbours,

Δwk(t) = α(t)η(v, k, t)[x(t) −wv(t)] . (3.10)

• Repeat until the map converges,

where η(v, k, t)is the neighbourhood function and Ω is the set of neuron in-
dexes. Although one can use the original stepped or top-hat type of neigh-
bourhood function (is one when the neuron is within the neighbourhood or
zero otherwise), a Gaussian form is often used in practice, i.e. η(v, k, t) =
exp[− ||v−k||2

2σ(t)2 ], with σ representing the changing effective range of the neigh-
bourhood.

The coefficients {α(t), t ≥0}, termed adaptation gain, or learning rate, are
scalar-valued, decrease monotonically, and satisfy [36],
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(i) 0 < α(t) < 1; (ii) lim
t→∞

∑
α(t) →∞; (iii) lim

t→∞

∑
α2(t) <∞ . (3.11)

They are the same as to those used in stochastic approximation [62]. The
third condition in (11) has been relaxed [60] to a less restrictive one, namely,
lim

t→∞α(t) → 0.
If the inner product similarity measure is adopted as the best matching

rule, i.e.
v(t) = arg min

k∈Ω
[wT

k (t)x(t)] , (3.12)

then the corresponding weight updating should become [39]

wk(t+ 1) =

{
wk(t)+α(t)x(t)

‖wk(t)+α(t)x(t)‖ ;
wk(t) .

(3.13)

Such a form is often used in text/document mining applications (e.g. [16]).

3.3 Theories

3.3.1 Convergence and Cost Functions

Although the SOM algorithm has a simple computational form, a formal
analysis of it and the associated learning processes and mathematical proper-
ties is not easily obtainable. Some important issues still remain unanswered.
Self-organisation, or more specifically the ordering process, has been studied
in some depth; however a universal conclusion has been difficult to obtain, if
not impossible. This section reviews the statistical and convergence properties
of the SOM and associated cost functions, the issue that still causes confusions
to many even today. Various topology preservation measures will be analysed
and explained.

The SOM was proposed to model the sensory to cortex mapping thus
the unsupervised associated memory mechanism. Such a mechanism is also
related to vector quantisation or vector quantiser (VQ) [46] in coding terms.
The SOM has been shown to be an asymptotically optimal VQ [82]. More
importantly, with the neighbourhood learning, the SOM is an error tolerant
VQ and Bayesian VQ [48, 49, 50].

Convergence and ordering has only formally been proved in trivial one
dimensional case. A full proof of both convergence and ordering in multidi-
mensional are still outstanding, though there have been several attempts (e.g.
[13, 14, 45, 47, 60, 82]. Especially Erwin, Obermayer and Schulten [13, 14]
showed that there was no cost function that the SOM would follow exactly.
Such an issue is also linked to the claimed lack of an exact cost function that
the algorithm is following. Recent work by various researchers has already
shed light on this intriguing issue surrounding the SOM. Yin and Allinson
[82] extended the Central Limit Theorem and used it to show that when
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the neighbourhood is reducing to just winner as in the original SOM, the
weight vectors (code references) are asymptotically Gaussian distributed and
will converge in mean square sense to the means of the Voronoi cells, i.e. an
optimal VQ (with the SOM’s nearest distance winning rule),

wk → 1
P (Xk)

∫
Vk

xp(x) dx , (3.14)

where Vk is the Voronoi cell (the data region) that weight vector wk is re-
sponsible, and p(x) is the probability density function of the data. In general
cases with the effect of the neighbourhood function, the weight vector is a
kernel smoothed mean [79],

wk →
∑T

t=1 η(v, k, t)x(t)∑T
t=1 η(v, k, t)

. (3.15)

Yin and Allinson [82] have also proved that the initial state has diminishing
effect on the final weights when the learning parameters follow the convergence
conditions. Such an effect has been recently verified by de Bolt, Cottrell and
Verleysen [10] using Monte-Carlo bootstrap cross validation. The ordering was
not considered. (In practice, good initialisation can be used to guide a faster
or even better convergence, due to the limited training time and samples,
as well as much relaxed learning rates. For example, initialising the map to
a principal linear submanifold can reduce the ordering time, if the ordering
process is not a key requirement.)

Luttrell [48, 49] first related hierarchical noise tolerant coding theory to
the SOM. When the transmission channel noise is considered, a two-stage
optimisation has to be done not only to minimise the representation distortion
(as in the VQ) but also to minimise the distortion caused by the channel noise.
He revealed that the SOM can be interpreted as such a coding algorithm. The
neighbourhood function acts as the model for the channel noise distribution
and should not go to zero as in the original SOM. Such a noise tolerant VQ
has the following objective function [48, 49],

D2 =
∫

dxp(x)
∫

dnπ(n)‖x−wk‖2 , (3.16)

where n is the noise variable and π(n) is the noise distribution. Durbin and
Mitchison [12] and Mitchison [53] have also linked the SOM and this noise
tolerant VQ with minimal wiring of cortex like maps.

When the code book (the map) is finite, the noise can be considered as
discrete, then the cost function can be re-expressed as,

D2 =
∑

i

∫
Vi

∑
k

π(i, k)‖x−wk‖2p(x) dx , (3.17)
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where Vi is the Voronoi region of cell i. When the channel noise distribution is
replaced by a neighbourhood function (analogous to intersymbol dispersion),
this gives to the cost function of the SOM algorithm. The neighbourhood
function can be interpreted as channel noise model. Such a cost function has
been discussed in the SOM community (e.g. [38, 42, 82, 58, 23]). The cost
function is therefore [23],

E(w1, ...wN ) =
∑

i

∫
Vi

∑
k

η(i, k)‖x−wk‖2p(x) dx . (3.18)

It leads naturally to the SOM update algorithm using the sample or stochastic
gradient descent method [62]. That is, for each Voronoi region, the sub cost
function is,

Ei(w1, ...wN ) =
∫

Vi

∑
k

η(i, k)‖x−wk‖2p(x) dx . (3.19)

The optimisation for all weights {w1, w2, . . . , wN} can be sought using the
sample gradients. The sample gradient for wj is,

∂
�

Ei(w1, ...wN )
∂wj

=
∂
∑
k

η(i, k)‖x−wk‖2

∂wj
= 2η(i, j)(x−wj) , (3.20)

which leads to the SOM updating rule, Eq. (3.10). Note, although the neigh-
bourhood function ηi,k is inexplicitly related to wj , it does not contribute to
the weight optimisation, nor does the weight optimisation lead to its adapta-
tion (neighbourhood adaptation is often controlled by a pre-specified scheme,
unrelated to the weight adaptation); thus the neighbourhood can be omitted
from taking partial differentiation. This is the point that has caused problems
in interpreting the cost function of the SOM in the past.

It has however been argued that this energy function is violated at bound-
aries of Voronoi cells where input has exactly the same smallest distance to
two neighbouring neurons. Thus this energy function holds mainly for the
discrete case where the probability of such boundary input points is close to
zero or the local (sample) cost function

�

Ei should be used in deciding the
winner [23]. When spatial-invariant neighbourhood function is used as it is
often the case, assigning the boundary input to either cells will lead to the
same local sample cost (or error), therefore any input data on the boundary
can be assigned to either Voronoi cells that have the same smallest distance
to it just like as in the ordinary manner (e.g. using the first-come-first-served
fashion in the programming). Only when the neurons lie on the borders of the
map, such violation occurs as unbalanced neighbourhood of the neurons. The
result is a slightly more contraction towards to the centre or inside of the map
for the border neurons compared to the common SOM algorithm as shown in
[38]. Using either the simple distance or local distortion measure as the win-
ning rule will result in border neurons be contracted towards inside the map,
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esp. when the map is not fully converged or when the effective range of the
neighbourhood function is large. With the local distortion rule, this boundary
effect is heavier as greater local error is incurred for the border neurons due
to its few neighbouring neurons than any inside neurons.

To exactly follow the cost function, the winning rule should be modified
to follow the local sample cost function

�

Ei (or the local distortion measure)
instead of the simplest nearest distance. That is,

v = arg min
i

∑
k

η(i, k)‖x−wk‖2 . (3.21)

When the neighbourhood function is symmetric as it is often the case and
when the data density function is smooth, this local distortion winning rule
is the same as to the simplest nearest distance rule for most non-boundary
nodes, especially as the number of nodes is large. On the borders of the map,
however, the differences exist due to the unbalance of the nodes presented
in the neighbourhoods. Such differences become negligible to the majority of
the neurons especially when a large map is used and when the neighbourhood
function shrinks to its minimum scale.

3.3.2 Topological Ordering Measures

The ordering to a large extent is still an outstanding and subtle issue, largely
due to the fact that there is no clear (or agreed) definition of order [18]. This is
the very reason that why a full self-organisation convergence theorem includ-
ing both the statistical convergence and ordering and the exact cost function
are still subject to debate, the fact that has prompted many alternatives such
as [67, 19, 5]. The ordering and an ordered map are clearly defined only in
1-D trivial case. Extending to higher dimension proves to be difficult if not
impossible. Bauer and Pawelzik [4] have proposed a measure termed topology
product to measure the topological ordering of the map,

P =
1

N2 −N
∑

i

∑
j

log

(
j∏

l=1

dD(wi,wηO(l,i))
dD(wi,wηD(l,i))

dO(i, ηo(l, i))
dO(i, ηD(l, i))

) 1
2k

, (3.22)

where dD and dO represent the distance measures in the input or data space
and output or map space respectively; η(l, i) represents the l-th neighbour of
node i in either data (D) or map (O) space.

The first ratio in the product measures the ratio or match of weight dis-
tance sequences of a neighbourhood (upto j) on the map and in the data
space. The second ratio is the index distance sequences of the neighbourhood
on the map and in the data space. The topographic product measures the
product of the two ratios of all possible neighbourhoods.
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Villmann et al. [73] proposed a topographic function to measure the neigh-
bourhoodness of weight vectors in data space as well as on the lattice. While
the neighbourhoodness of the weight vectors is defined by the adjacent Voronoi
cells of the weights. The function measures the degree of weight vectors are
ordered in the data space as to their indexes on the lattice, as well as how
well the indexes are preserved when their weight vectors are neighbours.

Goodhill and Sejnowski [18] proposed the C measure, a correlation between
the similarity of stimuli in the data space and the similarity of their prototypes
in the map space, to quantify the topological preservation,

C =
∑

i

∑
j

F (i, j)G[M(i),M(j)] , (3.23)

where F and G are symmetric similarity measures in the input and map spaces
respectively and can be problem specific, andM(i) andM(j) are the mapped
points or weight vectors of node i and j respectively.

The C measure directly evaluates the correlation between distance rela-
tions across two spaces. Various topographic mapping objectives may be uni-
fied under the C measure such as multidimensional scaling, minimal wiring,
and travel salesperson problem (TSP), and noise tolerant VQ. It has also been
shown that if a mapping that preserves ordering exists then maximising C will
find it. Thus the C measure is also the objective function of the mapping, an
important property different from other topology preservation measures and
definitions.

One can always use the underlying cost function, Eq. (3.18), to measure
the goodness of the resulting map including the topology preservation, at least
one can use a temporal window to take a sample of it as suggested in [38]. The
(final) neighbourhood function specifies the level of topology (ordering) the
mapping is likely to achieve or is required. To make an analogy to the above
C measure, the neighbourhood function can be interpreted as the G measure
used in (3.25) and term ||x − wk||2 represents the F measure. Indeed, the
input x and weight wj are mapped on the map as node index i and j and
their G measure is the neighbourhood function such as exponentials. Such an
analogy also sheds light on the scaling effect of the SOM. Multidimensional
scaling also aims to preserve local similarities on a mapped space.

3.4 SOMs, Multidimensional Scaling
and Principal Manifolds

3.4.1 Multidimensional Scaling

The SOM is often associated with VQ and clustering. However it is also asso-
ciated with data visualisation, dimensionality reduction, nonlinear data pro-
jection, and manifold mapping. A brief review on various data projection
methods and their relationships has been given before [80].
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Multidimensional Scaling

Multidimensional scaling (MDS) is a traditional subject related to dimension
reduction and data projection. MDS tries to project data points onto an of-
ten two-dimensional sheet by preserving as closely as possible the inter-point
metrics [9]. The projection is generally nonlinear and can reveal the overall
structure of the data. A general fitness function or the so-called stress function
is defined as,

S =

∑
i,j (dij −Dij)2∑

i,j D
2
ij

, (3.24)

where dij represents the proximity (dissimilarity) of data points i and j in the
original data space, Dij represents the distance (usually Euclidean) between
mapped points i and j in the projected space,.

The MDS relies on an optimisation algorithm to search for a configuration
that gives as low stress as possible. A gradient method is commonly used for
this purpose. Inevitably, various computational problems such as local minima
and divergence may occur to the optimisation process. The methods are also
often computationally intensive. The final solution depends on the starting
configuration and the parameters used in the algorithm.

Sammon mapping is a well-known example of MDS [65]. In Sammon map-
ping intermediate normalisation (of original space) is used to preserve good
local distributions and at the same time maintain a global structure. The
Sammon stress is expressed as,

SSammon =
1∑

i<j dij

∑
i<j

(dij −Dij)2

dij

. (3.25)

A second order Newton optimisation method is used to recursively solve
the optimal configuration. It converges faster than the simple gradient method,
but the computational complexity is even higher. It still has the local min-
ima and inconsistency problems. The Sammon mapping has been shown to be
useful for data structure analysis. However, like other MDS methods, the Sam-
mon algorithm is a point-to-point mapping, which does not provide the ex-
plicit mapping function and cannot naturally accommodate new data points.
It also requires to compute and store all the inter-point distances. This proves
difficult or even impossible for many practical applications where data arrives
sequentially, the quantity of data is large, and/or memory space for the data
is limited.

In addition to being computationally costly, especially for large data sets,
and not adaptive, another major drawback of MDS methods including Sam-
mon mapping is lack of an explicit projection function. Thus for any new
input data, the mapping has to be recalculated based on all available data.
Although some methods have been proposed to accommodate the new arrivals
using triangulation [11, 44], the methods are generally not adaptive.
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3.4.2 Principal Manifolds

Principal component analysis

PCA is a classic linear projection method aiming at finding orthogonal prin-
cipal directions from a set of data, along which the data exhibit the largest
variances. By discarding the minor components, the PCA can effectively re-
duce data variables and display the dominant ones in a linear, low dimensional
subspace. It is the optimal linear projection in the sense of the mean-square-
error between original points and projected ones, i.e.,

min
∑
x

[
x−

∑m

j=1
(qT

j x)qj

]2
, (3.26)

where {qj , j=1,2, . . .m, m ≤ n} are orthogonal eigenvectors representing
principal directions. They are the first m principal eigenvectors of the co-
variance matrix of the input. The second term in the above bracket is the
reconstruction or projection of x on these eigenvectors. The term qT

j x repre-
sents the projection of x onto the j-th principal dimension. Traditional meth-
ods for solving eigenvector problem involve numerical methods. Though fairly
efficient and robust, they are not usually adaptive and often require the pre-
sentation of the entire data set. Several Hebbian-based learning algorithms
and neural networks have been proposed for performing PCA such as, the
subspace network [54] and the generalised Hebbian algorithm [64]. The limi-
tation of linear PCA is obvious, as it cannot capture nonlinear relationships
defined by higher than the second order statistics. If the input dimension is
much higher than two, the projection onto linear principal plane will provide
limited visualisation power.

Nonlinear PCA and principal manifolds

The extension to nonlinear PCA (NLPCA) is not unique, due to the lack of a
unified mathematical structure and an efficient and reliable algorithm, and in
some cases due to excessive freedom in selection of representative basis func-
tions [51, 28]. Several methods have been proposed for nonlinear PCA such as,
the five-layer feedforward associative network [41] and the kernel PCA [66].
The first three layers of the associative network project the original data on
to a curve or surface, providing an activation value for the bottleneck node.
The last three layers define the curve and surface. The weights of the associa-
tive NLPCA network are determined by minimising the following objective
function,

min
∑
x

||x− f{sf (x)}||2 , (3.27)

where f : R1 → Rn (or R2 → Rn), the function modelled by the last three
layers, defines a curve (or a surface), sf : Rn → R1 (or Rn → R2), the function
modelled by the first three layers, defines the projection index.
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The kernel-based PCA uses nonlinear mapping and kernel functions to
generalise PCA to NLPCA and has been used for various pattern recognition.
The nonlinear function Φ(x) maps data onto high-dimensional feature space,
where the standard linear PCA can be performed via kernel functions: k(x,
y)=(Φ(x)·Φ(y)). The projected covariance matrix is then,

Cov =
1
N

∑N

i=1
Φ(xi)Φ(xi)T . (3.28)

The standard linear eigenvalue problem can now be written as λV=KV,
where the columns of V are the eigenvectors and K is a N ×N matrix with
elements as kernels Kij :=k(xi, xj)=(Φ(xi) · Φ(xj)).

The principal curves and principal surfaces [20, 43] are the principled non-
linear extension of PCA. The principal curve is defined as a smooth and
self-consistency curve, which does not intersect itself. Denote x as a random
vector in Rn with density p and finite second moment. Let f(·) be a smooth
unit-speed curve in Rn, parameterised by the arc length ρ (from one end of
the curve) over Λ ∈R, a closed interval.

For a data point x, its projection index on f is defined as

ρf (x) = sup
ρ∈Λ
{ρ : ‖x− f(ρ)‖ = inf

ϑ
‖x− f(ϑ)‖} . (3.29)

The curve is called self-consistent or a principal curve of ρ if

f(ρ) = E[X|ρf (X) = ρ] . (3.30)

The principal component is a special case of the principal curves if the dis-
tribution is ellipsoidal. Although principal curves have been mainly studied,
extension to higher dimension, e.g. principal surfaces or manifolds is feasi-
ble in principle. However, in practice, a good implementation of principal
curves/surfaces relies on an effective and efficient algorithm. The principal
curves/surfaces are more of a concept that invites practical implementations.
The HS algorithm [20] proposed by Hastie and Stuezle is a nonparametric
method, which directly iterates the two steps of the above definition. It is
similar to the standard LGB VQ algorithm [46] combined with some smooth-
ing techniques.

HS algorithm:

• Initialisation: Choose the first linear principal component as the initial
curve, f (0)(x).

• Projection: Project data points onto the current curve and calculate the
projections index, i.e. ρ(t)(x) = ρf(t)(x).

• Expectation: For each index, take the mean of data points projected onto
it as the new curve point, i.e., f (t+1)(ρ) = E[X|ρf(t)(X) = ρ].
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The projection and expectation steps are repeated until a convergence crite-
rion is met, e.g. when the change of the curve between iterations is below a
threshold.

For a finite data set, the density p is often unknown, the above expectation
is replaced by a smoothing method such as the locally weighted running-line
smoother or smoothing splines. For kernel regression, the smoother is,

f(ρ) =
∑N

i=1 xiκ(ρ, ρi)∑N
i=1 κ(ρ, ρi)

. (3.31)

The arc length is simply computed from the line segments. There are no
proofs of convergence of the algorithm, but no convergence problems have
been reported, though the algorithm is biased in some cases [20]. Banfield
and Raftery [3] have modified the HS algorithm by taking the expectation of
the residual of the projections in order to reduce the bias. Kegl et al [31] have
proposed an incremental, e.g. segment by segment, and arc length constrained
method for practical construction of principal curves.

Tibshirani [70] has introduced a semi-parametric model for the principal
curve. A mixture model was used to estimate the noise along the curve; and
the expectation and maximisation (EM) method was employed to estimate the
parameters. Other options for finding the nonlinear manifold include the GTM
[5] and probabilistic principal surfaces [6]. These methods model the data by
a means of a latent space. They belong to the semi-parameterised mixture
model, although types and orientations of the local distributions vary from
method to method.

3.4.3 Visualisation Induced SOM (ViSOM)

For scaling and data visualisation, a direct and faithful display of data struc-
ture and distribution is highly desirable. ViSOM has been proposed to extend
the SOM for directly distance preservation on the map [78], instead of us-
ing a colouring scheme such as U-matrix [72], which imprints qualitatively
the interneuron distances as colours or grey levels on the map. For the map
to capture the data structure naturally and directly, (local) distance quanti-
ties must be preserved on the map, along with the topology. The map can
be seen as a smooth and graded mesh or manifold embedded into the data
space, onto which the data points are mapped and the inter-point distances
are approximately preserved.

In order to achieve that, the updating force, x(t)−wk(t), of the SOM
algorithm is decomposed into two elements [x(t)-wv(t)]+[wv(t)−wk(t)]. The
first term represents the updating force from the winner v to the input x(t),
and is the same to the updating force used by the winner. The second force is
a lateral contraction force bringing neighbouring neuron k to the winner v. In
the ViSOM, this lateral contraction force is constrained or regulated in order
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to help maintain a unified local inter-neuron distance ||wv(t)−wk(t)|| on the
map.

wk(t+1) = wk(t)+α(t)η(v, k, t){[x(t)−wv(t)]+β[wv(t)−wk(t)]} , (3.32)

where the simplest constraint can be β:=dvk/(Dvkλ)-1, with dvk the distance
of neuron weights in the input space, Dvk the distance of neuron indexes on
the map, and λ a (required) resolution constant.

The ViSOM regularises the contraction force so that the distances between
the nodes on the map are analogous to the distances of their weights in the
data space. The aim is to adjust inter-neuron distances on the map in pro-
portion to those in the data space, i.e. λDvk ∝ dvk. When the data points are
eventually projected on a trained map, the distance between point i and j on
the map is proportional to that of the original space, subject to the quantisa-
tion error (the distance between a data point and its neural representative).
This has a similar effect to Sammon mapping, which also aims at achieving
this proportionality, Dij ∝ dij . The key feature of the ViSOM is that the
distances between the neurons (which data are mapped to) on the map (in a
neighbourhood) reflect the corresponding distances in the data space. When
the map is trained and data points mapped, the distances between mapped
data points on the map will resemble approximately those in the original
space (subject to the resolution of the map). This makes visualisation more
direct, quantitatively measurable, and visually appealing. The map resolution
can be enhanced by interpolating a trained map or incorporating local linear
projections [81]. The size or covering range of the neighbourhood function can
also be decreased from an initially large value to a final smaller one. The final
neighbourhood, however, should not contain just the winner. The rigidity or
curvature of the map is controlled by the ultimate size of the neighbourhood.
The larger of this size the flatter the final map is in the data space. Guide-
lines for setting these parameters have been given in [79]. An example on data
visualisation will be shown in the next section.

Several authors have since introduced improvements and extensions on the
ViSOM. For example, in [77], a probabilistic data assignment [19] is used in
both the input assignment and the neighbourhood function and an improved
second order constraint is adopted. The resulting SOM has a clearer con-
nection to an MDS cost function. In [15] the ViSOM has been extended to
arbitrary, neural gas type of map structure. Various existing variants of the
SOM such as hierarchical, growing and hierarchical and growing structures
are readily extendable to the ViSOM for various application needs.

The SOM has been related to the discrete principal curve/surface algo-
rithm [61]. However the differences remain in both the projection and smooth-
ing processes. In the SOM the data are projected onto the nodes rather than
onto the curve. The principal curves perform the smoothing entirely in the
data space –see Eq. (3.31). The smoothing process in the SOM and ViSOM,
as a convergence criterion, is [79],
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wk =
∑L

i=1 xiη(v, k, i)∑L
i=1 η(v, k, i)

. (3.33)

The smoothing is governed by the indexes of the neurons in the map space.
The kernel regression uses the arc length parameters (ρ, ρi) or ||ρ−ρi|| exactly,
while the neighbourhood function uses the node indexes (k, i) or ||k − i||.
Arc lengths reflect the curve distances between the data points. However,
node indexes are integer numbers denoting the nodes or the positions on the
map grid, not the positions in the input space. So ||k − i|| does not resemble
||wk−wi|| in the common SOM. In the ViSOM, however, as the local inter-
neuron distances on the map represent those in the data space (subject to the
resolution of the map), the distances of nodes on the map are in proportion
to the difference of their positions in the data space, i.e. ||k− i|| ∼ ||wk−wi||.
The smoothing process in the ViSOM resembles that of the principal curves
as shown below,

wk =
∑L

i=1 xiη(v, k, i)∑L
i=1 η(v, k, i)

≈
∑L

i=1 xiη(wv,wk, i)∑L
i=1 η(wv,wk, i)

. (3.34)

It shows that ViSOM is a better approximation to the principal curve
than the SOM. The SOM and ViSOM are similar only when the data are
uniformly distributed and when the number of nodes becomes very large, in
which case both the SOM and ViSOM will closely approximate the principal
curve/surface.

3.5 Examples

There have been reported thousands of applications of the SOM and its vari-
ants [39, 29, 56] since its introduction, too many to list here. There are a
dedicated international Workshop on SOMs (WSOM) and focused sessions
in many neural networks conferences. There have also been several special
issues dedicated to the advances in the SOM and related topics [1, 27, 8]. Still
many new applications are being reported in many relevant journals today.
SOMs will remain an active topic in their continued extension, combination
and applications in the years to come.

Typical applications include image and video processing and retrieval; den-
sity or spectrum profile modelling; nonlinear ICA; classification (LVQ); cross-
modal information processing and associations; data visualisations; text and
document mining and management systems; gene expression data analysis
and discovery;. novelty detection; robotics and computer animation. In this
section, we take a slice of typical applications and present several examples
on high dimensional data visualisation and scaling only.
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3.5.1 Data Visualisation

Data projection and visualisation has become a major application area for
neural networks, in particular for the SOMs [39], as its topology preserving
property is unique among other neural models. Good projection and visuali-
sation methods help to identify clustering tendency, to reveal the underlying
functions and patterns, and to facilitate decision support. A great deal of re-
search has been devoted to this subject and a number of methods have been
proposed.

The SOM has been widely used as a visualisation tool for dimensionality
reduction (e.g. [25, 30, 39, 72]). The SOM’s unique topology preserving prop-
erty can be used to visualise the relative mutual relationships among the data.
However, the SOM does not directly apply to scaling, which aims to repro-
duce proximity in (Euclidean) distance on a low visualisation space, as it has
to rely on a colouring scheme (e.g. the U-matrix method [72] to imprint the
distances crudely on the map. Often the distributions of the data points are
distorted on the map. The ViSOM [78, 79] constrains the lateral contraction
force between the neurons in the SOM and hence regularises the inter-neuron
distances with respect to a scaleable parameter that defines and controls the
resolution of the map. It preserves the data structure as well as the topology
as faithfully as possible. The ViSOM provides a direct visualisation of both
the structure and distribution of the data. An example is shown in Fig. 3.3,
where the ViSOM of 100×100 (hexagonal) was used to map the 4-D Iris data
set and it gives direct visualisation of data distribution, similar to the sam-
mon mapping. Although, the SOM with colouring can show the gap between
iris setosa and the rest, it is impossible to capture the data structure and
represent the data proximity on the map.

Usually for a fine mapping, the resolution parameter needs to be set to
small value and a large number of nodes, i.e. a large map, is required, as
for all discrete mappings. However such computational burden can be greatly
reduced by interpolating a trained map [83] or incorporating a local linear
projection on a trained low resolution map [81].

A comparison with other mapping methods- PCA, Sammon and LLE - on
an “S” shape manifold is also shown in Fig. 3.4.

3.5.2 Document Organisation and Content Management

With drastically increasing amount of unstructured content available elec-
tronically within an enterprise or on the web, it is becoming inefficient if
not impossible to rely on human operators to manually annotate electronic
documents. (Web) content management systems have become an important
area of research in many applications such as e-libraries, enterprise portals, e-
commerce, software contents management, document management and knowl-
edge discovery. The documents, generated in an enterprise either centrally or
locally by employees, are often unstructured or arranged in ad hoc manner
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(a) PCA (b) Sammon mapping

(c) SOM with U matrix colouring (d) ViSOM

Fig. 3.3. Mapping and visualisation of Iris data set

(e.g. emails, reports, web pages, presentations). Document management ad-
dresses many issues storage, indexing, security, revision control, retrieval and
organization of documents. Many existing full-text search engines return a
large ranked list of documents, many of which are irrelevant. This is espe-
cially true when queries are short and very general words are used. Hence the
document organization has become important in information retrieval and
content management.

Documents can be treated as feature vectors. There are many methods
to extract features such as word frequencies from documents (cf. [16]). The
SOM has been applied to organise and visualise vast amount of textual in-
formation. Typical examples include the Welfaremap [30] and the WEBSOM
[25]. Many variants of the SOM have been proposed and applied to document
organization, e.g. TreeGCS [24] and growing hierarchical-SOM (GH-SOM)
[57]. The main advantage of the SOM is the topology preservation of input
space, which makes similar topics appear closely on the map. Most these
applications however are based on 2D maps and grids, which are intuitive
for digital library idea. However such a 2D grid presentation of information
(mainly document files) is counter to all existing computer file organisers and
explorers such as Windows Explorer. A new way of utilising the SOM as a
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Original datas PCA

Sammon SOM

ViSOM LLE

Fig. 3.4. Manifold mapping obtained by various methods

topology-preserving tree structure for content management and knowledge
discovery has been proposed [16]. The method can generate a taxonomy of
topics from a set of unannotated, unstructured documents. It consists of a
hierarchy of self-organizing growing chains, each of which can develop inde-
pendently in terms of size and topics. The dynamic development process is
validated continuously using a proposed entropy-based Bayesian information
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Fig. 3.5. A typical result of topological tree structure for organising documents

criterion. Each chain meeting the criterion spans child chains, with reduced
vocabularies and increased specializations.

This results in a topological tree hierarchy, which can be browsed like a
table of contents directory or web portal. A typical tree is shown in Fig. 3.5.
This approach has been tested and compared with several existing methods
on real world web page datasets. The results have clearly demonstrated the
advantages and efficiency in content organization of the proposed method
in terms of computational cost and representation. The preserved topology
provides a unique, additional feature for retrieving related topics and confining
the search space.

An application prototype developed based this method is shown in Fig. 3.5.
The left panel displays the generated content tree with various levels and
preserved topology on these levels. The right panel shows the details of a
selected level or branch or a particular document. The method bears familiar
interface to the most popular Windows explorer style.



92 H. Yin

Fig. 3.6. A screen shot of a document management system using topological tree
structure
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