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Summary. Although linear principal component analysis (PCA) originates from
the work of Sylvester [67] and Pearson [51], the development of nonlinear coun-
terparts has only received attention from the 1980s. Work on nonlinear PCA, or
NLPCA, can be divided into the utilization of autoassociative neural networks,
principal curves and manifolds, kernel approaches or the combination of these ap-
proaches. This article reviews existing algorithmic work, shows how a given data
set can be examined to determine whether a conceptually more demanding NLPCA
model is required and lists developments of NLPCA algorithms. Finally, the pa-
per outlines problem areas and challenges that require future work to mature the
NLPCA research field.

1.1 Introduction

PCA is a data analysis technique that relies on a simple transformation of
recorded observation, stored in a vector z ∈ R

N , to produce statistically
independent score variables, stored in t ∈ R

n, n ≤ N :

t = PT z . (1.1)

Here, P is a transformation matrix, constructed from orthonormal column
vectors. Since the first applications of PCA [21], this technique has found
its way into a wide range of different application areas, for example signal
processing [75], factor analysis [29, 44], system identification [77], chemomet-
rics [20, 66] and more recently, general data mining [11, 70, 58] including
image processing [17, 72] and pattern recognition [47, 10], as well as process



2 U. Kruger, J. Zhang, and L. Xie

monitoring and quality control [1, 82] including multiway [48], multiblock [52]
and multiscale [3] extensions. This success is mainly related to the ability of
PCA to describe significant information/variation within the recorded data
typically by the first few score variables, which simplifies data analysis tasks
accordingly.

Sylvester [67] formulated the idea behind PCA, in his work the removal of
redundancy in bilinear quantics, that are polynomial expressions where the
sum of the exponents are of an order greater than 2, and Pearson [51] laid
the conceptual basis for PCA by defining lines and planes in a multivariable
space that present the closest fit to a given set of points. Hotelling [28] then re-
fined this formulation to that used today. Numerically, PCA is closely related
to an eigenvector-eigenvalue decomposition of a data covariance, or correla-
tion matrix and numerical algorithms to obtain this decomposition include
the iterative NIPALS algorithm [78], which was defined similarly by Fisher
and MacKenzie earlier on [80], and the singular value decomposition. Good
overviews concerning PCA are given in Mardia et al. [45], Joliffe [32], Wold
et al. [80] and Jackson [30].

The aim of this article is to review and examine nonlinear extensions of
PCA that have been proposed over the past two decades. This is an impor-
tant research field, as the application of linear PCA to nonlinear data may
be inadequate [49]. The first attempts to present nonlinear PCA extensions
include a generalization, utilizing a nonmetric scaling, that produces a non-
linear optimization problem [42] and constructing a curves through a given
cloud of points, referred to as principal curves [25]. Inspired by the fact that
the reconstruction of the original variables, ẑ is given by:

ẑ = Pt =

demapping︷ ︸︸ ︷
P
(
PT z

)︸ ︷︷ ︸
mapping

, (1.2)

that includes the determination of the score variables (mapping stage) and the
determination of ẑ (demapping stage), Kramer [37] proposed an autoassocia-
tive neural network (ANN) structure that defines the mapping and demapping
stages by neural network layers. Tan and Mavrovouniotis [68] pointed out,
however, that the 5 layers network topology of autoassociative neural net-
works may be difficult to train, i.e. network weights are difficult to determine
if the number of layers increases [27].

To reduce the network complexity, Tan and Mavrovouniotis proposed an
input training (IT) network topology, which omits the mapping layer. Thus,
only a 3 layer network remains, where the reduced set of nonlinear principal
components are obtained as part of the training procedure for establishing
the IT network. Dong and McAvoy [16] introduced an alternative approach
that divides the 5 layer autoassociative network topology into two 3 layer
topologies, which, in turn, represent the nonlinear mapping and demapping
functions. The output of the first network, that is the mapping layer, are
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the score variables which are determined using the principal curve approach.
The second layer then represents the demapping function for which the score
variables are the inputs and the original variables are the outputs. Jia et al.
[31] presented a critical review of the techniques in references [68, 16] and
argued that the incorporation of a principal curve algorithm into a neural
network structure [16] may only cover a limited class of nonlinear functions.
Hence, the IT network topology [68] may provide a more effective nonlinear
compression than the technique by Dong and McAvoy [16]. In addition, Jia
et al. [31] further refined the IT concept by introducing a linear compression
using PCA first, which is followed by the application of the IT algorithm using
the scaled linear principal components.

More recently, Kernel PCA (KPCA) has been proposed by Schölkopf
[57, 56]. KPCA first maps the original variable set z onto a high-dimensional
feature space using the mapping function Φ(z). Then, KPCA performs a con-
ventional linear principal component analysis on Φ(z). The KPCA approach
takes advantage of the fact that the mapping function z �→ Φ(z) does not need
to be known a priori. Furthermore, this mapping function can be approxi-
mated using Kernel functions in a similar fashion to a radial basis function
neural network. In fact, the identification of a KPCA model utilizes scalar
products of the observations, which are then nonlinearly transformed using
Kernel functions. This presents a considerable advantage over neural network
approaches since no nonlinear optimization procedure needs to be considered.
Resulting from this conceptual simplicity and computational efficiency, KPCA
has recently found its way into a wide range of applications, most notably in
the areas of face recognition [36], image de-noising [40] and industrial process
fault detection [12, 81].

This article is divided into the following sections. A brief review of PCA
including its most important properties is given next, prior to the introduc-
tion of a nonlinearity test. Section 4 then details nonlinear extensions of PCA.
Section 5 then critically evaluates existing work on NLPCA in terms of com-
putational demand in computing a model as well as generalization issues and
provides a roadmap for future research work.

1.2 PCA Preliminaries

PCA analyses a data matrix Z ∈ R
K×N that possesses the following structure:
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Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z11 z21 z13 · · · z1j · · · z1N

z21 z22 z23 · · · z2j · · · z2N

z31 z32 z33 · · · z3j · · · z3N

...
...

...
...

...
zi1 zi2 zi3 · · · zij · · · ziN
...

...
...

...
...

zK−1,1 zK−1,2 zK−1,3 · · · zK−1,j · · · zK−1,N

zK1 zK2 zK3 · · · zKj · · · zKN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1.3)

where N and K are the number of recorded variables and the number of
available observations, respectively. Defining the rows and columns of Z by
vectors zi ∈ R

N and ζj ∈ R
K , respectively, Z can be rewritten as shown

below:

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

zT
1

zT
2

zT
3
...

zT
i
...

zT
K−1

zT
K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
[
ζ1 ζ2 ζ3 · · · ζj · · · ζN

]
. (1.4)

The first and second order statistics of the original set variables zT =(
z1 z2 z3 · · · zj · · · zN

)
are:

E {z} = 0 E
{
zzT
}

= SZZ (1.5)

with the correlation matrix of z being defined as RZZ .
The PCA analysis entails the determination of a set of score variables

tk, k ∈ { 1 2 3 · · · n}, n ≤ N , by applying a linear transformation of z:

tk =
N∑

j=1

pkjzj (1.6)

under the following constraint for the parameter vector

pT
k =

(
pk1 pk2 pk3 · · · pkj · · · pkN

)
:√√√√ N∑

j=1

p2kj = ‖pk‖2 = 1 . (1.7)

Storing the score variables in a vector tT =
(
t1 t2 t3 · · · tj · · · tn

)
, t ∈ R

n has
the following first and second order statistics:
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E {t} = 0 E
{
ttT
}

= Λ , (1.8)

where Λ is a diagonal matrix. An important property of PCA is that the
variance of the score variables represent the following maximum:

λk = arg max
pk

{
E
{
t2k
}}

= arg max
pk

{
E
{
pT

k zzT pk

}}
, (1.9)

that is constraint by:

E

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
t1
t2
t3
...

tk−1

⎞⎟⎟⎟⎟⎟⎠ tk
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

= 0 ‖pk‖22 − 1 = 0 . (1.10)

Anderson [2] indicated that the formulation of the above constrained opti-
mization can alternatively be written as:

λk = argmax
p

{
E
{
pT zzT p

}− λk

(
pTp− 1

)}
(1.11)

under the assumption that λk is predetermined. Reformulating (1.11) to de-
termine pk gives rise to:

pk = arg
∂

∂p
{
E
{
pT zzT p

}− λk

(
pTp− 1

)}
= 0 (1.12)

and produces
pk = arg

{
E
{
zzT
}
p− 2λkp

}
= 0 . (1.13)

Incorporating (1.5) allows constructing an analytical solution of this con-
strained optimization problem:

[SZZ − λkI]pk = 0 , (1.14)

which implies that the kth largest eigenvalue of SZZ is the variance of the
kth score variable and the parameter vector pk, associated with λk, stores the
kth set of coefficients to obtain the kth linear transformation of the original
variable set z to produce tk. Furthermore, given that SZZ is a positive definite
or semidefinite matrix it follows that the eigenvalues are positive and real and
the eigenvectors are mutually orthonormal. The solution of Equation (1.14)
also implies that the score variables are statistically independent, as defined
in (1.10), which follows from:

ŜZZ =
1

K − 1
ẐT Ẑ = P̂Λ̂P̂T =⇒ 1

K − 1
P̂TZT ZP̂ =

1
K − 1

T̂T T̂ = Λ̂ .

(1.15)
Here, the index ◦̂ represents estimates of the covariance matrix, its eigenvec-
tors and eigenvalues and the score matrix using the reference data stored in
Z. A solution of Equations (1.9) and (1.10) can be obtained using a singular
value decomposition of the data covariance matrix ŜZZ or the iterative Power
method [22].
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1.3 Nonlinearity Test for PCA Models

This section discusses how to determine whether the underlying structure
within the recorded data is linear or nonlinear. Kruger et al. [38] introduced
this nonlinearity test using the principle outlined in Figure 1.1. The left plot in

Fig. 1.1. Principle of nonlinearity test

this figure shows that the first principal component describes the underlying
linear relationship between the two variables, z1 and z2, while the right plot
describes some basic nonlinear function, indicated by the curve.

By dividing the operating region into several disjunct regions, where the
first region is centered around the origin of the coordinate system, a PCA
model can be obtained from the data of each of these disjunct regions. With
respect to Figure 1.1, this would produce a total of 3 PCA models for each
disjunct region in both cases, the linear (left plot) and the nonlinear case (right
plot). To determine whether a linear or nonlinear variable interrelationship
can be extracted from the data, the principle idea is to take advantage of the
residual variance in each of the regions. More precisely, accuracy bounds that
are based on the residual variance are obtained for one of the PCA models, for
example that of disjunct region I, and the residual variance of the remaining
PCA models (for disjunct regions II and III) are benchmarked against these
bounds. The test is completed if each of the PCA models has been used to
determine accuracy bounds which are then benchmarked against the residual
variance of the respective remaining PCA models.

The reason of using the residual variance instead of the variance of the
retained score variables is as follows. The residual variance is independent of
the region if the underlying interrelationship between the original variables
is linear, which the left plot in Figure 1.1 indicates. In contrast, observations
that have a larger distance from the origin of the coordinate system will,
by default, produce a larger projection distance from the origin, that is a
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larger score value. In this respect, observations that are associated with an
adjunct region that are further outside will logically produce a larger variance
irrespective of whether the variable interrelationships are linear or nonlinear.

The detailed presentation of the nonlinearity test in the remainder of this
section is structured as follows. Next, the assumptions imposed on the non-
linearity test are shown, prior to a detailed discussion into the construction
of disjunct regions. Subsection 3.3 then shows how to obtain statistical con-
fidence limits for the nondiagonal elements of the correlation matrix. This
is followed by the definition of the accuracy bounds. Finally, a summary of
the nonlinearity test is presented and some example studies are presented to
demonstrate the working of this test.

1.3.1 Assumptions

The assumptions imposed on the nonlinearity test are summarized below [38].

1. The variables are mean-centered and scaled to unit variance with respect
to disjunct regions for which the accuracy bounds are to be determined.

2. Each disjunct region has the same number of observations.
3. A PCA model is determined for one region where the the accuracy bounds

describe the variation for the sum of the discarded eigenvalues in that
region.

4. PCA models are determined for the remaining disjunct regions.
5. The PCA models for each region include the same number of retained

principal components.

1.3.2 Disjunct Regions

Here, we investigate how to construct the disjunct regions and how many dis-
junct regions should be considered. In essence, dividing the operating range
into the disjunct regions can be carried out through prior knowledge of the
process or by directly analyzing the recorded data. Utilizing a priori knowl-
edge into the construction of the disjunct regions, for example, entails the
incorporation of knowledge about distinct operating regions of the process.
A direct analysis, on the other hand, by applying scatter plots of the first
few retained principal components could reveal patterns that are indicative of
distinct operating conditions. Wold et al. [80], page 46, presented an example
of this based on a set of 20 “natural” amino acids.

If the above analysis does not yield any distinctive features, however, the
original operating region could be divided into two disjunct regions initially.
The nonlinearity test can then be applied to these two initial disjunct regions.
Then, the number of regions can be increased incrementally, followed by a
subsequent application of the test. It should be noted, however, that increasing
the number of disjunct regions is accompanied by a reduction in the number
of observations in each region. As outlined the next subsection, a sufficient
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number of observations are required in order to prevent large Type I and II
errors for testing the hypothesis of using a linear model against the alternative
hypothesis of rejecting that a linear model can be used.

Next, we discuss which of the disjunct regions should be used to estab-
lish the accuracy bounds. Intuitively, one could consider the most centered
region for this purpose or alternatively, a region that is at the margin of the
original operating region. More practically, the region at which the process is
known to operate most often could be selected. This, however, would require
a priori knowledge of the process. However, a simpler approach relies on the
incorporation of the cross-validation principle [65, 64] to automate this selec-
tion. In relation to PCA, cross-validation has been proposed as a technique
to determine the number of retained principal components by Wold [79] and
Krzanowski [39].

Applied to the nonlinearity test, the cross-validation principle could be
applied in the following manner. First, select one disjunct region and compute
the accuracy bounds of that region. Then, benchmark the residual variance of
the remaining PCA models against this set of bounds. The test is completed
if accuracy bounds have been computed for each of the disjunct regions and
the residual variances of the PCA models of the respective remaining disjunct
regions have been benchmarked against these accuracy bounds. For example,
if 3 disjunct regions are established, the PCA model of the first region is used
to calculate accuracy bounds and the residual variances of the 3 PCA models
(one for each region) is benchmarked against this set of bounds. Then, the
PCA model for the second region is used to determine accuracy bounds and
again, the residual variances of the 3 PCA models are benchmarked against
the second set of bounds. Finally, accuracy bounds for the PCA model of
the 3rd region are constructed and each residual variance is compared to this
3rd set of bounds. It is important to note that the PCA models will vary
depending upon which region is currently used to compute accuracy bounds.
This is a result of the normalization procedure, since the mean and variance
of each variable may change from region to region.

1.3.3 Confidence Limits for Correlation Matrix

The data correlation matrix, which is symmetric and positive semidefinite, for
a given set of N variables has the following structure:

RZZ =

⎡⎢⎢⎢⎣
1 r12 · · · r1N

r21 1 · · · r2N

...
...

. . .
...

rN1 rN2 · · · 1

⎤⎥⎥⎥⎦ . (1.16)

Given that the total number of disjunct regions is m the number of obser-
vations used to construct any correlation matrix is K̃ = K/m, rounded to
the nearest integer. Furthermore, the correlation matrix for constructing the
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PCA model for the hth disjunct region, which is utilized to determine of the
accuracy bound, is further defined by R(h)

ZZ . Whilst the diagonal elements of
this matrix are equal to one, the nondiagonal elements represent correlation
coefficients for which confidence limits can be determined as follows:

r
(h)
ij =

exp
(
2ς(h)

ij

)
− 1

exp
(
2ς(h)

ij

)
+ 1

if i 	= j , (1.17)

where ς(h)
ij = ς(h)∗

ij ± ε, ς(h)∗

ij = ln
(

1 + r(h)∗

ij

/
1− r(h)∗

ij

)/
2, r

(h)∗

ij is the sample

correlation coefficient between the ith and jth process variable, ε=cα

/√
K̃ − 3

and cα is the critical value of a normal distribution with zero mean, unit
variance and a significance level α. This produces two confidence limits for
each of the nondiagonal elements of R(h)

ZZ , which implies that the estimate
nondiagonal elements with a significance level of α, is between

R(h)
ZZ=

⎡⎢⎢⎢⎢⎣
1 r

(h)
12L

≤ r(h)
12 ≤ r(h)

12U
· · · r(h)

1NL
≤ r(h)

1N ≤ r(h)
1NU

r
(h)
21L

≤ r(h)
21 ≤ r(h)

21U
1 · · · r(h)

2NL
≤ r(h)

2N ≤ r(h)
2NU

...
...

. . .
...

r
(h)
N1L

≤ r(h)
N1 ≤ r(h)

N1U
r
(h)
N2L

≤ r(h)
N2 ≤ r(h)

N2U
· · · 1

⎤⎥⎥⎥⎥⎦ ,
(1.18)

where the indices U and L refer to the upper and lower confidence limit, that

is r(h)
ijL

=
exp

�
2
�

ς
(h)
ij −ε

��
−1

exp
�
2
�

ς
(h)
ij −ε

��
+1

and r(h)
ijU

=
exp

�
2
�

ς
(h)
ij +ε

��
−1

exp
�
2
�

ς
(h)
ij +ε

��
+1

. A simplified version

of Equation (1.18) is shown below

R(h)
ZZL

≤ R(h)
ZZ ≤ R(h)

ZZU
(1.19)

which is valid elementwise. Here, R(h)
ZZL

and R(h)
ZZU

are matrices storing the
lower confidence limits and the upper confidence limits of the nondiagonal
elements, respectively.

It should be noted that the confidence limits for each correlation coefficient
is dependent upon the number of observations contained in each disjunct re-
gion, K̃. More precisely, if K̃ reduces the confidence region widens according
to (1.17). This, in turn, undermines the sensitivity of this test. It is therefore
important to record a sufficiently large reference set from the analyzed process
in order to (i) guarantee that the number of observations in each disjunct re-
gion does not produce excessively wide confidence regions for each correlation
coefficient, (ii) produce enough disjunct regions for the test and (iii) extract
information encapsulated in the recorded observations.
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1.3.4 Accuracy Bounds

Finally, (1.19) can now be taken advantage of in constructing the accuracy
bounds for the hth disjunct region. The variance of the residuals can be calcu-
lated based on the Frobenius norm of the residual matrix Eh. Beginning with
the PCA decomposition of the data matrix Zh, storing the observations of
the hth disjunct region, into the product of the associated score and loading
matrices, ThPT

h and the residual matrix Eh = T∗
hP

∗T

h :

Zh = ThPT
h + Eh = ThPT

h + T∗
hP

∗T

h , (1.20)

the sum of the residual variances for each original variable, ρih
, ρh =

N∑
i=1

ρih

can be determined as follows:

ρh =
1

K̃ − 1

�K∑
i=1

N∑
j=1

e2ijh
=

1

K̃ − 1
‖Eh‖22. (1.21)

which can be simplified to:

ρh =
1

K̃ − 1
‖T∗

hP
∗T

h ‖22 =
1

K̃ − 1
‖U∗

hΛ
∗1/2
h

√
K̃ − 1P∗T

h ‖22 (1.22)

and is equal to:

ρh =
K̃ − 1

K̃ − 1
‖Λ∗1/2

h ‖22 =
N∑

i=n+1

λi . (1.23)

Equations (1.20) and (1.22) utilize a singular value decomposition of Zh and
reconstructs the discarded components, that is

Eh = U∗
h

[
Λ∗

h

√
K̃ − 1

]
P∗T

h = T∗
hP

∗T

h .

Since R(h)
ZZ =

[
Ph P∗

h

] [Λh 0
0 Λ∗

h

] [
PT

h

P∗T

h

]
, the discarded eigenvalues λ1,

λ2, . . ., λN depend on the elements in the correlation matrix RZZ . According
to (1.18) and (1.19), however, these values are calculated within a confidence
limits obtained for a significance level α. This, in turn, gives rise to the fol-
lowing optimization problem:

ρhmax = arg max
ΔRZZmax

ρh (RZZ +ΔRZZmax) ,

ρhmin = arg min
ΔRZZmin

ρh (RZZ +ΔRZZmin) ,
(1.24)

which is subject to the following constraints:

RZZL ≤ RZZ +ΔRZZmax ≤ RZZU ,
RZZL ≤ RZZ +ΔRZZmin ≤ RZZU ,

(1.25)
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where ΔRZZmax and ΔRZZmin are perturbations of the nondiagonal elements
in RZZ that result in the determination of a maximum value, ρhmax , and a
minimum value, ρhmin, of ρh, respectively.

The maximum and minimum value, ρhmax and ρhmin , are defined as the ac-
curacy bounds for the hth disjunct region. The interpretation of the accuracy
bounds is as follows.

Definition 1. Any set of observations taken from the same disjunct operating
region cannot produce a larger or a smaller residual variance, determined with
a significance of α, if the interrelationship between the original variables is
linear.

The solution of Equations (1.24) and (1.25) can be computed using a genetic
algorithm [63] or the more recently proposed particle swarm optimization [50].

1.3.5 Summary of the Nonlinearity Test

After determining the accuracy bounds for the hth disjunct region, detailed
in the previous subsection, a PCA model is obtained for each of the remaining
m−1 regions. The sum of the N−n discarded eigenvalues is then benchmarked
against these limits to examine whether they fall inside or at least one residual
variance value is outside. The test is completed if accuracy bounds have been
computed for each of the disjunct regions including a benchmarking of the
respective remaining m−1 residual variance. If for each of these combinations
the residual variance is within the accuracy bound the process is said to be
linear. In contrast, if at least one of the residual variances is outside one of the
accuracy bounds, it must be concluded that the variable interrelationships are
nonlinear. In the latter case, the uncertainty in the PCA model accuracy is
smaller than the variation of the residual variances, implying that a nonlinear
PCA model must be employed.

The application of the nonlinearity test involves the following steps.

1. Obtain a sufficiently large set of process data;
2. Determine whether this set can be divided into disjunct regions based on

a priori knowledge; if yes, goto step 5 else goto step 3;
3. Carry out a PCA analysis of the recorded data, construct scatter diagrams

for the first few principal components to determine whether distinctive
operating regions can be identified; if so goto step 5 else goto step 4;

4. Divide the data into two disjunct regions, carry out steps 6 to 11 by
setting h = 1, and investigate whether nonlinearity within the data can
be proven; if not, increase the number of disjunct regions incrementally
either until the sum of discarded eigenvalues violate the accuracy bounds
or the number of observations in each region is insufficient to continue the
analysis;

5. Set h = 1;
6. Calculate the confidence limits for the nondiagonal elements of the corre-

lation matrix for the hth disjunct region (Equations (1.17) and (1.18));
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7. Solve Equations (1.24) and (1.25) to compute accuracy bounds σhmax and
σhmin ;

8. Obtain correlation/covariance matrices for each disjunct region (scaled
with respect to the variance of the observations within the hth disjunct
region;

9. Carry out a singular value decomposition to determine the sum of eigen-
values for each matrix;

10. Benchmark the sums of eigenvalues against the hth set of accuracy bounds
to test the hypothesis that the interrelationships between the recorded
process variables are linear against the alternative hypothesis that the
variable interrelationships are nonlinear ;

11. if h = N terminate the nonlinearity test else goto step 6 by setting h =
h+ 1.

Examples of how to employ the nonlinearity test is given in the next subsec-
tion.

1.3.6 Example Studies

These examples have two variables, z1 and z2. They describe (a) a linear
interrelationship and (b) a nonlinear interrelationship between z1 and z2. The
examples involve the simulation of 1000 observations of a single score variable
t that stem from a uniform distribution such that the division of this set into
4 disjunct regions produces 250 observations per region. The mean value of t
is equal to zero and the observations of t spread between +4 and −4.

In the linear example, z1 and z2 are defined by superimposing two indepen-
dently and identically distributed sequences, e1 and e2, that follow a normal
distribution of zero mean and a variance of 0.005 onto t:

z1 = t+ e1, e1 = N {0, 0.005} z2 = t+ e2, e2 = N {0, 0.005} . (1.26)

For the nonlinear example, z1 and z2, are defined as follows:

z1 = t+ e1 z2 = t3 + e2 (1.27)

with e1 and e2 described above. Figure 1.2 shows the resultant scatter plots for
the linear example (right plot) and the nonlinear example (left plot) including
the division into 4 disjunct regions each.

Application of nonlinearity test to linear example

Table 1.1 summarizes the resultant values for the correlation coefficients, their
confidence limits and the calculated upper and lower accuracy bound for each
of the 4 disjunct regions. Table 1.2 shows the second eigenvalues of each of the
correlation/covariance matrices for h = 1, 2, 3 and 4. Note that the values in
italics correspond to the disjunct region for which the accuracy bounds have
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Fig. 1.2. Scatter diagrams for linear (left plot) and nonlinear simulation example
(right plot) including boundaries for disjunct regions

Table 1.1. Correlation coefficients, their confidence limits and accuracy bounds for
linear example

h r
(h)
21 r

(h)
12L

r
(h)
12U

σhmin σhmin

1 0.9852 0.9826 0.9874 0.0126 0.0174
2 0.9978 0.9975 0.9982 0.0018 0.0025
3 0.9992 0.9991 0.9993 0.0007 0.0009
4 0.9996 0.9995 0.9997 0.0003 0.0005

Table 1.2. Residual variances (second eigenvalues) for each combination of disjunct
regions.

h/DisjunctRegion 1 2 3 4

1 0.0148 0.0143 0.0147 0.0142
2 0.0022 0.0022 0.0022 0.0021
3 0.0008 0.0008 0.0008 0.0007
4 0.0004 0.0004 0.0004 0.0004

been calculated. Figure 1.3 benchmarks these residual variances against the
accuracy bounds for each of the disjunct regions. This comparison yields that
no violations of the accuracy bounds arise, which, as expected, leads to the
acceptance of the hypothesis that the underlying relationship between z1 and
z2 is linear. Next, we investigate whether the nonlinearity test can reveal that
the second example describes a nonlinear relationship between both variables.

Application of nonlinearity test to nonlinear example

Using the data generated by (1.27), Table 1.3 summarizes the resultant values
for the correlation coefficients, their confidence limits and the calculated upper
and lower accuracy bound for each of the 4 disjunct regions. Again, there is
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Fig. 1.3. Benchmarking of the residual variances against accuracy bounds of each
disjunct region

Table 1.3. Correlation coefficients, their confidence limits and accuracy bounds for
nonlinear example.

h r
(h)
21 r

(h)
12L

r
(h)
12U

σhmin σhmin

1 0.4341 0.3656 0.4979 0.5021 0.6344
2 0.9354 0.9244 0.9449 0.0551 0.0756
3 0.9752 0.9709 0.9789 0.0211 0.0291
4 0.9882 0.9861 0.9900 0.0100 0.0139

one principal component that describes the underlying relationship between
z1 and z2. In contrast, the other component represents the superimposed
noise sequences e1 and e2. However, this time, the underlying relationship is
nonlinear.

Using the correlation/covariance matrices for each combination, Table 1.4
shows their second eigenvalue for h = 1, 2, 3 and 4. As before, the diagonal
elements are marked in italics and represent the residual variance of the re-
constructed data inside the disjunct region for which accuracy bounds have
been computed and, by default, must fall inside these bounds. In contrast to
the linear example, the residual variance of the reconstructed data for each



1 Nonlinear PCA – a Review 15

Table 1.4. Residual variances (second eigenvalues) for each combination of disjunct
regions.

h/DisjunctRegion 1 2 3 4

1 0.5659 0.7164 0.8866 0.8515
2 0.0258 0.0646 0.1145 0.1188
3 0.0017 0.0067 0.0248 0.0358
4 0.0002 0.0011 0.0056 0.0118

of the other disjunct regions, fall outside the accuracy bounds. Note that the
violating elements in Table 1.4 are marked in bold. This result is expected
given the construction of the nonlinear data set. Figure 1.4 gives a graphical
illustration for the results in Table 1.4.
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1.4 Nonlinear PCA Extensions

This section reviews nonlinear PCA extensions that have been proposed over
the past two decades. Hastie and Stuetzle [25] proposed bending the loading
vectors to produce curves that approximate the nonlinear relationship between
a set of two variables. Such curves, defined as principal curves, are discussed
in the next subsection, including their multidimensional extensions to produce
principal surfaces or principal manifolds.

Another paradigm, which has been proposed by Kramer [37], is related to
the construction of an artificial neural network to represent a nonlinear ver-
sion of (1.2). Such networks that map the variable set z to itself by defining
a reduced dimensional bottleneck layer, describing nonlinear principal com-
ponents, are defined as autoassociative neural networks and are revisited in
Subsection 4.2.

A more recently proposed NLPCA technique relates to the definition of
nonlinear mapping functions to define a feature space, where the variable
space z is assumed to be a nonlinear transformation of this feature space.
By carefully selecting these transformation using Kernel functions, such as
radial basis functions, polynomial or sigmoid kernels, conceptually and com-
putationally efficient NLPCA algorithms can be constructed. This approach,
referred to as Kernel PCA, is reviewed in Subsection 4.3.

1.4.1 Principal Curves and Manifolds

A brief introduction into principal curves (PCs) is given next, followed by
a geometric interpretation illustrating the progression from the PCA weight
vector, associated to the largest eigenvalue of SZZ to a principal curve. The
characteristics of principal curves are then outlined prior to algorithmic de-
velopments and refinements.

Introduction to principal curves

Principal Curves (PCs), presented by Hastie and Stuetzle [24, 25], are smooth
one-dimensional curves passing through the middle of a cloud representing
a data set. Utilizing probability distribution, a principal curve satisfies the
self-consistent property, which implies that any point on the curve is the av-
erage of all data points projected onto it. As a nonlinear generalization of
principal component analysis, PCs can be also regarded as a one-dimensional
manifold embedded in high dimensional data space. In addition to the sta-
tistical property inherited from linear principal components, PCs also reflect
the geometrical structure of data due. More precisely, the natural parameter
arc-length is regarded as a projection index for each sample in a similar fash-
ion to the score variable that represents the distance of the projected data
point from the origin. In this respect, a one-dimensional nonlinear topological
relationship between two variables can be estimated by a principal curve [85].



1 Nonlinear PCA – a Review 17

From a weight vector to a principal curve

Inherited from the basic paradigm of PCA, PCs assume that the intrinsic
middle structure of data is a curve rather than a straight line. In relation to
the total least squares concept [71], the cost function of PCA is to minimize
the sum of projection distances from data points to a line. This produces
the same solution as that presented in Section 2, Eq. (1.14). Geometrically,
eigenvectors and their corresponding eigenvalues of SZZ reflect the principal
directions and the variance along the principal directions of data, respectively.
Applying the above analysis to the first principal component, the following
properties can be established [5]:

1. Maximize the variance of the projection location of data in the principal
directions.

2. Minimize the squared distance of the data points from their projections
onto the 1st principal component.

3. Each point of the first principal component is the conditional mean of all
data points projected into it.

Assuming the underlying interrelationships between the recorded variables are
governed by:

z = At + e , (1.28)

where z ∈ R
N , t ∈ R

n is the latent variable (or projection index for the PCs),
A ∈ R

N×n is a matrix describing the linear interrelationships between data
z and latent variables t, and e represent statistically independent noise, i.e.
E {e} = 0, E {ee} = δI, E

{
etT
}

= 0 with δ being the noise variance. PCA,
in this context, uses the above principles of the first principal component to
extract the n latent variables t from a recorded data set Z.

Following from this linear analysis, a general nonlinear form of (1.28) is as
follows:

z = f (t) + e , (1.29)

where f (t) is a nonlinear function and represents the interrelationships be-
tween the latent variables t and the original data z. Reducing f (·) to be a
linear function, Equation (1.29) clearly becomes (1.28), that is a special case
of Equation (1.29).

To uncover the intrinsic latent variables, the following cost function, de-
fined as

R =
K∑

i=1

‖zi − f (ti)‖22 , (1.30)

where K is the number available observations, can be used.
With respect to (1.30), linear PCA calculates a vector p1 for obtaining the

largest projection index ti of Equation (1.28), that is the diagonal elements of
E
{
t2
}

represent a maximum. Given that p1 is of unit length, the location of



18 U. Kruger, J. Zhang, and L. Xie

the projection of zi onto the first principal direction is given by p1ti. Incor-
porating a total of n principal directions and utilizing (1.28), Equation (1.30)
can be rewritten as follows:

R =
K∑

i=1

‖zi −Pti‖22 = trace
{
ZZT − ZT A

[
AT A

]−1
AZT

}
, (1.31)

where trace{·} is the sum of the diagonal elements of matrix. Minimizing
Equation (1.31) is equivalent to the determination of the largest eigenvalue of
ZZT . Similarly, the distance function for PCs is defined as:

D2 (f (t)) = E
{
(z− f (t))T (z− f (t))

}
, (1.32)

where the variational approach is a main technique to minimize D2(f). It
can be proven that the solution of Equation (1.32) is equivalent to that of
Equation (1.31) if f (·) reduces to a linear function. In the nonlinear case, it
can be shown that the critical value for constructing the PC is the distance
function.

Mathematically, let f be a PC and g be any curve of a family of curves
G and define fε = f (t) + εg (t) where ε is a distortion factor, 0 ≤ ε ≤ 1. The
distance from the data z to f is defined as follows:

D2(h, fε) = Eh ‖z− fε (tfε (z))‖22 , (1.33)

where tfε is the projection index of the data point closest to the projection
location on the curve fε and Eh(·) is mathematical expectation of the given
data distribution density h.

It can be proven that f is a critical value of the distance function in (1.33)
under the assumption that Equation (1.34) is satisfied.

dD2 (h, fε)
dε

∣∣∣∣
ε=0

∀g ∈ G . (1.34)

Therefore, the objective function (distance function) of PCs is a nonlinear
generalization of PCA. The major difference is that the shapes of PCs are
uncertain, whereas those of PCA are lines. Hence, it is necessary to address
the differences as it is discussed below.

Characteristics of principal curves

To adhere to the properties of principal curves, some basic definitions of prin-
cipal curves are given first.

Definition 2. A one-dimensional curve embedded in R
N is a continuous func-

tion f : Ξ → R
N , where Ξ = [a, b] ∈ R.
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The curve f (·) is a function that is parameterized by a single parameter
t ∈ Ξ, that is fT (t) =

(
f1 (t) · · · fn (t)

)
, where f1 (t) · · · fn (t) are referred to

as coordinate functions.

Definition 3. For any z ∈ R
N , the corresponding projection index tf (z) on

the curve f (t) is defined as

tf (z) = sup
{
t : ‖z− f (t)‖22 = inf

τ
‖z− f (τ)‖22

}
, (1.35)

where f (t) is a curve in R
N parameterized by t ∈ R.

The above definition can be interpreted as follows. The projection index tf (z)
of z is the value of t for which f (t) is closest to z. If there are multiple
projection points that have an equal orthogonal distance to z, the largest
value of t is selected to remove ambiguity.

Hastie has proven that although ambiguous points may exist in the com-
putation of PCs, the set of ambiguous points has a Lebesgue measure zero
if the length of the curve is restricted. Hastie has further proven that for al-
most every z, the projection function tfε (z) is continuous under the compact
support of probability density h. The difference between ‘continuous’ and ‘am-
biguous’ is: if tf (z) is continuous in z, z is not an ambiguous point. The basic
idea of projection index is illustrated in Figure 1.5.

Definition 4. Based on the Definition 3, the distance between z and the curve
f (t) is computed to be the squared distance between z and its projection point
f (tf (z)), that is:

Δ (z, f) = ‖z− f (tf (z))‖22 . (1.36)

The projection distances from a data point to curve is an orthogonal distance
rather than the vertical distances typically used by conventional regression
methods.

Definition 5. Given a curve f (t) , t ∈ R, the arc-length, l, between t0 and t1
is given by:

l =

t1∫
t0

‖f ′ (t)‖22 dt =
K−1∑
i=1

‖f (ti+1)− f (ti)‖22 , (1.37)

where f ′ (t) is tangent to the curve f at projection index t and is often described
as the velocity vector.

If ‖f ′ (t)‖22 ≡ 1 then l = t1 − t0 and such a curve is defined as a unit speed
parameterized curve.

Definition 6. The smooth curve f(t) is a principal curve if it:

1. does not intersect itself
2. has finite length inside any bounded subset of R

n
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3. is self-consistent, that is

f (t) = E {z| tf (z) = t) ∀t ∈ Ξ . (1.38)

The self-consistent property implies that each point on the curve is the condi-
tional mean of the data points projected onto it. Thus, the principal curve is a
smooth nonparametric self-consistent curve, which passes through the middle
of the distribution and provides a one-dimensional nonlinear summary of the
data.

Based on above definitions, Hastie and Stuetzle proposed a basic iterative
algorithm for PCs, abbreviated as HSPCs for a given data distribution:

• Step1: Let the original curve f (0) (t) be the first principal component where
the subscript of f denotes the actual iteration number, commencing with
j being equal to set zero.

• Step2 (projection step): ∀z ∈ R
N , compute:

tf(j) (z) = sup
{
t :
∥∥∥z− f (j) (t)

∥∥∥2
2

= inf
τ

∥∥∥z− f (j) (τ)
∥∥∥2

2

}
. (1.39)

• Step3 (expectation): According to self-consistency, recompute the curve
f (j+1) (t) = E

{
Z| tf(j) (Z) = t

}
.

• Step4 (judgement): If 1− Δ(f (j+1))
Δ(f (j))

< ε, then stop, else set j = j + 1 and
goto Step 2.

For the above iteration, ε is a predefined convergence criterion, which can be
set to 0.01 for example.

If the data distribution is unknown, cubic smoothing splines can be used
as an alternative strategy for the estimation of HSPCs. This entails finding
f (t) and ti ∈ [0, 1], i = {1, · · · ,K} so that

D2(f) =
K∑

i=1

‖ zi − f (ti) ‖22 +μ

1∫
0

‖ f ′′ (t) ‖22 dt (1.40)

is minimized under the condition that the arc-length t is constrained to lie
between [0, 1], μ is fixed smoothing factor, and f ′′ (t) denotes the second-order
derivative. More details of splines may be available in [60] for example.

Algorithmic developments

Since the concept was proposed by Hastie and Stuetzle in 1989, a considerable
number of refinements and further developments have been reported. The first
thrust of such developments address the issue of bias. The HSPCs algorithm
has two biases, a model bias and an estimation bias.

Assuming that the data are subjected to some distribution function with
gaussian noise, a model bias implies that that the radius of curvature in the
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curves is larger than the actual one. Conversely, spline functions applied by
the algorithm results in an estimated radius that becomes smaller than the
actual one.

With regards to the model bias, Tibshirani [69] assumed that data are gen-
erated in two stages (i) the points on the curve f (t) are generated from some
distribution function μt and (ii) z are formed based on conditional distribution
μz|t (here the mean of μz|t is f (t)). Assume that the distribution functions μt

and μz|t are consistent with μz, that is μz =
∫
μz|t (z|t)μt (t) dt. Therefore,

z are random vectors of dimension N and subject to some density μz. While
the algorithm by Tibshirani [69] overcomes the model bias, the reported ex-
perimental results in this paper demonstrate that the practical improvement
is marginal. Moreover, the self-consistent property is no longer valid.

In 1992, Banfield and Raftery [4] addressed the estimation bias problem
by replacing the squared distance error with residual and generalized the PCs
into closed-shape curves. However, the refinement also introduces numerical
instability and may form a smooth but otherwise incorrect principal curve.

In the mid 1990s, Duchamp and Stuezle [18, 19] studied the holistical
differential geometrical property of HSPCs, and analyzed the first and second
variation of principal curves and the relationship between self-consistent and
curvature of curves . This work discussed the existence of principal curves in
the sphere, ellipse and annulus based on the geometrical characters of HSPCs.
The work by Duchamp and Stuezle further proved that under the condition
that curvature is not equal to zero, the expected square distance from data
to principal curve in the plane is just a saddle point but not a local minimum
unless low-frequency variation is considered to be described by a constraining
term. As a result, cross-validation techniques can not be viewed as an effective
measure to be used for the model selection of principal curves.

At the end of the 1990s, Kégl proposed a new principal curve algorithm
that incorporates a length constraint by combining vector quantization with
principal curves. For this algorithm, further referred to as the KPC algorithm,
Kégl proved that if and only if the data distribution has a finite second-
order moment, a KPC exists and is unique. This has been studied in detail
based on the principle of structural risk minimization, estimation error and
approximation error. It is proven in references [34, 35] that the KPC algorithm
has a faster convergence rate that the other algorithms described above. This
supports to use of the KPC algorithm for large databases.

While the KPCs algorithm presents a significant improvement, several
problems still remain. For example, the first principal component is often as-
sumed to be an initial segment for the KPCs algorithm. For complex data
which are subject to an uneven and/or sparse distribution, however, a good
estimate of the initial curve plays a crucial role in order to guarantee that
the algorithm converges to the actual principal curve. Secondly, the computa-
tional complexity gradually rises with an increase in the number of segments.
However, if some vertices to be optimized go outside the domain of data, the
algorithm has no ability to detect and remove this so that the subsequent
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optimization and projection steps may fail. Thirdly, many parameters need
to be predetermined and adjusted based on heuristic experience, which may
hamper the practical usefulness of the KPC algorithm.

Addressing these drawbacks, Zhang and Chen [83] proposed a constraint
K-Segment principal curve or CKPC algorithm. For this algorithm, the initial
and final points of the curve are predefined by introducing data from the
unobservable region or prior knowledge so that a better initial curves can be
extracted. Secondly, a new constrained term for the removal of some abnormal
vertices is presented to prevent subsequent optimization and projection steps
to fail. Experiments involving intelligent transportation systems demonstrated
that the CKPC algorithm provides a stronger generalization property than
the KPC algorithm [83].

Morales [46] stated that from a differential manifold viewpoint a principal
curves is a special case of manifold fitting. Morales work further generalized
principal curves into principal embedding and introduced harmonic energy
to be a regularizing term for determining a local minimum of the principal
embedding. However, this work does not provide a practical algorithm for
constructing a principal embedding. However, Smola [61] pointed out that
most of the unsupervised learning approaches, such as principal curves, can
rely on vector quantization, and proposed regularized principal manifold or
RPM approach. Smola further proved the equivalence of the approach with
the KPC algorithm, and derived a consistent convergence bound based on
statistical learning theory.

Delicado [14] reconsidered the relation between principal curves and linear
principal component analysis and introduced the concept of principal curves of
oriented points or PCOP. This analysis was motivated by the fact that the first
principal component goes through the conditional mean in a hyperplane and
is orthogonal to the hyperplane which minimizes conditional total variance.
When repeated searching from different samples, multiple points which satisfy
the property of conditional mean value can be found. These points are called
PCOP and the principal curve is the one across the PCOP. Similarly, the total-
variance property can be recursively generalized to higher-order continuous
principal curves. The drawback of this approach, however, is its considerable
computational complexity.

Alternative approaches to principal curves include the work by Chang and
Ghosh [7, 8], who define probabilistic principal curves, PPCs, and probabilis-
tic principal surfaces, PPSs based on a generative topography mapping [6].
Different from the other approaches discussed above, PPCs and PPSs assume
that high-dimensional topographical relationships among data are explicitly
generated from some low-dimensional latent variables, and the algorithms are
devoted to calculating the probability density of given data sets based on
their latent variable structure. Advantages of these algorithms are that they
not only keep the self-consistency, but also generalize principal curves into 2
dimensional to 3 dimensional principal manifolds through the introduction of
parameterized models.
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Verbeek [73] proposed a soft K-segments principal curves (SKPCs) algo-
rithm, which first constructs K segments where each segment is obtained
by local principal component analysis. These segments are then connected by
minimizing the total degree of smoothness. A potential drawback of the SKPC
algorithm is that it cannot be generalized into a high-dimension surface and
the cost function does not consider a curvature penalty. Sandilya and Kulka-
rni [55] presented principal curves with bounded turn (PCBT). In a similar
fashion to the KPC algorithm, PCBTs exists if and only if the data has a
finite second-order moment.

Practically, principal curve algorithms have gained attention in a variety
of applications, such as the alignment of magnets of the Stanford linear collier,
identifying profiles of ice floes in the satellite images, handwriting ossification,
speech recognition etc. [85, 53, 54, 26]. More recently, the principal curves
algorithm by Hastie and Stuetzle [25] has also been applied to the modeling
of freeway traffic streams [9] and the learning of high-precision GPS data from
low-precision counterpart [84].

1.4.2 Neural Network Approaches

Using the structure shown in Figure 1.6, Kramer [37] proposed an alternative
NLPCA implementation to principal curves and manifolds. This structure

Fig. 1.6. Topology of autoassociative neural networks.

represents an autoassociative neural network (ANN), which, in essence, is an
identify mapping that consists of a total of 5 layers. Identify mapping relates
to this network topology is optimized to reconstruct the N network input
variables as accurately as possible using a reduced set of bottleneck nodes
n < N . From the left to right, the first layer of the ANN is the input layer
that passes weighted values of the original variable set z onto the second layer,
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that is the mapping layer :

ξi =
N∑

j=1

w
(1)
ij zj + b1i , (1.41)

where w(1)
ij are the weights for the first layer and b(1)i is a bias term. The sum in

(1.41), ξi, is the input the the ith node in the mapping layer that consists of a
total ofMm nodes. A scaled sum of the outputs of the nonlinearly transformed
values σ (ξi), then produce the nonlinear scores in the bottleneck layer. More
precisely, the pth nonlinear score tp, 1 ≤ p ≤ n is given by:

tp =
Mm∑
i=1

w
(2)
pi σ (ξi) + b(2)p =

Mm∑
i=1

w
(2)
pi σ

⎛⎝ N∑
j=1

w
(1)
ij zj + b1i

⎞⎠+ b(2)p . (1.42)

To improve the modeling capability of the ANN structure for mildly nonlinear
systems, it is useful to include linear contributions of the original variables
z1 z2 · · · zN :

tp =
Mm∑
i=1

w
(2)
pi σ

⎛⎝ N∑
j=1

w
(1)
ij zj + b1i

⎞⎠+
N∑

j=1

w
(1l)
pi zi + b(2)p , (1.43)

where the index l refers to the linear contribution of the original variables.
Such a network, where a direct linear contribution of the original variables
is included, is often referred to as a generalized neural network. The middle
layer of the ANN topology is further referred to as the bottleneck layer.

A linear combination of these nonlinear score variables then produces the
inputs for the nodes in the 4th layer, that is the demapping layer :

τj =
n∑

p=1

w
(3)
jp tp + b(3)p . (1.44)

Here, w(3)
jp and b(3)p are the weights and the bias term associated with the

bottleneck layer, respectively, that represents the input for the jth node of
the demapping layer. The nonlinear transformation of τj finally provides the
reconstruction of the original variables z, ẑ =

(
ẑ1 ẑ2 · · · ẑN

)T by the output
layer :

ẑq =
Md∑
j=1

w
(4)
qj σ

(
n∑

p=1

w
(3)
jp tp + b(3)p

)
+

n∑
j=1

w
(3l)
qj tj + b(4)q , (1.45)

which may also include a linear contribution of the nonlinear score variables,

indicated by the inclusion of the term
n∑

j=1

w
(3l)
qj tj . Usually, the training of the
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network weights and bias terms is done using a gradient descent approach
like the computationally efficient Levenberg-Marquardt algorithm. It should
be noted that the functional relationships between the original variable set
z ∈ R

N and the nonlinear score variables t ∈ R
n is further referred to as the

mapping function G (·). Furthermore, the functional relationship between the
nonlinear score variables and the reconstructed original variables ẑ ∈ R

N is
defined as the demapping function H (·).

To symbolize a nonlinear version of the iterative Power method for com-
puting linear PCA, Kramer [37] proposed the following network topology,
shown in Figure 1.7. In a close resemblance to the total least squares prob-

Fig. 1.7. Topology of a sequential autoassociative neural network.
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lem [71] and the properties for first few principal components by Barnett [5],
summarized in Subsection 4.1, this sequential ANN approach minimizes the
squared distance of the data points from their reconstructions using the first
nonlinear principal component t1. After deflating the data matrix E1 = Z−Ẑ,
the second nonlinear principal component t2 is again obtained such that the
squared distance of the of the residuals, stored in E1 and the reconstruction
of E1, Ê2 is minimized. This iteration continues until the residual variance of
Ek is sufficiently small.

Tan and Mavrovouniotis [68] pointed out that the ANN topology is com-
plex and difficult to train. As a rule of thumb, an increase in the number of
hidden layers produces a deterioration in the performance of backpropaga-
tion based algorithms, such as the Levenberg-Marquardt one [27]. The article
by Tan and Mavrovouniotis also presents a simplified application study de-
scribing a circle which demonstrates the difficulties of training such a large
network topology. To overcome this deficiency, they proposed an input train-
ing network that has the topology shown in Figure 1.8 for a total of 5 original
variables, z1 z2 z3 z4 z5 and two nonlinear principal components t1 t2 . The

Fig. 1.8. Topology of the input training network.

input training or IT network determines the network weights as well as the
score variables in an iterative fashion. For a minimum of the squared dis-
tance between the original and reconstructed observations, the following cost
function can be used:

J =
K∑

i=1

N∑
j=1

(zij − ẑij)2 =
K∑

i=1

N∑
j=1

(zij − θj (ti))
2
, (1.46)

where θj (·) is the network function for reconstructing the jth original variable
zj and tT

i =
(
t1 t2 · · · tn

)
. Under the assumption that the network weights are

constant and predetermined, the steepest descent in the direction of optimal
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network inputs is given by the gradient of J with respect to the nonlinear
scores:

Δtik = − ∂J
∂tik

=
N∑

j=1

2 (zij − θj (ti))
∂θj (ti)
∂tik

. (1.47)

Reconstructing zij , that is determining ẑij using the IT network, is based on
the input and middle layers:

ẑij = θj (ti) =
Md∑
p=1

w
(2)
pj σ

(
n∑

q=1

w(1)
pq tiq + bp

)
, (1.48)

where the indices (1) and (2) refer to the input and middle layer weights
and bp is a bias term. For simplicity, linear terms are not included, which,
however, does not restrict generality. Combining Equations (1.47) and (1.48)
gives rise to determine the steepest descent in the direction of the network
training inputs between the input and hidden layer:

Δtik =
N∑

p=1

w
(1)
pj δip , (1.49)

where:

δip =
N∑

j=1

2 (zij − θj (ti))
∂θj (ti)
∂tik

(1.50)

which is given by:

∂θj (ti)
∂tik

=
Md∑
p=1

w
(2)
pj

∂

∂tik
σ

(
n∑

q=1

w(1)
pq tiq + bp

)
, (1.51)

and, hence,
∂θj (ti)
∂tik

= w
(2)
kj σ

′
(

n∑
q=1

w(1)
pq tiq + bq

)
, (1.52)

so that δip can finally be determined as

δip = σ′
(

n∑
q=1

w(1)
pq tiq + bq

)
N∑

j=1

2w(2)
kj (zij − θj (ti)) . (1.53)

Following the above derivative, the steepest descent direction for the train-
ing network weights between the input and hidden layer can be obtained as
follows:

Δw
(1)
pk = − ∂J

∂w
(1)
pk

=
K∑

i=1

N∑
j=1

∂

∂w
(1)
pk

(
zij −

Md∑
p=1

w
(2)
pj σ

(
n∑

q=1

w(1)
pq tiq + bp

))2

,

(1.54)
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which is given by

Δw
(1)
pk =

K∑
i=1

N∑
j=1

2

(
zij−

Md∑
p=1

w
(2)
pj σ

(
n∑

q=1

w(1)
pq tiq + bp

))
tikσ

′
(

n∑
q=1

w(1)
pq tiq + bp

)
,

(1.55)
which in a simplified form is given by

Δw
(1)
pk =

K∑
i=1

η
(1)
ik

N∑
j=1

(
zij −

Md∑
p=1

w
(2)
pj σ

(
n∑

q=1

w(1)
pq tiq + bp

))
, (1.56)

where η(1)ik = tikσ
′
(

n∑
q=1

w
(1)
pq tiq + bp

)
. In a similar fashion to (1.55), a steepest

descent can also be derived for the network weights w(2)
pk . Using the steepest

descents, derived above, the IT network can be trained using backpropagation
techniques.

Dong and McAvoy [16] proposed another approach to simplify the struc-
ture of the original complex 5 layer structure by Kramer. This work relies on a
separation of the 5 layer network into the 3 layer mapping function G (·) and
another 3 layer network representing the demapping function H (·). Accord-
ing to Figure 1.6, the input of the mapping function are the original variables
z ∈ R

N and the output are the nonlinear score variables t ∈ R
n, while the

inputs and outputs of the demapping function are the score variables and re-
constructed variables ẑ ∈ R

N , respectively. Instead of determining the inputs
to the demapping function H (·) by optimizing Equation (1.46) with respect
to the nonlinear score variables for each observation, the approach by Dong
and McAvoy utilizes principal curves to determine nonlinear score variables.

A potential problem of this approach has been discussed by Jia et al.
[31]. The principal curve approach by Dong and McAvoy assumes that the
approximation of a nonlinear function can be achieved by a linear combination
of a number of univariate nonlinear functions. This, however, is a restriction
of generality and implies that only a limited class of nonlinear functions can
be approximated using this technique. In contrast, the algorithm by Tan and
Mavrovouniotis does not suffer from this inherent limitation.

1.4.3 Kernel PCA

This subsection details the principles of kernel PCA, which has been proposed
by Schölkopf et al. [57]. An introduction into the principles of kernel PCA,
including the definition of the covariance matrix in the feature space, is given
next, followed by an outline of how to compute a kernel PCA model using the
kernel matrix. It is finally shown how to extract the score variables from the
kernel PCA model.
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Introduction to kernel PCA

This technique first maps the original input vectors z onto a high-dimensional
feature space z �→ Φ(z) and then perform the principal component analysis
on Φ(z). Given a set of observations zi ∈ R

N , i =
{

1 2 · · · K }, the mapping
of zi onto a feature space, that is Φ (z) whose dimension is considerably larger
than N , produces the following sample covariance matrix:

SΦΦ =
1

K − 1

K∑
i=1

(Φ (zi)−mΦ) (Φ (zi)−mΦ)T =
1

K − 1
Φ̄ (Z)T Φ̄ (Z) .

(1.57)
Here, mΦ = 1

K Φ (Z)T 1K , where 1K ∈ R
K is a column vector storing

unity elements, is the sample mean in the feature space, and Φ (Z) =[
Φ (z1) Φ (z2) · · · Φ (zK) ]T and Φ̄ (Z) = Φ (Z) − 1

K EKΦ(Z), with EK be-
ing a matrix of ones, are the original and mean centered feature matrices,
respectively.

KPCA now solves the following eigenvector-eigenvalue problem,

SΦΦpi =
1

K − 1
Φ̄ (Z)T Φ̄ (Z)pi = λipi i = 1, 2 · · · N , (1.58)

where λi and pi are the eigenvalue and its associated eigenvector of SΦΦ,
respectively. Given that the explicit mapping formulation of Φ(z) is usually
unknown, it is difficult to extract the eigenvector-eigenvalue decomposition of
SΦΦ directly. However, KPCA overcomes this deficiency as shown below.

Determining a kernel PCA model

Starting from the eigenvector-eigenvalue decomposition of G = Φ̄ (Z) Φ̄ (Z)T ,
which is further defined as the Gram matrix:

Φ̄(Z)Φ̄(Z)T vi = ζivi , (1.59)

where ζi and vi are the eigenvalue and its eigenvector, respectively, carrying
out a pre-multiplication of (1.59) by Φ̄ (Z)T produces:

Φ̄ (Z)T Φ̄ (Z) Φ̄ (Z)T vi = ζiΦ̄ (Z)T vi i = 1 2 · · · N . (1.60)

By comparing (1.60) and (1.58), it now follows that

ζi/(K − 1) and Φ̄(Z)T vi

/∥∥Φ̄(Z)T vi

∥∥
2

are also corresponding eigenvalues and eigenvectors of SΦΦ, that is:

λi = ζi/(K − 1),

pi = Φ̄(Z)T vi

/√
vT

i Φ̄(Z)Φ̄(Z)T vi = Φ̄(Z)T vi

/√
ζi .

(1.61)
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By defining a kernel function ψ (zi, zj) = Φ (zi)
T Φ (zj), the Gram matrix G

can be constructed from a kernel matrix Ψ(Z) ∈ R
K×K whose elements ψij

are ψ (zi, zj),

G = Ψ (Z)− 1
K

Ψ (Z)EK − 1
K

EKΨ (Z) +
1
K2

EKΨ (Z)EK . (1.62)

It is important to note that the calculation of G (i) only requires the kernel
formulation of ψ (zi, zj) and (ii) but no a priori knowledge of the exact map-
ping Φ (z). The most commonly used kernel functions include polynomial,
RBF and Sigmoid kernels [59].

Calculation of the score variables

Assuming that a PCA model has been constructed from the covariance matrix
SΦΦ, that is SΦΦ = PΛPT , incorporating Equation (1.61) gives rise to:

P =
[
p1 p2 · · · pn

]
= Φ̄ (Z)T

[
v1
/√
ζ1

v2
/√
ζ2 · · · vn

/√
ζn

]
. (1.63)

Redefining Φ̄ (Z), as shown in (1.57), and rewriting (1.63) produces:

P =
[
Φ (Z)T − 1

K
Φ (Z)T EN

]
V = Φ (Z)T A , (1.64)

where V =
[
v1
/√
ζ1

v2
/√
ζ2 · · · vn

/√
ζn

]
, A =

[
IK − 1

K EK

]
V with IK be-

ing the identify matrix of dimension K. Utilizing Equation (1.64), the score
variables, stored in the vector t, can now be obtained as follows:

t = PT [Φ (z) −mΦ] = ATΦ (Z)
[
Φ (z)− 1

K
Φ (Z) ,1K

]
(1.65)

which, using the definition of the kernel function ψ (·), can finally be written
as shown below:

t = AT

(
ψ (Z, z)− 1

K
Ψ (Z)1K

)
. (1.66)

Here, ψ (Z, z) is the kernel vector for the new observation z based on the set of
reference observations Z, that isψ (Z, z) =

(
ψ (z1, z) ψ (z2, z) · · · ψ (zK , z)

)T .

1.5 Analysis of Existing Work

This section provides a comparison between each of the proposed nonlinear
approaches in terms of their computational demand and their ability to repre-
sent a generalization of linear PCA. The section finally investigates potential
research areas that have not been addressed and require require further at-
tention.
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1.5.1 Computational Issues

This subsection investigates computationally related issues for principal curves
and manifolds first, followed by the analysis of neural network techniques and
finally the Kernel PCA approach.

Principal curve and manifold approaches

Resulting from the fact that the nearest projection coordinate of each sample
in the curve is searched along the whole line segments, the computational
complexity of the HSPCs algorithm is of order O(n2)[25] which is dominated
by the projection step. The HSPCs algorithm, as well as other algorithms
proposed by [69, 4, 18, 19], may therefore be computationally expensive for
large data sets.

For addressing the computational issue, several strategies are proposed in
subsequently refinements. In reference [8], the PPS algorithm supposes that
the data are generated from a collection of latent nodes in low-dimensional
space, and the computation to determine the projections is achieved by com-
paring the distances among data and the high-dimensional counterparts in
the latent nodes. This results in a considerable reduction in the computational
complexity if the number of the latent nodes is less than that number of obser-
vations. However, the PPS algorithm requires additional O(N2n) operations
(Where n is the dimension of latent space) to compute an orthonormalization.
Hence, this algorithm is difficult to generalize in high-dimensional spaces.

In [73], local principal component analysis in each neighborhood is em-
ployed for searching a local segment. Therefore, the computational complexity
is closely relate to the number of local PCA models. However, it is difficulty
for general data to combine the segments into a principal curve because a
large number of computational steps are involved in this combination.

For the work by Kégl [34, 35], the KPCs algorithm is proposed by combin-
ing the vector quantization with principal curves. Under the assumption that
data have finite second moment, the computational complexity of the KPCs
algorithm is O(n5/3) which is slightly less than that of the HSPCs algorithm.
When allowing to add more than one vertex at a time, the complexity can be
significantly decreased. Furthermore, a speed-up strategy discussed by Kégl
[33] is employed for the assignments of projection indices for the data during
the iterative projection procedure of the ACKPCs algorithms. If δv(j) is the
maximum shift of a vertex vj in the jth optimization step defined by:

δv(j) = max
i=1,··· ,k+1

‖v(j)i − v(j+1)
i ‖,

then after the (j + j1) optimization step, si1 is still the nearest line segment
to x if

d(x, s(j)i1
) ≤ d(x, s(j)i2

)− 2
j+j1∑
l=j

δv(l) . (1.67)
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Further reference to this issue may be found in [33], pp. 66-68. Also, the
stability of the algorithm is enhanced while the complexity is the equivalent
to that of the KPCs algorithm.

Neural network approaches

The discussion in Subsection 4.2 highlighted that neural network approaches
to determine a NLPCA model are difficult to train, particulary the 5 layer
network by Kramer [37]. More precisely, the network complexity increases
considerably if the number of original variables z, N , rises. On the other hand,
an increasing number of observations also contribute to a drastic increase in
the computational cost. Since most of the training algorithms are iterative
in nature and employ techniques based on the backpropagation principle, for
example the Levenberg-Marquardt algorithm for which the Jacobian matrix
is updated using backpropagation, the performance of the identified network
depends on the initial selection for the network weights. More precisely, it may
be difficult to determine a minimum for the associated cost function, that is
the sum of the minimum distances between the original observations and the
reconstructed ones.

The use of the IT network [68] and the approach by Dong and McAvoy [16],
however, provide considerably simpler network topologies that are accordingly
easier to train. Jia et al. [31] argued that the IT network can generically rep-
resent smooth nonlinear functions and raised concern about the technique
by Dong and McAvoy in terms of its flexibility in providing generic nonlin-
ear functions. This concern related to to concept of incorporating a linear
combination of nonlinear function to estimate the nonlinear interrelationships
between the recorded observations. It should be noted, however, that the IT
network structure relies on the condition that an functional injective rela-
tionship exit between the score variables and the original variables, that is
a unique mapping between the scores and the observations exist. Otherwise,
the optimization step to determine the scores from the observations using the
identified IT network may converge to different sets of score values depending
on the initial guess, which is undesirable. In contrast, the technique by Dong
and McAvoy does not suffer from this problem.

Kernel PCA

In comparison to neural network approaches, the computational demand for
a KPCA insignificantly increase for larger values of N , size of the original
variables set z, which follows from (1.59). In contrast, the size of the Gram
matrix increases quadratically with a rise in the number of analyzed obser-
vations, K. However, the application of the numerically stable singular value
decomposition to obtain the eigenvalues and eigenvectors of the Gram matrix
does not present the same computational problems as those reported for the
neural network approaches above.
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1.5.2 Generalization of Linear PCA?

The generalization properties of NLPCA techniques is first investigated for
neural network techniques, followed for principal curve techniques and finally
kernel PCA. Prior to this analysis, however, we revisit the cost function for
determining the kth pair of the score and loading vectors for linear PCA. This
analysis is motivated by the fact that neural network approaches as well as
principal curves and manifolds minimize the residual variances. Reformulating
Equations (1.9) and (1.10) to minimize the residual variance for linear PCA
gives rise to:

ek = z− tkpk , (1.68)

which is equal to:

Jk = E
{
eT

k ek

}
= E

{
(z− tkpk)T (z− tkpk)

}
, (1.69)

and subject to the following constraints

t2k − pT
k zzT pk = 0 pT

k pk − 1 = 0 . (1.70)

The above constraints follow from the fact that an orthogonal projection of
an observation, z, onto a line, defined by pk is given by tk = pT

k z if pk is of
unit length. In a similar fashion to the formulation proposed by Anderson [2]
for determining the PCA loading vectors in (1.11), (1.69) and (1.70) can be
combined to produce:

Jk=argmin
pk

{
E
{
(z−tkpk)T(z−tkpk)−λ(1)

k

(
t2k−pT

k zzT pk

)}−λ(2)
k

(
pT

k pk−1
)}
.

(1.71)
Carrying out the a differentiation of Jk with respect to pk yields:

E
{
2t2kpk − 2tkz + 2λ(1)

k zzT pk

}
− 2λ(2)

k pk = 0 . (1.72)

A pre-multiplication of (1.72) by pT
k now reveals

E

⎧⎪⎨⎪⎩t2k − pT
k zzT pk︸ ︷︷ ︸
=0

+λ(1)
k pT

k zzT pk︸ ︷︷ ︸
=t2k

−λ(2)
k

⎫⎪⎬⎪⎭ = 0 . (1.73)

It follows from Equation (1.73) that

E
{
t2k
}

=
λ

(2)
k

λ
(1)
k

. (1.74)

Substituting (1.74) into Equation (1.72) gives rise to
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λ
(2)
k

λ
(1)
k

pk + E
{
λ

(1)
k zzT pk − zzT pk

}
− λ(2)

k pk = 0 . (1.75)

Utilizing (1.5), the above equation can be simplified to

(
λ

(2)
k − 1

)
SZZpk +

(
λ

(2)
k

λ
(1)
k

− λ(2)
k

)
pk = 0 , (1.76)

and, hence, [
SZZ +

λ
(2)
k

λ
(1)
k

1− λ(1)
k

λ
(2)
k − 1

I

]
pk = [SZZ − λkI]pk = 0 (1.77)

with λk = λ
(2)
k

λ
(1)
k

1−λ
(1)
k

λ
(2)
k −1

. Since Equation (1.77) is identical to Equation (1.14),

maximizing the variance of the score variables produces the same solution as
minimizing the residual variance by orthogonally projecting the observations
onto the kth weight vector. It is interesting to note that a closer analysis of

Equation (1.74) yields that E
{
t2k
}

= λ
(2)
k

λ
(1)
k

= λk, according to Equation (1.9),

and hence, λ(1)
k = 2

1+λk
and λ(2)

k = 2 λk

1+λk
, which implies that λ(2)

k 	= 1 and
λ
(2)
k

λ
(1)
k

−λ
(2)
k

λ
(2)
k −1

= λk > 0.

More precisely, minimizing residual variance of the projected observations
and maximizing the score variance are equivalent formulations. This implies
that determining a NLPCA model using a minimizing of the residual variance
would produce an equivalent linear model if the nonlinear functions are simpli-
fied to be linear. This is clearly the case for principal curves and manifolds as
well as the neural network approaches. In contrast, the kernel PCA approach
computes a linear PCA analysis using nonlinearly transformed variables and
directly addresses the variance maximization and residual minimization as per
the discussion above.

Neural network approaches

It should also be noted, however, that residual variance minimization alone
is a necessary but not a sufficient condition. This follows from the analysis
of the ANN topology proposed by Kramer [37] in Figure 1.6. The nonlinear
scores, which can extracted from the bottleneck layer, do not adhere to the
fundamental principle that the first component is associated with the largest
variance, the second component with the second largest variance etc. However,
utilizing the sequential training of the ANN, detailed in Figure 1.7, provides
an improvement, such that the first nonlinear score variables minimizes the
residual variance e1 = z − ẑ and so on. However, given that the network
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weights and bias terms are not subject to a length restriction as it is the case
for linear PCA, this approach does also not guarantee that the first score
variables possesses a maximum variance.

The same holds true for the IT network algorithm by Tan and Mavrovouni-
otis [68], the computed score variables do not adhere to the principal that the
first one has a maximum variance. Although score variables may not be ex-
tracted that maximize a variance criterion, the computed scores can certainly
be useful for feature extraction [15, 62]. Another problem of the technique by
Tan and Mavrovouniotis is its application as a condition monitoring tool. As-
suming the data describe a fault condition the score variables are obtained by
an optimization routine to best reconstruct the fault data. It therefore follows
that certain fault conditions may not be noticed. This can be illustrated using
the following linear example

zf = z + f =⇒ P (z0 + f) , (1.78)

where f represents a step type fault superimposed on the original variable set
z to produce the recorded fault variables zf . Separating the above equation
produces by incorporating the statistical first order moment:

E {z0 + f0}+ P−T
0 PT

1 E {z1 + f1} = P−T
0 t , (1.79)

where the subscript −T is the transpose of an inverse matrix, respectively,
PT =

[
PT

0 PT
1

]
, zT =

(
z0 z1

)
, fT =

(
f0 f1

)
, P0 ∈ R

n×n, P1 ∈ R
N−n×n,

z0 and f0 ∈ R
N , and z1 and f1 ∈ R

N−n. Since the expectation of the original
variables are zero, Equation (1.79) becomes:

f0 + P−T
0 PT

1 f1 = 0 (1.80)

which implies that if the fault vector f is such that P−T
0 PT

1 f1 = −f0 the fault
condition cannot be detected using the computed score variables. However,
under the assumption that the fault condition is a step type fault but the
variance of z remains unchanged, the first order moment of the residuals
would clearly be affected since

E {e} = E {z + f −Pt} = f . (1.81)

However, this might not hold true for an NLPCA model, where the PCA
model plane, constructed from the retained loading vectors, becomes a surface.
In this circumstances, it is possible to construct incipient fault conditions
that remain unnoticed given that the optimization routine determines scores
from the faulty observations and the IT network that minimize the mismatch
between the recorded and predicted observations.

Principal curves and manifolds

By virtue of its construction, a principle curve for a two variable example can
geometrically provide an NLPCA model that reduces to linear PCA if the
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variable interrelationship is linear. A principal manifold, on the other hand,
suffers from the same problem as neural network approaches, i.e. it is difficult
to extract score variables that have the same intrinsic maximization properties
as those determined by linear PCA.

Kernel PCA

Since a SVD is one mathematical tool to determine a PCA decomposition
from a given data covariance or correlation matrix, the application of an SVD
to the Gram matrix, to produce the score variables, will inherit the properties
of linear PCA. In this respect, if the nonlinear transformation of the original
variables is replaced by a linear identify mapping, kernel PCA reduces to
linear PCA and therefore constitutes a true nonlinear extension to PCA.

1.5.3 Roadmap for Future Developments (Basics and Beyond)

Here, we discuss a number of issues that have only sporadically been addressed
in the research literature and need, in our opinion, further attention by the
research community.

Dynamic NLPCA extensions

Issues that have only been sporadically addressed are dynamic extensions of
NLPCA techniques, with a notable exception being [13]. The additional com-
putational complexity in the light of dynamic extensions mainly contributed
to the lack research work being proposed thus far. However, the work in refer-
ence [13] advocates that the use of kernel PCA is a preferred technique. This
confirms our analysis in the previous subsection, which raised concern about
the computational demanding for training neural network based NLPCA ap-
proaches and the fact that the scores, determined by a principal manifold, do
not adhere to the principal of maximum variance.

Adaptive NLPCA modeling

Adaptive modeling of nonlinear variable interrelationships is another aspects
that requires a considerable research effort to develop mature, robust and
efficient algorithms. This is of particular concern for process monitoring ap-
plications of systems that are time-varying and nonlinear in nature.

Parameterization of kernel functions

Although the recently proposed kernel PCA appears to be computationally
efficient and maintains the properties of linear PCA, a fundamental issue that
has not received considerable attention is the parameterization of the kernel
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functions ψ (·). A general framework as to which kernel function is to be
preferred for certain data pattern has not been introduced. These issues will
certainly impact the performance of the kernel PCA model and need to be
addressed by future research.

Extension of kernel techniques to other uniblock techniques

The extension of kernel methods to be produce nonlinear extensions other
approaches that rely on the analysis of a single variable set, e.g. fisher’s dis-
criminant analysis and independent component analysis has also not received
much attention in the research literature and would be an area of consider-
able interest for pattern, face and speech recognition as well as general feature
extraction problems.

Nonlinear subspace identification

Subspace identification has been extensively studied over the past decade.
This technique enables the identification of a linear state space model using
input/output observations of the process. Nonlinear extensions of subspace
identification have been proposed in references [76, 74, 43, 23, 41] mainly em-
ploy Hammerstein or Wiener models to represent a nonlinear steady state
transformation of the process outputs. As this is restrictive, kernel PCA may
be considered to determine nonlinear filters to efficiently determine this non-
linear transformation.

Variable contributions

Finally, it may be of importance to determine how an individual variable con-
tributes to the determination of a nonlinear score variable. This issue features
in process monitoring applications, where the variable contribution provides
vital information for determining the root cause of abnormal process behav-
iour. Another area of interest is feature extraction, where a certain set of
variables is responsible for a specific property observed.

1.6 Concluding Summary

This article has reviewed and critically analyzed work on nonlinear princi-
pal component analysis. The revision showed that a nonlinearity test can be
applied to determine whether a conceptually and computationally more de-
manding NLPCA model is required. The article then showed that 3 principal
directions for developing NLPCA algorithms have emerged. The first of these
relate to principal curves that were initially proposed for variable sets in-
cluding two variables. Extensions of principal curves are principal manifolds,
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which inherit the same underlying theory. Neural network implementation
represent the second research direction for implementing NLPCA. These de-
termine nonlinear score variables either by the reduced bottleneck layer of an
autoassociative neural network or by a reduced input layer whose inputs are
determined by an input-training network or a predetermined principal curve.
Finally, the third research direction is the recently proposed kernel PCA ap-
proach.

The analysis into (i) computational issues and (ii) their generalization of
linear PCA yielded the following. Principal curves and manifolds are con-
ceptually simple but computationally demanding for larger data and variable
sets. Furthermore, whilst principal curves do produce a maximum covariance
of the score variables in a similar fashion to linear PCA if only two variables
are analyzed, the score obtained by a principal manifold for high-dimensional
problems do not adhere to this maximization principle. NLPCA implementa-
tions based on autoassociative neural networks are cumbersome as a result of
excessive computation for training the unknown network weights. Although
the computationally less demanding IT networks and the incorporation of
principal curves considerably reduce network complexity, neural network ap-
proaches produce nonlinear score variables that are not obtained with respect
to a maximum variance criterion either. Consequently, principal manifolds
and neural network approaches have been utilized in pattern, face and speech
recognition, as well as feature extraction for example, they violate one fun-
damental principal of linear PCA, namely that of maximizing the variance of
the score variables. Kernel PCA, on the other hand, apply a SVD, or a PCA
analysis, on a larger set of nonlinearly transformed variables. Hence, the score
variables are obtained such that the first one possesses a maximum variance,
the second one the second largest variance and so on.

The paper finally outlines research areas concerning NLPCA developments
and applications that require further research efforts. These include dynamic
NLPCA extensions, adaptive NLPCA modelling, the parameterization of ker-
nel functions to construct a kernel PCA model, extensions of the kernel ap-
proach to (i) other uniblock techniques such as FDI and ICA and (ii) nonlinear
subspace identification and finally the evaluation of variable contributions to
individual nonlinear score variables. These points have either only received
sporadic attention or have not been investigated to the best of the authors
knowledge.
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