
Chapter 1

Introduction

The subjects of this thesis are unsupervised learning in general, and principal curves in particular. It

is not intended to be a general survey of unsupervised learning techniques, rather a biased overview

of a carefully selected collection of models and methods from the point of view of principal curves.

It can also be considered as a case study of bringing a new baby into the family of unsupervised

learning techniques, describing her genetic relationship with her ancestors and siblings, and indi-

cating her potential prospects in the future by characterizing her talents and weaknesses. We start

the introduction by portraying the family.

1.1 Unsupervised Learning

It is a common practice in general discussions on machine learning to use the dichotomy of super-

vised and unsupervised learning to categorize learning methods. From a conceptual point of view,

supervised learning is substantially simpler than unsupervised learning. In supervised learning, the

task is to guess the value of a random variable Y based on the knowledge of a d-dimensional ran-

dom vector X. The vector X is usually a collection of numerical observations such as a sequence

of bits representing the pixels of an image, and Y represents an unknown nature of the observation

such as the numerical digit depicted by the image. If Y is discrete, the problem of guessing Y is

called classification. Predicting Y means finding a function f : R
d → R such that f (X) is close to Y

where “closeness” is measured by a non-negative cost function q( f (X),Y ). The task is then to find

a function that minimizes the expected cost, that is,

f ∗ = argmin
f

E[q( f (X),Y )].

In practice, the joint distribution of X and Y is usually unknown, so finding f ∗ analytically is impos-

sible. Instead, we are given Xn = {(X1,Y1), . . . ,(Xn,Yn)} ⊂ R
d ×R, a sample of n independent and
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identical copies of the pair (X,Y ), and the task is to find a function f̂n(X) = f̂ (X,Xn) that predicts

Y as well as possible based on the data set Xn. The problem is well-defined in the sense that the

performance of a predictor f̂n can be quantified by its test error, the average cost measured on an

independent test set X ′
m = {(X′

1,Y
′
1), . . . ,(X

′
m,Y ′

m)} defined by

q( f̂ ) =
1
m

m

∑
i=1

q( f̂ (X′
i),Y

′
i ).

As a consequence, the best of two given predictors f̂1 and f̂2 can be chosen objectively by comparing

q( f̂1) and q( f̂2) on a sufficiently large test sample.

Unfortunately, this is not the case in unsupervised learning. In a certain sense, an unsupervised

learner can be considered as a supervised learner where the label Y of the observation X is the

observation itself. In other words, the task is to find a function f : R
d → R

d such that f (X) predicts

X as well as possible. Of course, without restricting the set of admissible predictors, this is a trivial

problem. The source of such restrictions is the other objective of unsupervised learning, namely,

to represent the mapping f (X) of X with as few parameters as possible. These two competing

objectives of unsupervised learning are called information preservation and dimension reduction.

The trade-off between the two competing objectives depends on the particular problem. What makes

unsupervised learning ill-defined in certain applications is that the trade-off is often not specified in

the sense that it is possible to find two admissible functions f̂1 and f̂2 such that f̂1 predicts X better

than f̂2, f̂2 compresses X more efficiently than f̂1, and there is no objective criteria to decide which

function performs better overall.

(a) (b)

Figure 1: An ill-defined unsupervised learning problem. Which curve describes the data better, (a) a short
curve that is “far” from the data, or a (b) long curve that follows the data more closely?

To clarify this ambiguity intrinsic to the unsupervised learning model, consider the simple ex-

ample depicted by Figure 1. Both images show the same data set and two smooth curves intended
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to represent the data set in a concise manner. Using the terminology introduced above, f is a func-

tion that maps every point in the plane to its projection point on the representing curve. Hence, in

this case, the first objective of unsupervised learning means that the representing curve should go

through the data cloud as close to the data points, on average, as possible. Obviously, if this is the

only objective, then the solution is a “snake” that visits all the data points. For restricting the set

of admissible curves, several regularity conditions can be considered. For instance, one can require

that the curve be as smooth as possible, or one can enforce a length limit on the representing curve.

If the length limit is hard, i.e., the length of the curve must be less or equal to a predefined threshold,

the problem is well-defined in the sense that the curve that minimizes the average distance from the

data cloud exists. In practice, however, it is hard to prescribe such a hard limit. Instead, the length

constraint is specified as a soft limit, and the informal objective can be formulated as “find a curve

which is as short as possible and which goes through the data as close to the data points, on average,

as possible”. This “soft” objective clearly makes the problem ill-defined in the sense that without

another principle that decides the actual mixing proportion of the two competing objectives, one

cannot choose the best of two given representing curve. In our example, we need an outside source

that decides between a shorter curve that is farther form the data (Figure 1(a)), or a longer curve that

follows the data more closely (Figure 1(b)).

The reason of placing this discussion even before the formal statement of the problem is that it

determines our philosophy in developing general purpose unsupervised methods. Since the general

problem of unsupervised learning is ill-defined, “turnkey” algorithms cannot be designed. Every

unsupervised learning algorithm must come with a set of parameters that can be used to adjust the

algorithm to a particular problem or according to a particular principle. From the point of view of

the engineer who uses the algorithm, the number of such parameters should be as small as possible,

and their effect on the behavior of the algorithm should be as clear as possible.

The intrinsic ambiguity of the unsupervised learning model also limits the possibilities of the

theoretical analysis. On the one hand, without imposing some restrictive conditions on the model, it

is hard to obtain any meaningful theoretical results. On the other hand, to allow theoretical analysis,

these conditions may be so that the model does not exactly refer to any specific practical problem.

Nevertheless, it is useful to obtain such results to deepen our insight to the model and also to inspire

the development of theoretically well founded practical methods.

In the rest of the section we describe the formal model of unsupervised learning, outline some

of the application areas, and briefly review the possible areas of theoretical analysis.
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1.1.1 The Formal Model

For the formal description of the problem of unsupervised learning, let D be the domain of the data

and let F be the set of functions of the form f : D → R
d . For each f ∈ F we call the range of f the

manifold generated by f , i.e.,

M f = f (D) = { f (x) : x ∈ D}.

The set of all manifolds generated by all functions in F is denoted by M, i.e., we define

M = {M f : f ∈ F }.

To measure the distortion caused by the mapping of x∈D into M f by the function f , we assume that

a distance ∆(M ,x) is defined for every M ∈ M and x ∈ D. Now consider a random vector X ∈ D.

The distance function or the loss of a manifold M is defined as the expected distance between X

and M , that is,

∆(M ) = E
[

∆(X,M )
]

.

The general objective of unsupervised learning is to find a manifold M such that ∆(M ) is small

and M has a low complexity relative to the complexity of D. The first objective guarantees that the

information stored in X is preserved by the projection whereas the second objective means that M

is an efficient representation of X.

1.1.2 Areas Of Applications

The general model of unsupervised learning has been defined, analyzed, and applied in many dif-

ferent areas under different names. Some of the most important application areas are the following.

• Clustering or taxonomy in multivariate data analysis [Har75, JD88]. The task is to find a

usually hierarchical categorization of entities (for example, species of animals or plants) on

the basis of their similarities. It is similar to supervised classification in the sense in that

both methods aim to categorize X into a finite number of classes. The difference is that in a

supervised model, the classes are predefined while here the categories are unknown so they

must be created during the process.

• Feature extraction in pattern recognition [DK82, DGL96]. The objective is to find a relatively

small number of features that represent X well in the sense that they preserve most of the vari-

ance of X. Feature extraction is usually used as a pre-processing step before classification to

accelerate the learning by reducing the dimension of the input data. Preserving the informa-

tion stored in X is important to keep the Bayes error (the error that represents the confusion

inherently present in the problem) low.
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• Lossy data compression in information theory [GG92]. The task is to find an efficient repre-

sentation of X for transmitting it through a communication channel or storing it on a storage

device. The more efficient the compression, the less time is needed for transmission. Keeping

the expected distortion low means that the recovered data at the receiving end resembles the

original.

• Noise reduction in signal processing [VT68]. It is usually assumed here that X was generated

by a latent additive model,

X = M+ ε, (1)

where M is a random vector concentrated to the manifold M , and ε is an independent multi-

variate random noise with zero mean. The task is to recover M based on the noisy observation

X.

• Latent-variable models [Eve84, Mac95, BSW96]. It is presumed that X, although sitting in a

high-dimensional space, has a low intrinsic dimension. This is a special case of (1) when the

additive noise is zero or nearly zero. In practice, M is usually highly nonlinear otherwise the

problem is trivial. When M is two-dimensional, using M for representing X can serve as an

effective visualization tool [Sam69, KW78, BT98].

• Factor analysis [Eve84, Bar87] is another special case of (1) when M is assumed to be a

Gaussian random variable concentrated on a linear subspace of R
d , and ε is a Gaussian noise

with diagonal covariance matrix.

1.1.3 The Simplest Case

In simple unsupervised models the set of admissible functions F or the corresponding set of mani-

folds M is given independently of the distribution of X. F is a set of simple functions in the sense

that any f ∈ F or the corresponding M f ∈ M can be represented by a few parameters. It is also

assumed that any two manifolds in M have the same intrinsic dimension, so the only objective in

this model is to minimize ∆(M ) over M, i.e., to find

M ∗ = argmin
M ∈M

E
[

∆(X,M )
]

.

Similarly to supervised learning, the distribution of X is usually unknown in practice. Instead, we

are given Xn = {X1, . . . ,Xn} ⊂ R
d , a sample of n independent and identical copies of X, and the

task is to find a function f̂n(X) = f̂ (X,Xn) based on the data set Xn that minimizes the distance

function. Since the the distribution of X is unknown, we estimate ∆(M ) by the empirical distance
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function or empirical loss of M defined by

∆n(M ) =
1
n

n

∑
i=1

∆(Xi,M ). (2)

The problem is well-defined in the sense that the performance of a projection function f̂n can be

quantified by the empirical loss of f̂n measured on an independent test set X ′
m = {X′

1, . . . ,X
′
m}. As

a consequence, the best of two given projection functions f̂1 and f̂2 can be chosen objectively by

comparing ∆n(M f̂1
) and ∆n(M f̂2

) on a sufficiently large test sample.

In the theoretical analysis of a particular unsupervised model, the first question to ask is

“Does M ∗ exist in general?” (Q1)

Clearly, if M ∗ does not exist, or it only exists under severe restrictions, the theoretical analysis

of any estimation scheme based on finite data is difficult. If M ∗ does exist, the next two obvious

questions are

“Is M ∗ unique?” (Q2)

and

“Can we show a concrete example of M ∗?” (Q3)

Interestingly, even for some of the simplest unsupervised learning models, the answer to Question 3

is no for even the most common multivariate densities. Note, however, that this fact does not make

the theoretical analysis of an estimating scheme impossible, and does not make it unreasonable to

aim for the optimal loss ∆(M ∗) in practical estimator design.

The most widely used principle in designing nonparametric estimation schemes is the empirical

loss minimization principle. In unsupervised learning this means that based on the data set Xn, we

pick the manifold M ∗
n ∈ M that minimizes the empirical distance function (2), i.e., we choose

M ∗
n = argmin

M ∈M

1
n

n

∑
i=1

∆(Xi,M ). (3)

The first property of M ∗
n to analyze is its consistency, i.e. the first question is

“Is lim
n→∞

∆(M ∗
n ) = ∆(M ∗) in probability?” (Q4)

Consistency guarantees that by increasing the amount of data, the expected loss of M ∗
n gets arbi-

trarily close to the best achievable loss. Once consistency is established, the next natural question

is

“What is the convergence rate of ∆(M ∗
n ) → ∆(M ∗)?” (Q5)

6



A good convergence rate is important to establish upper bounds for the probability of error for a

given data size. From a practical point of view, the next question is

“Is there an efficient algorithm to find M ∗
n given a data set Xn = {x1, . . . ,xn}?” (Q6)

To illustrate this general analysis scheme, we turn to the simplest possible unsupervised learning

method. Let the admissible manifolds M be arbitrary points of the d-dimensional space (M = R
d),

and assume that ∆(M ,X) is the squared Euclidean distance of M and X, i.e.,

∆(M ,X) = ‖M −X‖2.

To find M ∗
n , we have to minimize E[∆(M ,X)] over all M ∈ R

d . It is a well known fact that

E[‖M −X‖2] is minimized by E[X] so we have

M ∗ = E[X].

The answer to all the first three questions is, therefore, yes. According to the empirical loss mini-

mization principle, given Xn = {X1, . . . ,Xn} ⊂ R
d , a sample of n independent and identical copies

of X, the estimator M ∗
n ∈ M is the vector that minimizes the empirical loss, i.e.,

M ∗
n = argmin

M ∈M

1
n

n

∑
i=1

‖M −Xi‖2.

It is easy to see that the minimizing vector is the sample mean or center of gravity of Xn, i.e.,

M ∗
n =

1
n

n

∑
i=1

Xi.

Consistency of M ∗
n follows from the law of large numbers. For the convergence rate note that, if X

has finite second moments,

∆(M ∗
n )−∆(M ∗) = E

[

‖X−M ∗
n ‖2]−E

[

‖X−M ∗‖2]

=

(

1+
1
n

)

σ2
X −σ2

X

=
1
n

σ2
X (4)

where σ2
X is the sum of the variances of the components of X. Hence, if X has finite second mo-

ments, the rate of convergence is 1
n .

Simple unsupervised learning methods of this type are Vector Quantization (admissible mani-

folds are finite sets of d-dimensional vectors), and Principal Component Analysis (admissible man-

ifolds are linear subspaces of R
d). We analyze these methods in Chapter 2. Theoretical analysis of

principal curves with a length constraint in Chapter 4 also follows these lines.
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1.1.4 A More Realistic Model

Although amenable for theoretical analysis, simple methods described above are often impractical.

In one group of methods the strict restrictions imposed on the admissible manifolds result in that

manifolds of M are not able to describe highly nonlinear data. Unfortunately, there is a problem

even if admissible manifolds are rich enough to capture complex data. The problem is that in the

simple model described above, the set of admissible manifolds must be specified independently of

the particular application. Given a set of manifolds M, it is possible that in a certain application M

is too rich, while in another problem manifolds in M are too simple to capture the data. This problem

can be solved by allowing the practitioner to choose from several classes of manifolds of different

complexity. Assume, therefore, that a nested sequence of manifold model classes M
(1) ⊂M

(2) ⊂ . . .

is given, such that for a given j = 1, . . ., the intrinsic dimensions of all manifolds in M
( j) are the

same. Let c j be a real number that measures the intrinsic dimension of manifolds in M
( j), such that

c1 < c2 < .. .. We can also say that c j measures the complexity of M
( j). To define the theoretically

best manifold, one can follow the following strategy. Find the optimal manifold in each class to

obtain the sequence of manifolds M (1)∗,M (2)∗, . . .. Then using a principle corresponding to the

particular problem, select the manifold M ( j∗)∗ from the j∗th model class that represents the data the

best1.

The same questions can be asked in this complex model as in the simple model described in

the previous section. The existence of M ( j∗)∗ depends on two conditions. First, optimal manifolds

M (1)∗,M (2)∗, . . . must exist for all model classes. Second, the principle that governs the selection

of M ( j∗)∗ (by choosing the model class j∗) must be well-defined in the sense that it gives a total

order over the set of optimal manifolds M (1)∗,M (2)∗, . . ..

Estimating M ( j∗)∗ can be done by combining the empirical loss minimization principle with

the model selection technique described above. Accordingly, one can choose the empirically best

manifold for each model class to obtain the sequence M (1)
n

∗
,M (2)

n
∗
, . . ., and then use the principle

corresponding to the particular problem to select the best manifold M ( j∗n)
n

∗
. Consistency analysis of

the model is usually rather hard as one has to not only establish consistency in the model classes,

but also to show that when the data size is large, the model class j∗ selected in the theoretical model

is the same as the model class j∗n selected in the estimation.

To further complicate the situation, it is usually impractical to follow this scheme since it re-

quires to find the empirically best manifold in several model classes. Instead, practical algorithms

usually optimize the two criteria at the same time. In most of the algorithms, although not in all of

1Note that this approach resembles the method of complexity regularization [DGL96] or structural risk minimization
[Vap98] used in supervised learning. There is a fundamental difference, however. While in supervised learning, complex-
ity regularization is used in the estimation phase, here, we use it to define the theoretically best manifold. The reason,
again, is that the general unsupervised learning problem is inherently ill-posed.
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them, the two criteria are combined in one “energy function” of the form

Gn(M ) = ∆n(M )+λP(M )

where ∆n(M ) is the empirical distance function of M , as usual, P(M ) is a penalty or regularizer

term which penalizes the complexity of the manifold, and λ is a penalty coefficient that determines

the trade-off between the accuracy of the approximation and the smoothness of the manifold. The

algorithm proceeds by minimizing Gn(M ) over all admissible manifolds. In Chapter 3, we present

several methods that follow this scheme.

1.2 Principal Curves

The main subject of this thesis is the analysis and applications of principal curves. Principal curves

were originally defined by Hastie [Has84] and Hastie and Stuetzle [HS89] (hereafter HS) to formally

capture the notion of a smooth curve passing through the “middle” of a d-dimensional probability

distribution or data cloud (to form an intuitive image, see Figure 1 on page 2). The original HS def-

inition of principal curves is based on the concept of self-consistency. Intuitively, self-consistency

means that each point of the curve is the average of all points that project there. Based on the self-

consistency property, HS developed a theoretical and a practical algorithm for constructing principal

curves of distributions and data sets, respectively.

The field has been very active since Hastie and Stuetzle’s groundbreaking work. Numerous al-

ternative definitions and methods for estimating principal curves have been proposed, and principal

curves were further analyzed and compared with other unsupervised learning techniques. Several

applications in various areas including image analysis, feature extraction, and speech processing

demonstrated that principal curves are not only of theoretical interest, but they also have a legiti-

mate place in the family of practical unsupervised learning techniques.

Although the concept of principal curves as considered by HS has several appealing charac-

teristics, complete theoretical analysis of the model seems to be rather hard. This motivated us

to redefine principal curves in a manner that allowed us to carry out extensive theoretical analysis

while preserving the informal notion of principal curves. Our first contribution to the area is, hence,

a new theoretical model that can be analyzed along the lines of the general unsupervised learning

model described in the previous section. Our main result here is the first known consistency proof

of a principal curve estimation scheme.

The theoretical model proved to be too restrictive to be practical. However, it inspired the

design of a new practical algorithm to estimate principal curves based on data. The polygonal

line algorithm, which compares favorably with previous methods both in terms of performance and

computational complexity, is our second contribution to the area of principal curves. To complete
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the picture, in the last part of the thesis we consider an application of the polygonal line algorithm to

hand-written character skeletonization. We note here that parts of our results have been previously

published in [KKLZ], [KKLZ99], and [KKLZ00].

1.3 Outline of the Thesis

Most of the unsupervised learning algorithms originate from one of the two basic unsupervised

learning models, vector quantization and principal component analysis. In Chapter 2 we describe

these two models. In Chapter 3, we present the formal definition of the HS principal curves, describe

the subsequent extensions and analysis, and discuss the relationship between principal curves and

other unsupervised learning techniques.

An unfortunate property of the HS definition is that, in general, it is not known if principal

curves exist for a given distribution. This also makes it difficult to theoretically analyze any esti-

mation scheme for principal curves. In Chapter 4 we propose a new definition of principal curves

and prove the existence of principal curves in the new sense for a large class of distributions. Based

on the new definition, we consider the problem of learning principal curves based on training data.

We introduce and analyze an estimation scheme using a common model in statistical learning the-

ory. The main result of this chapter is a proof of consistency and analysis of rate of convergence

following the general scheme described in Section 1.1.

Although amenable to analysis, our theoretical algorithm is computationally burdensome for

implementation. In Chapter 5 we develop a suboptimal algorithm for learning principal curves. The

polygonal line algorithm produces piecewise linear approximations to the principal curve, just as

the theoretical method does, but global optimization is replaced by a less complex gradient-based

method. We give simulation results and compare our algorithm with previous work. In general,

on examples considered by HS, the performance of the new algorithm is comparable with the HS

algorithm while it proves to be more robust to changes in the data generating model.

Chapter 6 starts with an overview of existing principal curve applications. The main subject of

this chapter is an application of an extended version of the principal curve algorithm to hand-written

character skeletonization. The development of the method was inspired by the apparent similarity

between the definition of principal curves and the medial axis of a character. A principal curve is

a smooth curve that goes through the “middle” of a data set, whereas the medial axis is a set of

smooth curves that go equidistantly from the contours of a character. Since the medial axis can be

a set of connected curves rather then only one curve, in Chapter 6 we extend the polygonal line

algorithm to find a principal graph of a data set. The extended algorithm also contains two elements

specific to the task of skeletonization, an initialization method to capture the approximate topology

of the character, and a collection of restructuring operations to improve the structural quality of the
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skeleton produced by the initialization method. Test results on isolated hand-written digits indicate

that the algorithm finds a smooth medial axis of the great majority of a wide variety of character

templates. Experiments with images of continuous handwriting demonstrate that the skeleton graph

produced by the algorithm can be used for representing hand-written text efficiently.
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