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Summary. Microarrays are being currently used for the expression levels of thou-
sands of genes simultaneously. They present new analytical challenges because they
have a very high input dimension and a very low sample size. It is highly com-
plex to analyse multi-dimensional data with complex geometry and to identify low-
dimensional “principal objects” that relate to the optimal projection while losing the
least amount of information. Several methods have been proposed for dimensionality
reduction of microarray data. Some of these methods include principal component
analysis and principal manifolds. This article presents a comparison study of the
performance of the linear principal component analysis and the non linear local tan-
gent space alignment principal manifold methods on such a problem. Two microarray
data sets will be used in this study. A classification model will be created using fully
dimensional and dimensionality reduced data sets. To measure the amount of infor-
mation lost with the two dimensionality reduction methods, the level of performance
of each of the methods will be measured in terms of level of generalisation obtained
by the classification models on previously unseen data sets. These results will be
compared with the ones obtained using the fully dimensional data sets.

Key words: Microarray data; Principal Manifolds; Principal Component
Analysis; Local Tangent Space Alignment; Linear Separability; Neural Net-
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13.1 Introduction

Microarray data is arrived at by using a high-throughput experimental tech-
nology in molecular biology. This data is used for parallel analysis of genes
which may be involved in a particular disease. This high dimensional data is
characterised by a very large variable/sample ratio. Typically, they contain a
large number (up to tens of thousands) of genes, each expressed as a number.
The number of samples, for each of these genes is relatively small (several
tens). The high dimensionality of this data has two main consequences. On
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the one hand, it makes its analysis challenging. On the other hand, intuitively,
it might increase the likelihood that the data will be linearly separable.

The problem of high dimensionality can be approached with the use of di-
mensionality reduction methods. Principal component analysis and principal
manifolds are commonly used methods for the analysis of high dimensional
data. Principal manifolds were introduced by Hastie and Stueltze in 1989
as lines or surfaces passing through the middle of the data distribution [8].
This intuitive definition was supported by the mathematical notion of self-
consistency: every point of the principal manifold is a conditional mean of all
points that are projected into this point. In the case of datasets only one or
zero data points are projected in a typical point of the principal manifold,
thus, one has to introduce smoothers that become an essential part of the
principal manifold construction algorithms.

One important application of principal manifolds is dimension reduction.
In this field they compete with multidimensional scaling methods and the re-
cently introduced advanced algorithms of dimension reduction, such as locally
linear embedding (LLE) [12] and ISOMAP [19] algorithms. The difference be-
tween the two approaches is that the later ones seek new point coordinates
directly and do not use any intermediate geometrical objects. This has several
advantages, in particular that a) there is a unique solution to the problem (the
methods are not iterative in their nature, there is no problem of grid initiali-
sation) and b) there is no problem of choosing a good way to project points
onto a non-linear manifold. This paper will use the principal manifold non-
linear dimension reduction algorithm based on local tangent space alignment
introduced in [23]. This method has been previously used to reduce the dimen-
sionality of microarray data with good results [20]. The local tangent space
alignment is a novel and interesting method which is available as a ready to
go Matlab tool box [10] that has already been tested and verified.

Other work related to the analysis of Microarray data using dimensionality
reduction techniques include [15], [11] and [21]. In [15] a semi-parametric
approach is used to produce generalised linear models reducing the dimension,
[11] uses graph theoretical methods to aid the search for models of reduced
dimension and [21] uses discriminant partial least squares to provide models
with more explanation of the response variables than might arise from the
standard PCA method.

It is important to analyze the amount of information that is lost by the
dimensionality reduction methods. This is why this article proposes the de-
velopment of linear classifiers, using the fully dimensional and dimensionally
reduced data sets, as a way to measure and compare the effects on the data
caused by reducing the dimensionality. In the case of linearly separable data
sets, several methods can be used to provide a separating hyperplane [3, 18].
When the sets are not linearly separable, a linear neural network such as the
Recursive Deterministic Perceptron [5, 16, 17] or a Backpropagation Neural
Network [13, 14] can be used.
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In this study, two microarray data sets are used. The first data set is
classified into three classification criteria. These include: five types of breast
cancer type, positive or negative Estrogen-Receptor, and aggressive or non
aggressive cancer. The second data set is classified into three types of bladder
cancer.

This paper is divided into five sections. Some background information
about dimension reduction and about the notion of linear separability are
given in section two. This includes the introduction of a linear and a nonlinear
dimensionality reduction methods, Principal Component Analysis and Local
Tangent Space Alignment respectively. In section three, the procedure used to
compare the two dimensionality reduction methods is presented with the use
of two microarray data sets. Section four presents some results and discussion.
A summary and some conclusions are presented in section five.

13.2 Background

In this section, some of the standard notions used throughout this chapter are
introduced, together with some definitions and properties.

13.2.1 Microarray Data

In biological and medical research, DNA microarray technology is widely used
to study gene expression in cells for example in the diagnosis of diseases in-
cluding cancer. Therefore, this technology is a very important and widely used
method in research and diagnosis. Unfortunately, the data produced by this
method is highly dimensional. High dimensionality could mean tens or tens
of thousands of dimensions, depending on the circumstances and experiment
setup on which this data is produced. In this study, two microarray data sets,
provided at the first workshop in principal manifolds1 held in Leicester in
2006, were used. The first data set [22], here after referred to as D1, was ini-
tially used in breast cancer research to identify patterns of breast cancer gene
expressions that could be used to predict the patients disease progression.
The data set consists of 17816 gene expressions. As a standard procedure,
the data is preprocessed in such a way that the absolute average expression
level is zero. This is done because only the difference in expression between
samples, as opposed to the overall gene expression, contains useful biological
meaning . This data set contains a total of 286 samples which correspond to
the number of patients from which the samples were taken.

The second data set used in this study [6], here after referred to as data
set D2, was originally used in bladder cancer research. The data set consists
of 3036 gene expressions, also preprocessed to have zero mean as in the case
of the D1 data set. The number of samples in this data set is 40.

1 http://www.ihes.fr/∼zinovyev/princmanif2006/
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One of the features of the data sets is that their dimensionality is much
higher than the sample size. This makes the analysis extremely difficult if no
dimensionality reduction method is applied beforehand. Therefore, this kind
of data is mostly reduced into a denser representation, keeping only the “most
important” aspects of the data. The number of available methods that can
be used for this reduction is growing, especially because there is no “correct”
solution possible due to the fact that some information is always lost in the
process.

13.2.2 Methods for Dimension Reduction

Several methods for the analysis of high dimensional data have been proposed
including principal components analysis (linear) and principal manifolds (non
linear). In this study, the level of performance of the principal component
analysis (PCA) and the local tangent space alignment (LTSA) non linear
principal manifold methods is studied for dimensionality reduction of high
dimensional microarray data.

Principal Component Analysis

The PCA dimensionality reduction method [9, 7] is a linear dimensionality
reduction method. It works by projecting a number of correlated variables
into a (smaller) number of uncorrelated variables called principal components.
The first principal component accounts for as much of the variability in the
data as possible, and each succeeding component accounts for as much of
the remaining variability as possible. The algorithm solves for the eigenvalues
and eigenvectors of a square symmetric matrix with sums of squares and cross
products. The eigenvector associated with the largest eigenvalue has the same
direction as the first principal component. The eigenvector associated with
the second largest eigenvalue determines the direction of the second principal
component. The sum of the eigenvalues equals the trace of the square matrix
and the maximum number of eigenvectors equals the number of rows (or
columns) of this matrix.

Local Tangent Space Alignment

The Local Tangent Space Alignment algorithm was introduced in [23]. The
LTSA is a nonlinear dimensionality reduction method that aims to find a
global coordinate system within a low dimensional space that best charac-
terises the high dimensional data set. It finds an approximation to the tan-
gent space at each point using a neighbourhood and then aligns these tangent
spaces in a process of constructing the coordinate system for the non-linear
manifold. The computation speed is affected by the choice of size of neighbour-
hood due to the search cost for the nearest neighbours. There was an interac-
tion between the LTSA output and the perceptron algorithm used for finding
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the separating plane. The perceptron algorithm took longer to converge in
cases where the LTSA was applied with small neighbourhoods, requiring a
trade off to get improved performance.

Strengths and Limitations of the PCA and LTSA Methods

Currently there is no general method available to distinguish the nature of
data as being linear or non linear [20]. The high dimensional space and low
number of samples found in microarray data sets makes it appear highly likely
to be linearly separable data and hides away any non linear structures. This is
why the study of both linear and non linear dimensionality reduction methods
is interesting.

PCA is a well established method that has been used over many years and
frequently on Microarray data. According to [20] the PCA is fast to compute
and easy to implement. Its complexity of the PCA algorithm is O(ns × n)[2]
where ns represents the sample size, and n the original dimensionality. This
method is guaranteed to find a lower dimensional representation of the data on
a linear subspace if such representation exists. However, as mention in [1] the
PCA method can only identify gross variablity as opposed to distinguishing
among and within groups variability.

In [20], the LTSA method has been used to reduce the dimensionality
of microarray data with good results and it outperformed the linear PCA
method in some aspects. The LTSA is a fairly recent method that reduces the
high dimensionality on data sets by using tangent space produced by fitting
an affine subspace in the proximity of each data sample. The LTSA algorithm
is using a k-nearest neighbours search that can be computational expensive
for large k and large input matrices. A small neighbourhood can result in
less accurate dimensionality reduction. Also, the computation of the smallest
eigenvectors of the alignment matrix used by the algorithm, is computationally
expensive. Therefore, the PCA is more computationally efficient than the
LTSA. Nevertheless, the non linear structures intrinsic in the data can not be
efficiently exploited by using the linear PCA method.

13.2.3 Linear Separability

Preliminaries

The following standard notions are used: Let p1,p2 be the standard position
vectors representing two points P1 and P2 in IRd,

• The set {tp1 + (1− t)p2 | 0 ≤ t ≤ 1} is called the segment between p1,p2

and is denoted by [p1,p2].
• The dot product of two vectors u = (u1, ..., ud),v = (v1, ..., vd) is defined

as uTv = u1v1 + ... + udvd. Adj(u, r) = (u1, ..., ud, r) and by extension
Adj(S, r) = {Adj(x, r) | x ∈ S}.
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• P(w, t) stands for the hyperplane {x ∈ IRd | wTx + t = 0} of IRd. w is
the normal (i.e. is perpendicular), to the hyperplane IP . The threshold t
is proportional to the distance from the origin to IP . IP will stand for the
set of all hyperplanes of IRd.

Two sub-sets X and Y of IRd are said to be linearly separable (LS) if there
exists a hyperplane P of IRd such that the elements of X and those of Y lie
on opposite sides of it. Figure (13.1) shows an example of both a LS (a) and
a NLS (b) set of points. Squares and circles denote the two classes.

(a) (b)

Fig. 13.1. LS (a) and a non-LS (b) set of points

Methods for testing linear separability

The methods for testing linear separability between two classes can be divided
into five groups:

• The methods based on solving systems of linear equations. These
methods include: the Fourier-Kuhn elimination algorithm, and the Simplex
algorithm. The original classification problem is represented as a set of
constrained linear equations. If the two classes are LS, the two algorithms
provide a solution to these equations.

• The methods based on computational geometry techniques. The
principal methods include the convex hull algorithm and the class of linear
separability method. If two classes are LS, the intersection of the convex
hulls of the set of points that represent the two classes is empty. The class
of linear separability method consists in characterising the set of points P
of IRd by which it passes a hyperplane that linearly separates two sets of
points X and Y .
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• The methods based on neural networks. The perceptron neural net-
work is one of most commonly used methods for testing linear separabil-
ity. If the two classes are LS, the perceptron algorithm is guaranteed to
converge, after a finite number of steps, and will find a hyperplane that
separates them.

• The methods based on quadratic programming. These methods can
find a hyperplane that linearly separates two classes by solving a quadratic
optimisation problem. This is the case for the Support Vector Machines.

• The Fisher Linear Discriminant method. This method tries to find a
linear combination of input variables, w×x, which maximises the average
separation of the projections of the points belonging to the two classes C1

and C2 while minimising the within class variance of the projections of
those points.

These methods are described in detail in [4]. Several heuristic methods,
to reduce the calculation time while testing for linear separability, are pre-
sented in [3]. Table 13.1 describes the perceptron algorithm which is one of
the most commonly used algorithms for testing linear separability. A faster
more efficient algorithm for testing linear separability on relatively small data
sets is the Simplex. However, due to the high dimensionality of the microarray
data sets, the use of the Simplex algorithm becomes impractical. This is why
the selected method for testing linear separability, used for this work, is the
Perceptron algorithm.

Table 13.1. The Perceptron Learning algorithm.

PERCEPTRON(S,w)
– data: a set of vectors S constructed from the classes X and Y we wish to
distinguish
– result: a weight vector w which separates the two classes if they are LS
w0 := x0; (x0 ∈ IRd+1)
k := 0;
while (∃xk ∈ S) such that (wT

k xk ≤ 0) do
Begin

wk+1 := wk + xk;
k := k + 1;

End

The problem of finding a hyperplane P(w, t) which separates sets X and
Y in IRd [ i.e. finding w, t where wTx + t > 0 and wTy + t < 0 for all
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x ∈ X,y ∈ Y ] is equivalent to finding w1 ∈ IRd+1 for which (wT
1 s > 0 ∀s ∈ S

where S = Adj(X,−1)∪−Adj(Y,−1). [Givenw1 which solves the “S problem”
in IRd+1, the separability hyperplane in IRd is P(w, t) wherew1 = Adj(w,−t).
It can be seen that wTx + t > 0 and −wTy − t > 0 ⇒ wTy + t < 0]. The
presented perceptron algorithm is implemented in IRd+1 solving the problem
of S. The solution to the original problem for X and Y is then obtained.

13.3 Comparison Procedure

The comparison performed in this study was realised using microarray data
sets together with their given classifications. These sets were split up into
training and testing data sets, 60% for training and 40% for testing. For the
classification model a neural network was first developed with the training set
and then tested with the testing set. This procedure was also done with two
dimensionality reduction methods before the data set was split and the clas-
sification model was used. The dimensions of the data sets were reduced by
using principal component analysis (PCA) and the local tangent space align-
ment (LTSA) manifolds introduced in section two. The level of performance
of the dimensionality reduction methods was measured in terms of the level of
generalisation obtained and the time to compute needed by the classification
models on previously unseen data sets. The system used for this comparison
was a modern standard PC with Matlab installed. All computation and im-
plementation of algorithms was realised in Matlab using standard toolboxes
as well as the toolbox dimreduc - a toolbox for dimension reduction methods
[10] . The following section will explain the complete comparison procedure
in more detail.

13.3.1 Data Sets

Microarray data set D1 was initially used to identify patterns of breast cancer
gene expressions that could be used to predict the patients disease progression.
It is a collection of 17816 gene expressions with a sample size of only 286. Three
ab initio sample classifications are available with the data set:

• Group non-aggressive (A) vs aggressive (B) breast cancer
• ER estrogen-receptor positive (ER+) vs negative (ER-) tumours
• Type lumA, lumB, normal, errb2, basal and unclassified breast cancer

types

The table 13.2 gives an overview of the classes, the number of members of
each class as well as the number of members of other classes. As a regular per-
ceptron was used in this work to classify the sets, only one class versus the rest
of the classes could be handled at one time. Therefore the type classification
was done by training and testing each of the six classes separately.
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The other data set used for the comparison task is the data set D2, iden-
tified in section 2. The data set has 3036 gene expressions with a sample size
of only 40. It was originally analyzed to gather knowledge on bladder cancer.
The available classification used in this work is the clinical categorisation of
the tumour into three classes.

• Type T1, T2+ and Ta tumour types

Table 13.2. DNA Microarray Data Set D1 Classes

Data Set Classification Classes Samples per class Rest

D1 Group non-aggressive (A) 193 93
aggressive (B) 93 193

Estrogen-Receptor positive (ER+) 209 77
negative (ER-) 77 209

Cancer type lumA 95 191
lumB 25 261
normal 35 251
errb2 34 252
basal 55 231
unclassified 42 244

D2 Tumour type T1 11 29
T2+ 9 31
Ta 20 20

Cross Validation

In this study the technique of cross validation was applied to split the data
into training and testing data sets. In detail, ten equally sized classification
data sets were made, sixty percent of the samples were used for training
the neural networks and the remaining forty percent were used for testing
purposes. The ten sets were made out of the original data set by moving
a window 10 percent for each new set. The resulting ten sets each include
all data from the original set but with the training and testing sets varying.
Thus, for each of the two dimensionality reduction methods, ten different
neural networks were developed and tested using different combinations of
test sets that were picked up from the ten similar sample sets. Without this
method the single test result could be interpreted in a wrong way due to e.g.
an uneven distribution of samples in the set. If the method of cross validation
is applied, one can use statistical methods of the multiple results to provide
a more general interpretation of the results.
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Sample Distribution

The microarray data set D2 was originally sorted with respect to their mem-
bership to the classes. Simply splitting up the data set into training and testing
sets would result in sets missing a complete class or containing samples of only
a single class. In order to solve this problem the data was randomised into
sets with the constraint that at least three members of any class were present
in each train and test data set.

13.3.2 Dimensionality Reduction

In general, high dimensional data, especially combined with a low sample size,
can make further analysis with the raw data computational expensive and
difficult. For comparison purposes in this work, two dimensionality methods
were chosen, the principal component analysis and the local tangent space
alignment. These two methods represent a well known linear approach and a
nonlinear manifold learning approach.

Principal Component Analysis (PCA)

PCA is a method well known and frequently used for dimensionality reduction.
It projects the high dimensional data onto a new coordinate system with fewer
dimensions. The highest amount of the variance of the original data is taken
care of by the first coordinate or principal component, the second highest
amount by the second principal component and so on. The matlab function
princomp was used for this study. Due to the very high dimensionality, the
flag econ had to be used when executing the princomp function. This flag
restricts the computation and output to only include the eigenvalues of the
covariance matrix of the input data that are not necessarily zero. Without
this flag set, the returned principal component coefficients matrix itself would
have taken 2.4 GB of RAM, exceeding the memory available to Matlab. In
order to compare the dimensionality reduction methods the execution time
for the princomp function was measured and noted. After the dimensionality
reduction took place, the chosen number of dimensions to be used for further
computation correspond to 80 percent of the total variance of the components,
the eigenvalues of the covariance matrix. For the data set D1, 80 percent
correspond to 150 dimensions. For the data set D2, 80 percent correspond to
19 dimensions. The preprocessed data returned by princomp was then split
into the training and test sets that were subsequently used to train and test
the perceptron.

Local Tangent Space Alignment (LTSA)

The LTSA technique used in this work is a nonlinear manifold learning
method. The algorithm is part of the toolbox dimreduc available for Matlab.
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Using this implementation, two parameters need to be specified next to the
input matrix: the dimensionality of the output matrix as well as the number
of nearest neighbours to take into account. The correct choice of parameters
is important to achieve a good result within a reasonable time frame.

A careful choice of the number of output dimensions is important too.
The parameters used for the data sets and classifications are listed in table
13.3. Due to the huge size of the D1 data set, the parameters for it were
chosen by hand using trial and error. The parameters for the D2 data set
on the other hand were searched for by a script checking a large number of
sensible parameter combinations. In the end the best solution was chosen. As
part of the comparison process, the time needed for the LTSA to execute was
measured and noted. Thereafter the resulting data was split up into training
and testing data sets for the perceptron.

Table 13.3. LTSA parameters used

Data set Classification Dimensions Neighbours
Group 114 133

D1 Estrogen - Receptor 80 99
Cancer type 90 131

D2 Tumor type 18 31

13.3.3 Perceptron Models

The classification model is using a simple feedforward artificial neural net-
work, a perceptron. It is capable of solving any linear separable classification
problem in a limited time frame. The perceptron takes the two classes from the
training data set and develops the network weights and bias accordingly. The
iteration limit for the implemented perceptron was set to 10,000. The time
the network needed to calculate the weights was measured and noted. Next,
the network was tested using the testing data set. The level of generalisation,
the percentage of successful classifications by the sum of all classifications,
was computed and noted as well.

This procedure was used to compare the generalisation and the time
needed to compute the data of the original high dimensional microarray data
and the data sets reduced in dimensionality with the PCA and the LTSA
methods beforehand. This process is repeated for all of the ten cross valida-
tion data sets, for all classes of all classifications, and the two data sets.

13.4 Results

This section presents results on the comparison of the convergence time and
the level of generalisation obtained with the classification models created using
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raw and dimensionality reduced microarray data sets. Since both in high and
low dimensions the data sets are linearly separable, a single layer Perceptron
neural network was used to create the classification models. The technique
of cross validation was applied to split the microarray data sets into training
and testing data sets. Table 13.4 shows the times needed for each manifold
method to reduce the dimensionality of the data sets. As seen before, the PCA
method produces more dimensions than the LTSA. However, the convergence
time of the PCA method is less than 10% of that of the LTSA one. The PCA
convergence times are similar for each data set. The LTSA method shows
convergence time differences due to the choice of different dimensions and
nearest neighbours taken into account (see table 13.3).

Table 13.4. Dimensionality reduction time taken by each manifold method (sec-
onds)

Data Set Class PCA LTSA
Type 9.96 165.78

D1 Group 10.16 169.80
ER+/- 9.86 138.90

D2 Type 0.109 0.697

Table 13.5 shows the average convergence time (across ten cross validation
data sets), required to train the Perceptron neural networks using raw and
PCA and LTSA preprocessed microarray data sets. It can be clearly seen that
both PCA and LTSA give a dramatic improvement in the construction of the
Perceptron classification neural networks for the D1 data set with mean differ-
ences ranging from 4.8 up to 45 times faster. This is expected as the original
number of dimensions was dramatically cut down using the two dimension-
ality reduction methods. Overall, the average smaller convergence times were
obtained with the PCA preprocessed data sets. For the D2 data sets, this
difference is not as conclusive with convergence times ranging from 0.15 to 2
times faster. The D2 data set has only 24 training samples compared to 172
for the D1 data set. This could lead, depending on the distribution of the
samples in the space, to more cycles of the perceptron algorithm for the D1
data set compared to the D2 one.

Although the times of convergence obtained with the perceptron neural
network using the PCA and the LTSA dimensionality reduced data sets are
not as clear in difference, the time to reduce the dimensionality using these two
methods is large, with the PCA being, on average, 15 times faster for the D1
data set, and 7 times faster for the D2 data set as seen in table 13.4. The LTSA
reduces the dimensions of the original data sets to less than the PCA method.
This is due to the choice of dimensions and nearest neighbour parameters for
the LTSA method as introduced previously in table 13.3. Better results with
the perceptron neural network were obtained by fine tuning these parameters.
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For the data set D1 it can be seen that it is more time efficient to reduce the
dimensionality with a PCA beforehand training the perceptron. The overall
time to reduce the dimensions with the PCA and train the perceptron is less
than training the perceptron on the original data set. This is due to the many
fewer dimensions the perceptron needs to take into account when finding the
hyperplane which linearly separates the different classes. For the data set D1,
the dimensions left, after applying the PCA, are less than one percent of the
original data set.

The LTSA dimensionality reduction is more time consuming than the PCA
method. However, when classifying multiple classes of the D1 data set, apply-
ing the LTSA dimension reduction method, prior to training the perceptron,
is more time efficient as well.

Because of the smaller dimensionality of the D2 data set, the results, in
terms of time, are not as conclusive as the ones obtained with the D1 data
set.

Table 13.5. Results obtained in terms of time needed to train (convergence time)
the Perceptron neural network. All values in seconds

No Dim. Reduction PCA LTSA
Data set Min Mean Max Mode Min Mean Max Mode Min Mean Max Mode

D1 - Type:
Class 1 vs Rest 12.43 18.15 29.81 12.43 0.37 0.46 0.55 0.37 2.69 3.78 4.44 2.69
Class 2 vs Rest 71.83 100.15 148.82 71.83 1.23 2.30 2.86 1.23 0.53 0.97 1.69 0.53
Class 3 vs Rest 62.69 85.03 122.01 62.69 1.29 2.66 4.32 1.29 1.21 3.04 4.05 1.21
Class 4 vs Rest 77.87 86.19 97.47 77.87 1.26 1.89 2.77 1.26 0.82 1.38 2.28 0.82
Class 5 vs Rest 10.94 16.14 24.70 10.94 0.35 0.43 0.53 0.35 0.65 0.93 1.30 0.65

D1 - ER+/-:
Class 1 vs Class 2 23.07 32.48 45.26 23.07 0.68 0.89 1.14 0.68 3.29 16.28 32.71 3.29

D1 - Group:
Class 1 vs Class 2 58.66 69.14 87.39 58.66 1.38 1.97 2.91 1.38 3.10 10.19 17.90 3.10

D2 - Type:
Class 1 vs Rest 0.035 0.055 0.065 0.035 0.019 0.028 0.033 0.019 0.016 0.028 0.043 0.016
Class 2 vs Rest 0.054 0.070 0.084 0.054 0.027 0.067 0.178 0.027 0.020 0.072 0.272 0.020
Class 3 vs Rest 0.056 0.068 0.081 0.056 0.066 0.170 0.492 0.066 0.222 0.406 0.651 0.222

Table 13.6 shows the level of generalisation, in terms of percentage of well
classified samples, obtained using the raw, and PCA/LTSA preprocessed data
sets. The generalisation results are presented in terms of the mean, mode (the
most frequently occurring value), min, and max obtained over the ten data
subsets generated with the cross validation approach.

This table shows that the classification results obtained with the dimen-
sionality reduction methods are generally better than the ones obtained with
the raw data sets. The results obtained with the PCA preprocessed data
sets are significantly higher than the ones obtained with the LTSA reduction
method. However, in terms of the number of dimensions, the LTSA perfor-
mance is better than the one obtained with the PCA method. For example,
in the data set D1, the variance of the PCA transformed data accomplishes
for 80%. In the case of the D1 cancer type classification, 90 dimensions corre-
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spond to 67% of the total variance with regards to the PCA method. Overall
slightly better results are obtained with the LTSA with respect to the raw
data sets.

The best generalisation results are obtained with classes 1 and 5 of the
D1 data set. These two classes have the highest number of samples compared
to the other classes (see table 13.2). Therefore, more data was available to
train the perceptron linear classification models. The level of generalisation
obtained with the LTSA preprocessed data on class 5 is surprisingly low in
comparison with both raw and PCA preprocessed data sets. This is the only
class where such large differences, in terms of the level of generalisation, can
be seen. This might suggest that the LTSA parameters have to be fine tuned
independently for each of the classes.

All methods obtained the same maximum level of generalisation for class 1
of the D2 data set. LTSA gives higher results for class 2. The raw data provides
the best maximum generalisation level for class 3. Overall, the PCA provides
better results closely followed by those obtained with the LTSA method.

Table 13.6. Results obtained with the Perceptron in terms of the level of general-
isation

No Dim. Reduction PCA LTSA
Class Min Mean Max Mode Min Mean Max Mode Min Mean Max Mode

D1 - Type:
Class 1 vs Rest 70.18 74.30 79.82 75.44 72.81 76.75 79.82 75.44 59.65 74.47 84.21 77.19
Class 2 vs Rest 7.89 16.93 24.56 18.42 26.32 34.04 37.72 36.84 9.65 16.40 28.95 9.65
Class 3 vs Rest 12.28 20.26 28.95 20.18 28.95 33.86 39.47 33.33 20.18 23.86 29.82 21.93
Class 4 vs Rest 15.79 21.93 28.07 19.30 32.46 38.07 43.86 34.21 16.67 23.33 30.70 24.56
Class 5 vs Rest 75.44 83.60 89.47 86.84 77.19 83.33 89.47 80.70 19.30 22.81 26.32 21.93

D1 - ER+/-:
Class 1 vs Class 2 58.77 65.00 73.68 66.67 59.65 68.25 79.82 71.05 43.86 52.72 60.53 43.86

D1 - Group:
Class 1 vs Class 2 42.11 48.86 56.14 43.86 49.12 54.91 60.53 53.51 45.61 53.77 63.16 54.39

D2 - Type:
Class 1 vs Rest 25.00 54.38 81.25 56.25 50.00 65.63 81.25 62.50 31.25 57.50 81.25 37.50
Class 2 vs Rest 18.75 32.50 56.25 25.00 31.25 44.38 56.25 37.50 18.75 40.00 62.50 37.50
Class 3 vs Rest 31.25 46.88 68.75 43.75 25.00 40.00 56.25 43.75 50.00 54.38 62.50 50.00

13.5 Conclusions

A comparison study of the performance of the linear principal component
analysis and the non linear local tangent space alignment principal manifold
methods was presented. Two microarray data sets were used in this study.
The first data set contained five, two and two classes. The second data set
contained three classes. Linear classification models were created using fully
dimensional and dimensionality reduced data sets. To measure the amount
of information lost with the two dimensionality reduction methods, the level
of performance of each of the methods was measured in terms of level of
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generalisation obtained by the classification models on previously unseen data
sets.

In terms of convergence time, the benefit offered by the dimensionality
reduction methods is clear. Using the PCA dimensionality reduction method,
prior to the development of the classification models, is over all faster than
developing the models with raw, fully dimensional, data. For the LTSA, the
time benefit is less significant. Nevertheless, for training multiple classification
models, the LTSA is also a time beneficial alternative. This was shown to be
the case for both microarray data sets.

In terms of generalisation, the linear classification models, built using both
PCA and LTSA dimensionality reduction methods, frequently outperform the
ones developed using raw data. The models developed by using the PCA
method, give more consistent results than the ones using the LTSA. How-
ever, for this microarray data sets, the LTSA method produces more compact
reduced data sets.

In conclusion, the results obtained with this study, do not allow to clearly
measure the amount of information lost by the dimensionality reduction meth-
ods. Nevertheless, the results obtained are interesting, demonstrating conclu-
sively that the level of generalisation was better when using dimensionality
reduction methods. The reason for this might be related to the level of noise
in the data. Most of the variance in the original 17816 dimensional data is
provided by only about 150 dimensions. Due to the the high number of ir-
relevant dimensions, the inherited linear separability of these data sets might
hide away non linear structures in the data.

Further studies could include the use of other manifold methods (linear
and non linear). The use of non linear methods for building the classification
methods might also be of interest since the current linear separability of the
original data might be related to the few samples in a large input space.
Data sets containing more samples will probably result in better classification
models.
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