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Summary. Nonlinear principal component analysis (NLPCA) as a nonlinear gen-
eralisation of standard principal component analysis (PCA) means to generalise the
principal components from straight lines to curves. This chapter aims to provide an
extensive description of the autoassociative neural network approach for NLPCA.
Several network architectures will be discussed including the hierarchical, the circu-
lar, and the inverse model with special emphasis to missing data. Results are shown
from applications in the field of molecular biology. This includes metabolite data
analysis of a cold stress experiment in the model plant Arabidopsis thaliana and
gene expression analysis of the reproductive cycle of the malaria parasite Plasmod-
ium falciparum within infected red blood cells.

2.1 Introduction

Many natural phenomena behave in a nonlinear way meaning that the ob-
served data describe a curve or curved subspace in the original data space.
Identifying such nonlinear manifolds becomes more and more important in the
field of molecular biology. In general, molecular data are of very high dimen-
sionality because of thousands of molecules that are simultaneously measured
at a time. Since the data are usually located within a low-dimensional sub-
space, they can be well described by a single or low number of components.
Experimental time course data are usually located within a curved subspace
which requires a nonlinear dimensionality reduction as illustrated in Figure
2.1.
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original data space X component space Z

Φgen : Z → X

Φextr : X → Z

Fig. 2.1. Nonlinear dimensionality reduction. Illustrated are three-
dimensional samples that are located on a one-dimensional subspace, and hence can
be described without loss of information by a single variable (the component). The
transformation is given by the two functions Φextr and Φgen. The extraction func-
tion Φextr maps each three-dimensional sample vector (left) onto a one-dimensional
component value (right). The inverse mapping is given by the generation function
Φgen which transforms any scalar component value back into the original data space.
Such helical trajectory over time is not uncommon in molecular data. The horizontal
axes may represent molecule concentrations driven by a circadian rhythm, whereas
the vertical axis might represent a molecule with an increase in concentration

Visualising the data is one aspect of molecular data analysis, another impor-
tant aspect is to model the mapping from original space to component space
in order to interpret the impact of observed variables on the subspace (com-
ponent space). Both the component values (scores) and the mapping function
is provided by the neural network approach for nonlinear PCA.
Three important extensions of nonlinear PCA are discussed in this chapter:
the hierarchical NLPCA, the circular PCA, and the inverse NLPCA. All of
them can be used in combination. Hierarchical NLPCA means to enforce the
nonlinear components to have the same hierarchical order as the linear compo-
nents of standard PCA. This hierarchical condition yields a higher meaning of
individual components. Circular PCA enables nonlinear PCA to extract cir-
cular components which describe a closed curve instead of the standard curve
with an open interval. This is very useful for analysing data from cyclic or
oscillatory phenomena. Inverse NLPCA defines nonlinear PCA as an inverse
problem, where only the assumed data generation process is modelled, which
has the advantage that more complex curves can be identified and NLPCA
becomes applicable to incomplete data sets.

Bibliographic notes

Nonlinear PCA based on autoassociative neural networks was investigated in
several studies [1, 2, 3, 4]. Kirby and Miranda [5] constrained network units
to work in a circular manner resulting in a circular PCA whose components
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are closed curves. In the fields of atmospheric and oceanic sciences, circular
PCA is applied to oscillatory geophysical phenomena, for example, the ocean-
atmosphere El Niño-Southern oscillation [6] or the tidal cycle at the German
North Sea coast [7]. There are also applications in the field of robotics in
order to analyse and control periodic movements [8]. In molecular biology,
circular PCA is used for gene expression analysis of the reproductive cycle of
the malaria parasite Plasmodium falciparum in red blood cells [9]. Scholz and
Vigário [10] proposed a hierarchical nonlinear PCA which achieves a hierar-
chical order of nonlinear components similar to standard linear PCA. This
hierarchical NLPCA was applied to spectral data of stars and to electromyo-
graphic (EMG) recordings of muscle activities. Neural network models for
inverse NLPCA were first studied in [11, 12]. A more general Bayesian frame-
work based on such inverse network architecture was proposed by Valpola
and Honkela [13, 14] for a nonlinear factor analysis (NFA) and a nonlinear
independent factor analysis (NIFA). In [15], such inverse NLPCA model was
adapted to handle missing data in order to use it for molecular data analysis.
It was applied to metabolite data of a cold stress experiment with the model
plant Arabidopsis thaliana. Hinton and Salakhutdinov [16] have demonstrated
the use of the autoassociative network architecture for visualisation and di-
mensionality reduction by using a special initialisation technique.
Even though the term nonlinear PCA (NLPCA) is commonly referred to as
the autoassociative approach, there are many other methods which visualise
data and extract components in a nonlinear manner. Locally linear embedding
(LLE) [17, 18] and Isomap [19] were developed to visualise high dimensional
data by projecting (embedding) them into a two or low-dimensional space,
but the mapping function is not explicitly given. Principal curves [20] and
self organising maps (SOM) [21] are useful for detecting nonlinear curves and
two-dimensional nonlinear planes. Practically both methods are limited in
the number of extracted components, usually two, due to high computational
costs. Kernel PCA [22] is useful for visualisation and noise reduction [23].
Several efforts are made to extend independent component analysis (ICA) into
a nonlinear ICA. However, the nonlinear extension of ICA is not only very
challenging, but also intractable or non-unique in the absence of any a priori
knowledge of the nonlinear mixing process. Therefore, special nonlinear ICA
models simplify the problem to particular applications in which some infor-
mation about the mixing system and the factors (source signals) is available,
e.g., by using sequence information [24]. A discussion of nonlinear approaches
to ICA can be found in [25, 26]. This chapter focuses on the less difficult task
of nonlinear PCA. A perfect nonlinear PCA should, in principle, be able to
remove all nonlinearities in the data such that a standard linear ICA can be
applied subsequently to achieve, in total, a nonlinear ICA. This chapter is
mainly based on [9, 10, 15, 27].
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Data generation and component extraction

To extract components, linear as well as nonlinear, we assume that the data
are determined by a number of factors and hence can be considered as being
generated from them. Since the number of varied factors is often smaller than
the number of observed variables, the data are located within a subspace of
the given data space. The aim is to represent these factors by components
which together describe this subspace. Nonlinear PCA is not limited to linear
components, the subspace can be curved, as illustrated in Figure 2.1.
Suppose we have a data space X given by the observed variables and a compo-
nent space Z which is a subspace of X . Nonlinear PCA aims to provide both
the subspace Z and the mapping between X and Z. The mapping is given
by nonlinear functions Φextr and Φgen. The extraction function Φextr : X → Z
transforms the sample coordinates x = (x1, x2, . . . , xd)T of the d-dimensional
data space X into the corresponding coordinates z = (z1, z2, . . . , zk)T of the
component space Z of usually lower dimensionality k. The generation function
Φgen : Z → X̂ is the inverse mapping which reconstructs the original sample
vector x from their lower-dimensional component representation z. Thus, Φgen

approximates the assumed data generation process.

2.2 Standard Nonlinear PCA

Nonlinear PCA (NLPCA) is based on a multi-layer perceptron (MLP) with
an autoassociative topology, also known as an autoencoder, replicator net-
work, bottleneck or sandglass type network. An introduction to multi-layer
perceptrons can be found in [28].
The autoassociative network performs an identity mapping. The output x̂ is
enforced to equal the input x with high accuracy. It is achieved by minimising
the squared reconstruction error E = 1

2 ‖ x̂− x ‖2.
This is a nontrivial task, as there is a ‘bottleneck’ in the middle: a layer of
fewer units than at the input or output layer. Thus, the data have to be pro-
jected or compressed into a lower dimensional representation Z.
The network can be considered to consist of two parts: the first part represents
the extraction function Φextr : X → Z, whereas the second part represents the
inverse function, the generation or reconstruction function Φgen : Z → X̂ . A
hidden layer in each part enables the network to perform nonlinear mapping
functions. Without these hidden layers, the network would only be able to per-
form linear PCA even with nonlinear units in the component layer, as shown
by Bourlard and Kamp [29]. To regularise the network, a weight decay term
is added Etotal = E + ν

∑
i w

2
i in order to penalise large network weights w.

In most experiments, ν = 0.001 was a reasonable choice.
In the following, we describe the applied network topology by the notation
l1-l2-l3. . . -lS where ls is the number of units in layer s. For example, 3-4-1-4-3
specifies a network of five layers having three units in the input and output
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Fig. 2.2. Standard autoassociative neural network. The network output x̂ is
required to be equal to the input x. Illustrated is a 3-4-1-4-3 network architecture.
Biases have been omitted for clarity. Three-dimensional samples x are compressed to
one component value z in the middle by the extraction part. The inverse generation
part reconstructs x̂ from z. The sample x̂ is usually a noise-reduced representation
of x. The second and fourth layer, with four nonlinear units each, enable the network
to perform nonlinear mappings. The network can be extended to extract more than
one component by using additional units in the component layer in the middle

layer, four units in both hidden layers, and one unit in the component layer,
as illustrated in Figure 2.2.

2.3 Hierarchical nonlinear PCA

In order to decompose data in a PCA related way, linearly or nonlinearly,
it is important to distinguish applications of pure dimensionality reduction
from applications where the identification and discrimination of unique and
meaningful components is of primary interest, usually referred to as feature ex-
traction. In applications of pure dimensionality reduction with clear emphasis
on noise reduction and data compression, only a subspace with high descrip-
tive capacity is required. How the individual components form this subspace
is not particularly constrained and hence does not need to be unique. The
only requirement is that the subspace explains maximal information in the
mean squared error sense. Since the individual components which span this
subspace, are treated equally by the algorithm without any particular order
or differential weighting, this is referred to as symmetric type of learning. This
includes the nonlinear PCA performed by the standard autoassociative neural
network which is therefore referred to as s-NLPCA.
By contrast, hierarchical nonlinear PCA (h-NLPCA), as proposed by Scholz
and Vigário [10], provides not only the optimal nonlinear subspace spanned
by components, it also constrains the nonlinear components to have the same
hierarchical order as the linear components in standard PCA.
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Fig. 2.3. Hierarchical NLPCA. The standard autoassociative network is hierar-
chically extended to perform the hierarchical NLPCA (h-NLPCA). In addition to
the whole 3-4-2-4-3 network (grey+black), there is a 3-4-1-4-3 subnetwork (black)
explicitly considered. The component layer in the middle has either one or two units
which represent the first and second components, respectively. Both the error E1 of
the subnetwork with one component and the error of the total network with two
components are estimated in each iteration. The network weights are then adapted
at once with regard to the total hierarchic error E = E1 +E1,2

Hierarchy, in this context, is explained by two important properties: scalabil-
ity and stability. Scalability means that the first n components explain the
maximal variance that can be covered by a n-dimensional subspace. Stability
means that the i-th component of an n component solution is identical to the
i-th component of an m component solution.
A hierarchical order essentially yields uncorrelated components. Nonlinearly,
this even means that h-NLPCA is able to remove complex nonlinear correla-
tions between components. This can yield useful and meaningful components
as will be shown by applications in Section 2.6. Additionally, by scaling the
nonlinear uncorrelated components to unit variance, we obtain a complex non-
linear whitening (sphering) transformation [10]. This is a useful pre-processing
step for applications such as regression, classification, or blind separation of
sources. Since a nonlinear whitening removes the nonlinearities in the data,
subsequently applied methods can be linear. This is particularly important for
ICA which can be extended to a nonlinear approach by using this nonlinear
whitening.
How can we achieve a hierarchical order? The naive approach to simply sort
the symmetrically treated components by variance does not yield the required
hierarchical order, neither linearly nor nonlinearly. In principle, hierarchy can
be achieved by two strongly related ways: either by a constraint to the vari-
ance in the component space or by a constraint to the squared reconstruction
error in the original space. Similar to linear PCA, the i-th component could
be forced to account for the i-th highest variance. But nonlinearly, such con-
straint can be ineffective or non-unique without additional constraints to the
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nonlinear transformation. In contrast, the reconstruction error can be much
better controlled, since it is an absolute amount, invariant to any scaling in
the transformation. A hierarchical constraint to the error is therefore much
more effective. In the simple linear case, we can achieve hierarchically ordered
components by a sequential (deflationary) approach in which the components
are successively extracted one after the other on the remaining variance given
by the squared error of the previous ones. However, this does not work in
the nonlinear case, neither successively nor simultaneously by training several
networks in parallel. The remaining variance cannot be interpreted by the
squared error regardless of the nonlinear transformation [30]. The solution
is to use only one network with a hierarchy of subnetworks as illustrated in
Figure 2.3. This enables us to formulate the hierarchy directly in the error
function [10]. For simplicity, we first restrict our discussion to the case of a
two-dimensional component space, but all conclusions can then be generalised
to any other dimensionality.

2.3.1 The Hierarchical Error Function

E1 and E1,2 are the squared reconstruction errors when using only the first
or both the first and the second component, respectively. In order to perform
the h-NLPCA, we have to impose not only a small E1,2 (as in s-NLPCA), but
also a small E1. This can be done by minimising the hierarchical error:

EH = E1 + E1,2 . (2.1)

To find the optimal network weights for a minimal error in the h-NLPCA as
well as in the standard symmetric approach, the conjugate gradient descent
algorithm [31] is used. At each iteration, the single error terms E1 and E1,2

have to be calculated separately. This is performed in the standard s-NLPCA
way by a network either with one or with two units in the component layer.
Here, one network is the subnetwork of the other, as illustrated in Figure 2.3.
The gradient ∇EH is the sum of the individual gradients ∇EH = ∇E1 +
∇E1,2. If a weight wi does not exist in the subnetwork, ∂E1

∂wi
is set to zero.

To achieve more robust results, the network weights are set such that the
sigmoidal nonlinearities work in the linear range, corresponding to initialise
the network with the simple linear PCA solution.
The hierarchical error function (2.1) can be easily extended to k components
(k ≤ d):

EH = E1 + E1,2 + E1,2,3 + · · ·+ E1,2,3,...,k . (2.2)

The hierarchical condition as given by EH can then be interpreted as follows:
we search for a k-dimensional subspace of minimal mean square error (MSE)
under the constraint that the (k − 1)-dimensional subspace is also of minimal
MSE. This is successively extended such that all 1, . . . , k dimensional sub-
spaces are of minimal MSE. Hence, each subspace represents the data with
regard to its dimensionalities best. Hierarchical nonlinear PCA can therefore
be seen as a true and natural nonlinear extension of standard linear PCA.
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Fig. 2.4. Circular PCA network. To obtain circular components, the auto-
associative neural network contains a circular unit pair (p, q) in the component
layer. The output values zp and zq are constrained to lie on a unit circle and hence
can be represented by a single angular variable θ

2.4 Circular PCA

Kirby and Miranda [5] introduced a circular unit at the component layer in
order to describe a potential circular data structure by a closed curve. As
illustrated in Figure 2.4, a circular unit is a pair of networks units p and q
whose output values zp and zq are constrained to lie on a unit circle

z2p + z2q = 1 . (2.3)

Thus, the values of both units can be described by a single angular variable θ.

zp = cos(θ) and zq = sin(θ) . (2.4)

The forward propagation through the network is as follows: First, equivalent
to standard units, both units are weighted sums of their inputs zm given by
the values of all units m in the previous layer.

ap =
∑
m

wpmzm and aq =
∑
m

wqmzm . (2.5)

The weights wpm and wqm are of matrix W2. Biases are not explicitly con-
sidered, however, they can be included by introducing an extra input with
activation set to one.
The sums ap and aq are then corrected by the radial value

r =
√
a2p + a2q (2.6)

to obtain circularly constraint unit outputs zp and zq

zp =
ap

r
and zq =

aq

r
. (2.7)
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For backward propagation, we need the derivatives of the error function

E =
1
2

N∑
n

d∑
i

[x̂n
i − xn

i ]2 (2.8)

with respect to all network weights w. The dimensionality d of the data is
given by the number of observed variables, N is the number of samples.
To simplify matters, we first consider the error e of a single sample x,
e = 1

2

∑d
i [x̂i − xi]

2 with x = (x1, . . . , xd)T . The resulting derivatives can then
be extended with respect to the total error E given by the sum over all n sam-
ples, E =

∑
n e

n.
While the derivatives of weights of matrices W1, W3, and W4 are obtained
by standard back-propagation, the derivatives of the weights wpm and wqm of
matrix W2, which connect units m of the second layer with the units p and
q of the component layer, are obtained as follows: We first need the partial
derivatives of e with respect to zp and zq:

σ̃p =
∂e

∂zp
=
∑

j

wjpσj and σ̃q =
∂e

∂zq
=
∑

j

wjqσj , (2.9)

where σj are the partial derivatives ∂e
∂aj

of units j in the fourth layer.
The required partial derivatives of e in respect to ap and aq of the circular
unit pair are

σp =
∂e

∂ap
= (σ̃pzq − σ̃qzp)

zq
r3

and σq =
∂e

∂aq
= (σ̃qzp − σ̃pzq)

zp
r3
. (2.10)

The final back-propagation formulas for all n samples are

∂E

∂wpm
=
∑

n

σn
p z

n
m and

∂E

∂wqm
=
∑

n

σn
q z

n
m . (2.11)

2.5 Inverse Model of Nonlinear PCA

In this section we define nonlinear PCA as an inverse problem. While the
classical forward problem consists of predicting the output from a given in-
put, the inverse problem involves estimating the input which matches best a
given output. Since the model or data generating process is not known, this
is referred to as a blind inverse problem.
The simple linear PCA can be considered equally well either as a forward
or inverse problem depending on whether the desired components are pre-
dicted as outputs or estimated as inputs by the respective algorithm. The
autoassociative network models both the forward and the inverse model si-
multaneously. The forward model is given by the first part, the extraction
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Fig. 2.5. The inverse NLPCA network. Only the second part of the autoasso-
ciative network (Figure 2.2) is needed, as illustrated by a 1-4-3 network (black). This
generation part represents the inverse mapping Φgen which generates or reconstructs
higher-dimensional samples x from their lower dimensional component representa-
tions z. These component values z are now unknown inputs that can be estimated
by propagating the partial errors σ back to the input layer z. This is equivalent to
the illustrated prefixed input layer (grey), where the weights are representing the
component values z. The input is then a (sample x sample) identity matrix I. For
the 4th sample (n=4), as illustrated, all inputs are zero except the 4th, which is one.
On the right, the second element x4

2 of the 4th sample x4 is missing. Therefore, the
partial error σ4

2 is set to zero, identical to ignoring or non-back-propagating. The
parameter of the model can thus be estimated even when there is missing data

function Φextr : X → Z. The inverse model is given by the second part, the
generation function Φgen : Z → X̂ . Even though a forward model is appropri-
ate for linear PCA, it is less suitable for nonlinear PCA, as it sometimes can
be functionally very complex or even intractable due to a one-to-many map-
ping problem. Two identical samples x may correspond to distinct component
values z, for example, the point of self-intersection in Figure 2.6B.
By contrast, modelling the inverse mapping Φgen : Z → X̂ alone, provides a
number of advantages: we directly model the assumed data generation process
which is often much easier than modelling the extraction mapping. We also
can extend the inverse NLPCA model to be applicable to incomplete data
sets, since the data are only used to determine the error of the model output.
And, it is more efficient than the entire autoassociative network, since we only
have to estimate half of the network weights.
Since the desired components now are unknown inputs, the blind inverse prob-
lem is to estimate both the inputs and the parameters of the model by only
given outputs. In the inverse NLPCA approach, we use one single error func-
tion for simultaneously optimising both the model weights w and the compo-
nents as inputs z.
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2.5.1 The Inverse Network Model

Inverse NLPCA is given by the mapping function Φgen, which is represented
by a multi-layer perceptron (MLP) as illustrated in Figure 2.5. The output x̂
depends on the input z and the network weights w ∈W3,W4.

x̂ = Φgen(w, z) =W4g(W3z) . (2.12)

The nonlinear activation function g (e.g., tanh) is applied element-wise. Biases
are not explicitly considered. They can be included by introducing extra units
with activation set to one.
The aim is to find a function Φgen which generates data x̂ that approximate
the observed data x by a minimal squared error ‖ x̂− x ‖2. Hence, we search
for a minimal error depending on w and z: min

w,z
‖ Φgen(w, z)− x ‖2. Both the

lower dimensional component representation z and the model parameters w
are unknown and can be estimated by minimising the reconstruction error:

E(w, z) =
1
2

N∑
n

d∑
i

⎡⎣ h∑
j

wijg

(
m∑
i

wjkz
n
k

)
− xn

i

⎤⎦2

, (2.13)

where N is the number of samples and d the dimensionality.
The error can be minimised by using a gradient optimisation algorithm, e.g.,
conjugate gradient descent [31]. The gradients are obtained by propagating
the partial errors σn

i back to the input layer, meaning one layer more than
usual. The gradients of the weights wij ∈W4 and wjk ∈ W3 are given by the
partial derivatives:

∂E

∂wij
=
∑

n

σn
i g(a

n
j ) ; σn

i = x̂n
i − xn

i , (2.14)

∂E

∂wjk
=
∑

n

σn
j z

n
k ; σn

j = g′(an
j )
∑

i

wijσ
n
i . (2.15)

The partial derivatives of linear input units (zk = ak) are:

∂E

∂zn
k

= σn
k =

∑
j

wjkσ
n
j . (2.16)

For circular input units given by equations (2.6) and (2.7), the partial deriv-
atives of ap and aq are:

∂E

∂an
p

= (σ̃n
p z

n
q − σ̃n

q z
n
p )
zn

q

r3n
and

∂E

∂an
q

= (σ̃n
q z

n
p − σ̃n

p z
n
q )
zn

p

r3n
(2.17)

with σ̃n
p and σ̃n

q given by
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σ̃n
p =

∑
j

wjpσ
n
j and σ̃n

q =
∑

j

wjqσ
n
j . (2.18)

Biases can be added by using additional weights wi0 and wj0 and associated
constants z0 = 1 and g(a0) = 1.
The weights w and the inputs z can be optimised simultaneously by con-
sidering (w, z) as one vector to optimise by given gradients. This would be
equivalent to an approach where an additional input layer is representing the
components z as weights, and new inputs are given by a (sample x sample)
identity matrix, as illustrated in Figure 2.5. However, this layer is not needed
for implementation. The purpose of the additional input layer is only to ex-
plain that the inverse NLPCA model can be converted to a conventionally
trained multi-layer perceptron, with known inputs and simultaneously opti-
mised weights, including the weights z, representing the desired components.
Hence, an alternating approach as used in [11] is not necessary. Besides provid-
ing a more efficient optimisation, it also avoids the risk of oscillations during
training in an alternating approach.
A disadvantage of such an inverse approach is that we have no mapping func-
tion X → Z to map new data x to the component space. However, we can
achieve the mapping by searching for an optimal input z to a given new sam-
ple x. For that, the network weights w are set constant while the input z is
estimated by minimising the squared error ‖ x̂(z)− x ‖2. This is only a low
dimensional optimisation by given gradients efficiently performed by a gradi-
ent optimisation algorithm.
The inverse NLPCA is able to extract components of higher nonlinear com-
plexity than the standard NLPCA, even self-intersecting components can be
modelled, as shown in Figure 2.6B. Inverse NLPCA can be used to extract
more than one component by increasing the number of units in the input
layer.

2.5.2 NLPCA Models Applied to Circular Data

In Figure 2.6, a circular data structure is used to illustrate the behaviour of
NLPCA models: the standard autoassociative network (NLPCA), the inverse
model with standard units (NLPCA.inv), and the circular PCA (NLPCA.cir).
The data are located on a unit circle, disturbed by Gaussian noise with stan-
dard deviation 0.1 . The standard autoassociative network is not able to de-
scribe the circular structure all-around due to the problem to map at least
one point on the circle to two distinct component values. This problem does
not occur in inverse NLPCA since it is only a mapping from component val-
ues to the data. The circular structure is approximated by a component that
intersects with itself but it has still an open interval. Thus, the closed curve
solution as provided by circular PCA gives a more useful description of the
circular structure of the data. Circular PCA can also be used as inverse model
to be more efficient and to handle missing data.
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Fig. 2.6. Nonlinear PCA (NLPCA). Shown are results of different variants of
NLPCA applied to a two-dimensional artificial data set of a noisy circle. The original
data x (‘·’) are projected onto a nonlinear component (line). The projection or
noised-reduced reconstruction x̂ is marked by a circle ‘◦’. (A) The standard NLPCA
cannot describe a circular structure completely. There is always a gap. (B) The
inverse NLPCA can provide self-intersecting components and hence approximates
the circular data structure already quite well. (C) The circular PCA is most suitable
for a circular data structure, since it is able to approximate the data structure
continuously by a closed curve

2.5.3 Inverse NLPCA for Missing Data

There are many methods for estimating missing values [32]. Some good ap-
proaches are based on maximum likelihood in conjunction with an expectation-
maximisation (EM) algorithm [33]. To analyse incomplete data, it is common
to estimate the missing values first in a separate step. But this can lead to
problems caused by distinct assumptions in the missing data estimation step
and the subsequent analysis. For example, a linear missing data estimation
can run counter to a subsequent nonlinear analysis. Therefore, our strategy
is to adapt the analysis technique to be applicable to incomplete data sets,
instead of estimating missing values separately. Even though the aim is to ex-
tract nonlinear components directly from incomplete data, once the nonlinear
mapping is modelled, the missing values can be estimated as well.
As shown in Figure 2.5, the inverse NLPCA model can be extended to be ap-
plicable to incomplete data sets [15]: If the ith element xn

i of the nth sample
vector xn is missing, the corresponding partial error σn

i is omitted by setting
to zero before back-propagating, hence it does not contribute to the gradients.
The nonlinear components are extracted by using all available observations.
By using these components, the original data can be reconstructed including
the missing values. The network output x̂n

i gives the estimation of the missing
value xn

i .
The same approach can be used to weight each value differently. This might
be of interest when for each value an additional probability value p is avail-
able. Each partial error σn

i can then be weighted σ̃n
i = p ∗ σn

i before back-
propagating.
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Fig. 2.7. Missing data estimation. Used is an artificial data set which describes a
helical loop, plotted as dots (‘·’). From each sample, one of the three values is rejected
and have to be reconstructed by different missing data estimation algorithms. The
reconstructed samples are plotted as circles (‘◦’). The inverse NLPCA identifies
the nonlinear component best and hence gives a very good estimation of the missing
values. SOM also gives a reasonably good estimation, but the linear approach BPCA
fails on this nonlinear test set, see also Table 2.1

2.5.4 Missing Data Estimation

Even though an artificial data set does not reflect the whole complexity of real
biological data, it is useful to illustrate the problem of missing data estimation
in order to give a better understanding of how missing data are handled by
different methods.
The inverse NLPCA approach is applied to an artificial data set and the
results are compared to results of other missing value estimation techniques.
This includes the nonlinear estimation by self organising maps (SOM) [21] im-
plemented in the SOM TOOLBOX 2.03 [34]. Furthermore, we applied a linear
PCA-based approach for missing value estimation, an adapted Bayesian prin-
cipal component analysis (BPCA)4 [35] based on [36].
The data x lie on a one-dimensional manifold (a helical loop) embedded in
three dimensions, plus Gaussian noise η of standard deviation σ = 0.05, see
Figure 2.7. 1,000 samples x were generated from a uniformly distributed fac-
tor t over the range [-1,1], t represents the angle:

x1 = sin(πt) + η ,
x2 = cos(πt) + η ,
x3 = t + η .

From each three-dimensional sample, one value is randomly removed and re-
garded as missing. This generates a high missing value rate of 33.3 percent.
However, if the nonlinear component (the helix) is known, the estimation of
a missing value is exactly given by the two other coordinates, except at the
first and last position of the helix loop, where in the case of missing vertical
coordinate x3, the sample can be assigned either to the first or to the last

3 http://www.cis.hut.fi/projects/somtoolbox/
4 http://hawaii.aist-nara.ac.jp/~shige-o/tools/
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Table 2.1. Mean square error (MSE) of different missing data estimation techniques
applied to the helical data (Figure 2.7). The inverse NLPCA model provides a very
good estimation of the missing values. Although the model was trained with noisy
data, the noise-free data were better represented than the noisy data, confirming the
noise-reducing ability of the model. SOM also gives a good estimation on this non-
linear data, but the linear technique BPCA is only as good as the naive substitution
by the mean over the residuals of each variable.

MSE of missing value estimation

noise noise-free

NLPCA.inv 0.0021 0.0013
SOM 0.0405 0.0384
BPCA 0.4191 0.4186
mean 0.4429 0.4422

position. There are two valid solutions. Thus, missing value estimation is not
always unique in the nonlinear case.
In Figure 2.7 and Table 2.1 it is shown that even if the data sets are incom-
plete for all samples, the inverse NLPCA model is able to detect the nonlinear
component and provides a very accurate missing value estimation. The non-
linear technique SOM also achieves a reasonably good estimation, but the
linear approach BPCA is unsuitable for this nonlinear application.

2.6 Applications

The purpose of nonlinear PCA is to identify and to extract nonlinear com-
ponents from a given data set. The extracted components span a component
space which is supposed to cover the most important information of the data.
We would like to demonstrate this in examples of NLPCA applications. First,
we discuss results of hierarchical NLPCA in order to illustrate the potential
curvature of a components subspace. Then we describe two applications of
NLPCA to experimental time courses from molecular biology. This includes
both a non-periodic and a periodic time course. The periodic one demon-
strates the use of circular PCA. In order to handle missing values, a frequent
problem in molecular data, NLPCA is applied in the inverse mode. In both
experiments nonlinear PCA is able to identify the time factor already with the
first nonlinear component thereby confirming that time is the most important
factor in the data. Since NLPCA models explicitly the nonlinear mapping
between component space and original data space, it provides a model of the
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Fig. 2.8. Hierarchical nonlinear PCA is applied to a star spectral data set
and to electromyographic (EMG) recordings. Both data sets show a clear nonlinear
behaviour. The first three nonlinear components are visualised in the space of the
first three PCA components. The grids represent the new coordinate system of the
component space. Each grid is spanned by two of the three components while the
third is set to zero

biological process which is used here to interpret the impact of individual
molecules.

2.6.1 Application of Hierarchical NLPCA

First, we illustrate the performance of hierarchical NLPCA on two separate
data sets [10]. The first consists of 19-dimensional spectral information of 487
stars [37]. The second data set is based on electromyographic (EMG) record-
ings for different muscle activities (labelled as 0, 10, 30, 50 and 70% of maximal
personal strength). The one-dimensional EMG signal is then embedded into
a d-dimensional space and analysed as a recurrence plot [38]. The final data
set then consists of 10 recurrence qualification analysis (RQA) variables for
35 samples, given by the 5 force levels of 7 subjects [39].
The nonlinear components are extracted by minimising the hierarchical error
function EH = E1 + E1,2 + E1,2,3. The autoassociative mappings are based
on a 19-30-10-30-19 network for the star spectral data and a 10-7-3-7-10 net-
work for the EMG data.
Figure 2.8 shows that both data sets have clear nonlinear characteristics.
While in the star data set the nonlinearities seem moderate, this is clearly not
the case for the EMG data. Furthermore, in the EMG data, most of the vari-
ance is explained by the first two components. The principal curvature given
by the first nonlinear component is found to be strongly related to the force
level [10]. Since the second component is not related to the force, the force
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Fig. 2.9. Cold stress metabolite data. Left: The first three extracted nonlinear
components are plotted into the data space given by the top three metabolites of
highest variance. The grid represents the new coordinate system of the component
space. The principal curvature given by the first nonlinear component represents the
trajectory over time in the cold stress experiment as shown on the right by plotting
the first component against the experimental time

information is supposed to be completely explained by the first component.
The second component might be related to another physiological factor.

2.6.2 Metabolite Data Analysis

Cold stress can cause rapid changes of metabolite levels within cells. Analysed
is the metabolite response to 4◦C cold stress of the model plant Arabidopsis
thaliana [15, 40]. Metabolite concentrations are measured by gas chromato-
graphy / mass spectrometry (GC/MS) at 7 time points in the range up to 96
hours. With 7-8 replicas at each time, we have a total number of 52 samples.
Each sample provides the concentration levels of 388 metabolites. Precisely,
we consider the relative concentrations given by the log2-ratios of absolute
concentrations to a non-stress reference. In order to handle missing data, we
applied NLPCA in the inverse mode. A neural network of a 3-20-388 architec-
ture was used to extract three nonlinear components in a hierarchical order,
shown in Figure 2.9. The extracted first nonlinear component is directly re-
lated to the experimental time factor. It shows a strong curvature in the
original data space, shown in Figure 2.10. The second and third component
are not related to time and the variance of both is much smaller and of similar
amount. This suggests that the second and third component represent only
the noise of the data. It also confirms our expectations that time is the major
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Fig. 2.10. Time trajectory. Scatter plots of pair-wise metabolite combinations of
the top six metabolites of highest relative variance. The extracted time component
(nonlinear PC 1), marked by a line, shows a strong nonlinear behaviour

factor in the data. NLPCA approximates the time trajectory of the data by
use of the first nonlinear component which can therefore be regarded as time
component.
In this analysis, NLPCA provides a model of the cold stress adaptation of
Arabidopsis thaliana. The inverse NLPCA model gives us a mapping func-
tion R1 →R388 from a time point t to the response x of all considered 388
metabolites x = (x1, ..., x388)T . Thus, we can analyse the approximated re-
sponse curves of each metabolite, shown in Figure 2.11. The cold stress is
reflected in almost all metabolites, however, the response behaviour is quite
different. Some metabolites have a very early positive or negative response,
e.g., maltose and raffinose, whereas other metabolites only show a moderate
increase.
In standard PCA, we can present the variables that are most important to a
specific component by a rank order given by the absolute values of the corre-
sponding eigenvector, sometimes termed loadings or weights. As the compo-
nents are curves in nonlinear PCA, no global ranking is possible. The rank
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Fig. 2.11. The top three graphs
show the different shapes of the
approximated metabolite response
curves over time. (A) Early posi-
tive or negative transients, (B) in-
creasing metabolite concentrations
up to a saturation level, or (C) a
delayed increase, and still increas-
ing at the last time point. (D) The
gradient curves represent the influ-
ence of the metabolites over time. A
high positive or high negative gradi-
ent means a strong relative change
at the metabolite level. The re-
sults show a strong early dynamic,
which is quickly moderated, except
for some metabolites that are still
unstable at the end. The top 20
metabolites of highest gradients are
plotted. The metabolite rank order
at early time t1 and late time t2 is
listed in Table 2.2

order is different for different positions on the curved component, meaning
that the rank order depends on time. The rank order for a specific time t is
given by the values of the tangent vector v = dx̂

dt on the curve at this time.
To compare different times, we use l2-normalised tangents ṽi = vi/

√∑
i |vi|2

such that
∑

i (ṽi)
2 = 1. Large absolute values ṽi correspond to metabolites of

high relative changes on their concentration and hence may be of importance
at the considered time. A list of the most important metabolites at an early
time point t1 and a late time point t2 is given in Table 2.2. The dynamics
over time are shown in Figure 2.11D.

2.6.3 Gene Expression Analysis

Many phenomena in biology proceed in a cycle. These include circadian
rhythms, the cell cycle, and other regulatory or developmental processes such
as the reproductive cycle of the malaria parasite Plasmodium falciparum in
red blood cells (erythrocytes) which is considered here. Circular PCA is used
to analyse this intraerythrocytic developmental cycle (IDC) [9]. The infection
and persistence of red blood cells recurs with a periodicity of about 48 hours.
The parasite transcriptome is observed by microarrays with a sampling rate of
one hour. Two observations, at 23 and 29 hours, are rejected. Thus, the total
number of expression profiles is 46, available at http://malaria.ucsf.edu/
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Table 2.2. Candidate list. The most important metabolites are given for an early
time t1 of about 0.5 hours cold stress and a very late time t2 of about 96 hours.
The metabolites are ranked by the relative change on their concentration levels given
by the tangent ṽ(t) at time t on the component curve. As expected, maltose, fructose
and glucose show a strong early response to cold stress, however, even after 96 hours
there are still some metabolites with significant changes in their levels. Brackets
‘[. . . ]’ denote an unknown metabolite, e.g., [932; Maltose] denotes a metabolite with
high mass spectral similarity to maltose.

t1 ∼ 0.5 hours t2 ∼ 96 hours

ṽ metabolite ṽ metabolite

0.43 Maltose methoxyamine 0.24 [614; Glutamine ]
0.23 [932; Maltose] -0.20 [890; Dehydroascorbic acid dimer]
0.21 Fructose methoxyamine 0.18 [NA 293]
0.19 [925; Maltose] 0.18 [NA 201]
0.19 Fructose-6-phosphate 0.17 [NA 351]
0.17 Glucose methoxyamine 0.16 [NA 151]
0.17 Glucose-6-phosphate 0.16 L-Arginine
0.16 [674; Glutamine] 0.16 L-Proline
. . . . . .

[41, 42]. Each gene is represented by one or more oligonucleotides on this
profile. In our analysis, we use the relative expression values of 5,800 oligo-
nucleotides given by the log2-ratios of individual time hybridisations to a
reference pool.
While a few hundred dimensions of the metabolite data set could still be han-
dled by suitable regularisations in NLPCA, the very high-dimensional data
space of 5,800 variables makes it very difficult or even intractable to identify
optimal curved components by a given number of only 46 samples. Therefore,
the 5,800 variables are linearly reduced to 12 principal components. To handle
missing data, this linear PCA transformation was done by a linear neural net-
work with two layers 12-5800 working in inverse mode similar to the nonlinear
network in section 2.5. Circular PCA is then applied to the reduced data set
of 12 linear components. A network of a 2-5-12 architecture is used with two
units in the input layer constrained as circular unit pair (p, q).
Circular PCA identifies and describes the principal curvature of the cyclic
data by a single component, as shown in Figure 2.12. Thus, circular PCA
provides a noise-reduced model of the 48 hour time course of the IDC. The
nonlinear 2-5-12 network and the linear 12-5800 network together provide a
function x̂ = Φgen(θ) which maps any time point, represented by a angular
value θ, to the 5,800-dimensional vector x̂ = (x̂1, ..., x̂5800)T of corresponding
expression values. Again, this model can be used to identify candidate genes
at specific times and to interpret the shape of gene expression curves [9].
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Fig. 2.12. Cyclic gene expression data. (A) Circular PCA describes the cir-
cular structure of the data by a closed curve – the circular component. The curve
represents a one-dimensional component space as a subspace of a 5,800 dimensional
data space. Visualised is the component curve in the reduced three dimensional sub-
space given by the first three components of standard (linear) PCA.
(B) The circular component (corrected by an angular shift) is plotted against the
original experimental time. It shows that the main curvature, given by the circular
component, explains the trajectory of the IDC over 48 hours

2.7 Summary

Nonlinear PCA (NLPCA) was described in several variants based on neural
networks. This includes the hierarchical, the circular, and the inverse model.
While standard NLPCA characterises the desired subspace only as a whole,
hierarchical NLPCA enforces to describe this subspace by components arranged
in a hierarchical order similar to linear PCA. Hierarchical NLPCA can there-
fore be seen as a natural nonlinear extension to standard PCA. To describe
cyclic or oscillatory phenomena, we need components which describe a closed
curve instead of a standard curve with open interval. These circular compo-
nents can be achieved by circular PCA. In contrast to standard NLPCA which
models both the forward component extraction and the inverse data gener-
ation, inverse NLPCA means to model the inverse mapping alone. Inverse
NLPCA is often more efficient and better suited for describing real processes,
since it directly models the assumed data generation process. Furthermore,
such an inverse model offers the advantage to handle missing data. The idea
behind solving the missing data problem was that the criterion of a missing
data estimation does not always match the criterion of the subsequent data
analysis. Our strategy was therefore to adapt nonlinear PCA to be applicable
to incomplete data, instead of estimating the missing values in advance.
Nonlinear PCA was applied to several data sets, in particular to molecular
data of experimental time courses. In both applications, the first nonlinear
component describes the trajectory over time, thereby confirming our expec-
tations and the quality of the data. Nonlinear PCA provides a noise-reduced
model of the investigated biological process. Such computational model can
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then be used to interpret the molecular behaviour over time in order to get a
better understanding of the biological process.
With the increasing number of time experiments, nonlinear PCA may become
more and more important in the field of molecular biology. Furthermore, non-
linearities can also be caused by other continuously observed factors, e.g., a
range of temperatures. Even natural phenotypes often take the form of a con-
tinuous range [43], where the molecular variation may appear in a nonlinear
way.

Availability of Software

A MATLAB R© implementation of nonlinear PCA including the hierarchical,
the circular, and the inverse model is available at:
http://www.NLPCA.org/matlab.html .
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