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Summary. DNA microarrays provide such a huge amount of data that unsuper-
vised methods are required to reduce the dimension of the data set and to extract
meaningful biological information. This work shows that Independent Component
Analysis (ICA) is a promising approach for the analysis of genome-wide transcrip-
tomic data. The paper first presents an overview of the most popular algorithms
to perform ICA. These algorithms are then applied on a microarray breast-cancer
data set. Some issues about the application of ICA and the evaluation of biological
relevance of the results are discussed. This study indicates that ICA significantly
outperforms Principal Component Analysis (PCA).

12.1 Introduction

The transcriptome is the set of all mRNA molecules in a given cell. Unlike the
genome, which is roughly similar for all the cells of an organism, the transcrip-
tome may vary from one cell to another according to the biological functions
of that cell as well as to the external stimuli. The transcriptome reflects the
activity of all the genes within the cell. The quantity of a given mRNA is
determined by a complex interaction between cooperative and counteracting
biological processes. Understanding the intricate mechanism that induces the
mRNA expression is an important step in elucidating the relation between
the transcriptome of a cell and its phenotype. Microarray technology provides
a quantitative measure of the concentration of mRNA molecules in a cell for
the whole transcriptome in a systematic way. This measure is called the ex-
pression level of a gene. We refer to [1] and references therein for more details
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about microarrays.

Microarray technology provides a huge amount of data, typically related
to several thousand genes over a few hundred experiments, which correspond,
e.g., to different patients, tissues or environmental conditions. Gene expres-
sion data sets are so large that a direct interpretation of them is usually
infeasible. Unsupervised methods are required to reduce the dimension of the
data set and to provide some biological insight in an automatic way. A typi-
cal approach is Principal Component Analysis (PCA) that generates a linear
representation of the data in terms of components that are uncorrelated [2].
This linear decorrelation can reveal interesting biological information. Never-
theless, mapping the data to independent biological processes should provide
a more realistic model.

The present paper proposes the use of ICA to help the biological inter-
pretation of a gene expression data set that is related to breast cancer [3].
The ICA model is well-suited for the analysis of data sets that enclose an in-
dependence assumption within the data generation process. Intuitively, gene
expression results from several biological processes (here we call them “expres-
sion modes”) that take place independently. Each of these biological processes
involves various biological functions and rely on the activation or inhibition
of a subset of genes. Several studies have already shown the value of ICA
in the gene expression context, notably Liebermeister [4], who was the first
to apply ICA to gene expression data. Important results on some bacterial
and human databases are also detailed in [5, 6, 7]. These studies identified
independent components and used the Gene Ontology framework to evaluate
their biological significance. The present paper extends the results from these
previous studies by evaluating ICA in the framework of biological and cancer-
related pathways, which constitutes the more relevant validation framework
since genes with different GO-terms may be involved in the same pathway or
biological process. Specically, it tests the ICA-model for gene expression by
showing that ICA significantly outperforms a non-ICA based method (PCA).
Furthermore, it discusses some issues about the way to apply ICA and to eval-
uate the results. These issues are disregarded in most of the previous studies.

This paper starts with a review of some standard algorithms to perform
ICA. The link between the ICA approach and the theory of geometric opti-
mization is first outlined (Section 2). The three fundamental components of
each ICA algorithm are then discussed, namely the contrast function (Section
3), the matrix manifold (Section 4) and the optimization process (Section 5).
The last part of the paper (Section 6) illustrates the application of ICA to
the analysis of gene expression data.
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12.2 ICA as a Geometric Optimization Problem

The ICA approach was originally dedicated to the blind source separation
problem, which recovers independent source signals from linear mixtures of
them. As in the original paper of Comon [8], a linear instantaneous mixture
model will be considered here,

X = AS , (12.1)

where X , A and S are respectively matrices in R
n×N , R

n×p and R
p×N with p

less or equal than n. The rows of S are assumed to stand for samples of inde-
pendent random variables. Thus, ICA provides a linear representation of the
data X in terms of components S that are statistically independent. Random
variables are independent if the value of any one variable does not carry any
information on the value of any other variable. By definition, p statistically
independent random variables si have a joint probability distribution that
equals the product of their marginal distributions, i.e.,

p(s1, . . . , sp) = p(s1) . . . p(sp) .

Each ICA algorithm is based on the inverse of the mixing model (12.1),
namely

Z = WTX ,

where Z and W are respectively matrices of R
p×N and R

n×p. The rows of Z
should represent random variables that are statistically independent. Unfor-
tunately, the number of degrees of freedom available though the matrix W is
usually insufficient for an exact independence. Thus, the rows of Z are just
expected to represent random variables that are as independent as possible,
such that ICA can be treated as an optimization problem.

Given an n×N data matrix X , an ICA algorithm aims at computing an
optimum of a contrast function

γ : R
n×p → R :W �→ γ(W ) ,

that estimates the statistical independence of the p random variables whose
samples are given in the p rows of the matrix Z = WTX .

It is important to note that the integer n is fixed by the chosen dataset
X , while the integer p defines the number of components the user wants to
compute. This number is, in most applications, smaller than n. Some contrast
functions are able to deal with rectangular demixing matrices. Nevertheless,
most of them are defined for square matrices only, such that the observations
have to be preprocessed by means of prewhitening. Prewhitening is equiv-
alent to Principal Component Analysis (PCA), which performs a Singular
Value Decomposition of the matrix of the observations. The reduction of the
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dimension is achieved by retaining the dominant p-dimensional subspace, that
is, the subspace related to the p largest singular values. The matrix optimiza-
tion is then applied on the prewhitened observations and identifies a square
matrix of dimension p. Hence, the demixing matrix results from the product
of two matrices. The first belongs to R

n×p and is identified by prewhitening,
while the second belongs to R

p×p and results from the optimization of the
contrast function. Most ICA algorithms present these two successive steps.
They are denoted prewhitening-based.

Another important issue is to deal with the inherent symmetries of con-
trast functions. Symmetries are present because the measure of dependence
between random variables must not be altered by scaling or by permutation
of these variables. Optimizing a function with symmetries entails difficulties
of theoretical (convergence analysis) and practical nature unless some con-
straints are introduced.

In the case of prewhitening-based ICA, where the whitenend matrix X
satisfies XXT = I, it is common practice to restrict the matrix W to be
orthonormal, i.e., WTW = I. This implies that the sample covariance matrix
ZZT is the identity matrix. Two options are conceivable to deal with the
orthogonality constraint on W . First is to perform constrained optimization
over a Euclidean space, i.e.,

min
W∈Rp×p

γ(W ) such that WTW = I .

This paper favors the second alternative which incorporates the constraints
directly into the search space and performs unconstrained optimization over
a nonlinear matrix manifold, i.e.,

min
W∈Op

γ(W ) with Op = {W ∈ R
p×p|WTW = I} . (12.2)

Most classical unconstrained optimization methods - such as gradient-descent,
Newton, trust-region and conjugate gradient methods - have been generalized
to the optimization over matrix manifolds, in particular over the orthogonal
group Op. Developing efficient matrix algorithms that perform optimization
on a matrix manifold is a topic of active research (see the monograph [9] and
references therein).

12.3 Contrast Functions

This section discusses the function γ of the general problem statement (12.2).
This function measures the statistical independence of random variables. It
presents thus a global minimum at the solution of the ICA problem. Many
contrast functions have been proposed in the literature, and we review some
of them here.



278 M. Journée, A. E. Teschendorff, P.-A. Absil at al.

12.3.1 Mutual Information [8, 10]

Mutual information is a central notion of information theory [11, 12] that char-
acterizes statistical independence. The mutual information I(Z) of the mul-
tivariate random variable Z = (z1 . . . , zp) is defined as the Kullback-Leibler
divergence between the joint distribution and the product of the marginal
distributions,

I(Z) =
∫
p(z1, . . . , zp) log

p(z1, . . . , zp)
p(z1) . . . p(zp)

dz1 . . . dzp .

The mutual information presents all the required properties for a contrast
function: it is non negative and equals zero if and only if the variables Z are
statistically independent. Hence, its global minimum corresponds to the solu-
tion of the ICA problem.

Several approaches to compute efficiently an approximation to this quan-
tity can be found in the literature. These approaches expand the mutual in-
formation in a sum of integrals that are expected to be more easily evaluated,
namely the differential entropy and the negentropy. The differential entropy
S(z) and the negentropy J(z) of a random variable z are respectively defined
by

S(z) =
∫
p(z) log(p(z)) dz, and J(z) = S(g)− S(z) ,

where g stands for a gaussian variable with same mean and variance as z.
The mutual information can be expressed in terms of differential entropies as
follows,

I(Z) =
p∑

i=1

S(zi)− S(z1, . . . , zp) .

A similar expansion in terms of negentropies in given by

I(Z) = J(z1, . . . , zp)−
p∑

i=1

J(zi) +
1
2

log
∏
CZ

ii

|CZ | ,

where CZ denotes the covariance matrix of Z,
∏
CZ

ii the product of its diag-
onal elements and | · | the determinant.

A contrast defined over the space of the demixing matrices is obtained once
the demixing model Z = WTX is introduced within these two expansions,
i.e,

γ(W ) =
p∑

i=1

S(eTi W
TX)− log(|W |)− S(x1, . . . , xp) , (12.3)

and
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γ(W ) = J(x1, . . . , xp)−
p∑

i=1

J(eTi W
TX) +

1
2

log
∏
CW T X

ii

|CW T X | , (12.4)

where ei is the ith basis vector. More details about the derivation of these
expressions can be found in [10] for (12.3) and in [8] for (12.4). It should be
noted that, once the observations are prewhitened and the demixing matrix

is restricted to be orthogonal, both terms log(|W |) and 1
2 log

�
CWT X

ii

|CWT X | cancel.

At this point, statistical estimators are required to evaluate efficiently the
differential entropy as well as the negentropy for a one-dimensional variable.
Comon suggests using the Edgeworth expansion of a probability function in
order to estimate the negentropy [8]. A truncated expansion up to statistics
of fourth order leads to the following approximation,

J(z) ≈ 1
12
κ2

3 +
1
48
κ2

4 +
7
48
κ4

3 −
1
8
κ2

3κ4 ,

where κi denotes the cumulant of order i of the standardized one-dimensional
random variable z.

An efficient estimator of the differential entropy was derived by consid-
ering order statistics [10]. Given a one-dimensional variable z defined by its
samples, the order statistics of z is the set of samples {z1, . . . , zN} rearranged
in non-decreasing order, i.e., z1 ≤ . . . ≤ zN . The differential entropy of a
one-dimensional variable z defined by its order statistics {z1, . . . , zN} can be
estimated by a simple formula,

Ŝ(z) =
1

N −m
N−m∑
j=1

log
(
N + 1
m

(z(j+m) − z(j))
)
, (12.5)

where m is typically set to
√
N . This expression is derived from an estimator

originally due to Vasicek [13]. The contrast of the RADICAL algorithm [10]
is actually the function (12.3) where the differential entropies are evaluated
with the estimator (12.5),

γ(W ) =
p∑

i=1

Ŝ(eTi W
TX)− log(|W |)− S(x1, . . . , xp) . (12.6)

12.3.2 F-Correlation [14]

This contrast is based on a generalization of the Pearson correlation coefficient,
called the F -correlation. It is proven in [14] that two random variables z1 and
z2 are statistically independent if and only if the F -correlation ρF vanishes,
with ρF being defined by
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ρF = max
f1,f2∈F

corr(f1(z1)f2(z2)) ,

where corr(x, y) is the Pearson correlation coefficient between the random
variables x and y and F is a vector space of functions from R to R. A contrast
for the two-dimensional ICA problem is thus given by

γ(W ) = max
f1,f2∈F

corr(f1(wT
1 X)f2(wT

2 X)) , (12.7)

where wi is the i-th column of the matrix W . This quantity seems complex to
evaluate since it involves an optimization over a space of infinite dimension.
Nevertheless, the authors of [14] showed that, by means of kernel methods
[15, 16], this evaluation can be approximated by the solution of an eigen-
value problem of finite dimension. The F -correlation ρF is estimated by the
largest eigenvalue of a generalized eigenvalue problem of dimension 2N where
N stands for the number of samples.

The contrast function (12.7) allows the identification of only two indepen-
dent components. The paper [14] proposes a generalization to higher dimen-
sions. The contrast remains the largest eigenvalue of a generalized eigenvalue
problem, but of dimension pN , with p being the number of components. This
contrast is the core of the KernelICA algorithm [14].

12.3.3 Non-Gaussianity [17]

Informally speaking, the central limit theorem states that the sum of indepen-
dent random variables converges (in distribution) to a Gaussian variable as
the number of terms tends to infinity. Thus, each linear combination of ran-
dom variables is expected to be more gaussian than the original ones, which
should be the most non-gaussian. A whole range of contrast functions is based
on measuring the gaussianity (or non-gaussianity) of a one-dimensional ran-
dom variable. The most intuitive expression for such a measure is given by

J(z) = (E[G(z)]− E[G(g)])2 , (12.8)

where E[·] is the expectation operator, G is a smooth function and g is a
gaussian variable with same mean and variance as z. A quadratic function
G enables to reveal features related to statistics up to the second order only,
whereas non-gaussianity involves higher order statistics. For this reason, G
should be non-quadratic. Some suggestions for the function G are given in
[17]. For the particular choice of G(z) = 1

4z
4, the distance to gaussianity

becomes the square of the kurtosis κ(z),

J(z) = κ(z)2 .

The kurtosis is a classical measure of non-gaussianity since it equals zero
for gaussian variables and has a large absolute value for non-gaussian ones.
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The link between non-gaussianity and statistical independence is rigourously
proven in the particular case of the kurtosis. A theorem in [18] states that the
kurtosis of the sum of two independent variables z1 and z2 presents a smaller
absolute value than the largest absolute value of the kurtosis among these
variables, i.e.,

|κ(z1 + z2)| ≤ max(|κ(z1)|, |κ(z2)|) .
A contrast function is easily obtained from these measures of gaussianity

by introducing the ICA model z = wTX in equation (12.8),

γ(w) = (E[G(wTX)]− E[G(g)])2 , (12.9)

where w is a vector of R
n. The maximization of this contrast results in the

FastICA algorithm [17], probably the most popular ICA algorithm. It is im-
portant to note that this contrast is one-unit based, i.e., it is defined for one
column of the demixing matrix W . The notion of statistical independence
becomes meaningful once the optimization is performed several times from
different initial conditions and identifies different sources z.

12.3.4 Joint Diagonalization of Cumulant Matrices [19]

Independent random variables are also characterized by the diagonality of
some statistically motivated matrices. A necessary condition for statistically
independent random variables is, for example, given by a diagonal covariance
matrix. However, identifying the transformation W that diagonalizes the co-
variance matrix of Z = WTX for some observations X will only identify
components that are uncorrelated but not independent.

In case of a zero-mean random variable, the covariance matrix can be
considered as a particular case of the concept of cumulant tensors. The co-
variance matrix is then simply the cumulant tensor of second order. We refer
to [20] for the definition and properties of these tensors. The essential issue
for the present review is that cumulant tensors related to statistically inde-
pendent variables are diagonal at any order. A particular matrix is derived
from the fourth order cumulant tensor that presents the desired property of
being diagonal in case of independent variables. If Q4

X denotes the fourth or-
der cumulant tensor of the p-variate random variable X , the cumulant matrix
QX(M) related to a matrix M is defined elementwise by

QX(M)|ij =
p∑

k,l=1

Q4
X |ijklMkl ,

where Q4
X |ijkl denotes the element at position (i, j, k, l) of the fourth order

cumulant tensor. The cumulant matrix can be efficiently evaluated without
the computation of the whole tensor Q4

X thanks to the following expression,
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QX(M) = E[(XTMX)XXT ]

− E[XXT ]tr(ME[XXT ])− E[XXT ](M +MT )E[XXT ],

where tr(·) denotes the trace. This expression is valid only if the variable X
has a zero mean.

An important property of the cumulant matrix is that the orthogonal
transform Z = WTX results in a similarity transform for Q(M), i.e.,

QZ(M) =WTQX(M)W ,

whatever the matrix M .

A set of matrices that are simultaneously diagonal can be constructed by
picking several matricesM . The maximal set of cumulant matrices is obtained
whenever the matricesM form an orthogonal basis for the linear space of p×p
symmetric matrices. The matrix W that diagonalizes simultaneously all the
cumulant matrices performs a projection of the observations X on random
variables Z that are statistically independent. However, it is usually impos-
sible to identify a joint diagonalizer W that diagonalizes exactly all these
matrices. This suggests defining ICA algorithms that optimize the joint diag-
onalization of them.

Several cost functions for this approximate joint diagonalization are con-
ceivable, but a frequently encountered one is the following,

γ(W ) =
∑

i

‖off(WTQX(Mi)W )‖2F , (12.10)

where ‖ · ‖F denotes the Frobenius norm and off(A) is a matrix with en-
tries identical to those of A except on the diagonal, which contains only zero-
valued elements. Optimizing (12.10) means that one minimizes the sum of the
squares of all non-diagonal elements of the cumulant matrices. This is con-
sistent with performing the best approximate joint diagonalization of these
matrices. Thanks to the diagonal property of the cumulant matrices in case
of independent variables, this cost function is at the same time a contrast for
ICA.

This contrast is used by the famous JADE algorithm [19]. We mention that
other type of matrices have been defined in the literature that are also diago-
nal in the case of independent random variables. The SOBI algorithm (Second
Order Based Identification), for example, performs ICA by the approximate
joint diagonalization of matrices that involve only second order statistics [21].
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12.4 Matrix Manifolds for ICA

Each contrast function considered in the previous section possesses two sym-
metries. First, since the statistical independence of random variables is not
affected by a scaling, the following equality holds,

γ(W ) = γ(WΛ) ,

whenever Λ is a diagonal matrix. Likewise, the permutation of random vari-
ables does not affect their statistical independence, i.e.,

γ(W ) = γ(WP ) ,

where P is a permutation matrix. Because of these symmetries, the global
minimum of the contrast is not a single point but a set of subspaces of R

p×p.
Optimizing cost functions that present continuous symmetries is a difficult
task. Therefore, constraints have to be added to restrict these subspaces to a
set of discrete points. In the present case, the scaling symmetry disappears if
each column of W is set to a fixed norm, for example to a unit-norm. This
constraint set defines the so-called oblique manifold [22],

OBp = {W ∈ GL(p) : diag(WTW ) = I} ,
where GL(p) is the set of all invertible p× p matrices. This manifold gets rid
of the continuous scaling symmetry. The permutation symmetry defines the
global optimum as a set of discrete points. This is suitable to most optimiza-
tion algorithms. Hence, the oblique manifold is the most general manifold to
perform ICA in an efficient way.

Usually, some further constraints are imposed. Prewhitening-based ICA
algorithms preprocess the data by means of Principal Component Analysis
(PCA). It is shown in [8] that this allows us to restrict the ICA optimization
to the orthogonal group,

Op = {W ∈ R
p×p|WTW = Ip} .

Furthermore, this manifold ensures a good conditioning of the optimization
algorithms.

As mentioned in the previous section, the FastICA contrast is defined for
one column of the demixing matrix W , while most of the other contrasts
are defined on a matrix space. In order to remove the scaling symmetry, the
optimization of that contrast is performed on the sphere,

Sn−1 = {w ∈ R
n|wTw = 1} .

Some implementations of the FastICA algorithm perform in parallel several
optimizations of the contrast (12.9) starting from different initial conditions
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[17]. In order to prevent convergence toward identical minima, the parallel
iterates are reorthogonalized at each iteration, so that the algorithm simulta-
neously identifies p independent columns of the demixing matrix. Since these
columns are orthogonal, the data must be preprocessed by PCA, but the
square constraint p = n disappears. These implementations are equivalent to
an optimization over the Stiefel manifold,

St(n, p) = {W ∈ R
n×p|WTW = Ip} .

12.5 Optimization Algorithms

12.5.1 Line-Search Algorithms

Many optimization algorithms on a Euclidean space are based on the following
update formula,

xk+1 = xk + tkηk . (12.11)

which consists to move from the current iterate xk in the search direction
ηk with a certain step size tk to identify the next iterate xk+1. The search
direction and the step size are chosen such that the cost function decreases
sufficiently at each iteration. The search direction is usually set to the opposite
of the gradient of the cost function γ at the current iterate, i.e.,

ηk = −gradγ(xk) .

The iterate is thus moving in the direction of steepest-descent. The step size
has then to be selected in order to induce a significant decrease of the cost
function. Iteration (12.11) is, however, valid only in case the iterates belong
to a Euclidean space.

On non-Euclidean manifolds, the update formula (12.11) is generalized to

Wk+1 = RWk
(tkηk) ,

where Wk and Wk+1 are two successive iterates on the manifold M, tk is a
scalar and ηk belongs to TWk

M, the tangent space to M at Wk. The retrac-
tion RW (η) is a mapping from the tangent plane to the manifold. More details
about this concept can be found in [9].

The search direction ηk is, as above, set to the opposite of the gradient of
the cost function γ at Wk,

ηk = −gradγ(Wk) .

In case of a manifold M embedded in a Euclidean space M̄, the gradient at
W ∈ M is simply computed as the orthogonal projection onto TWM of the
gradient in the embedding space, i.e.,
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gradγ(W ) = PW gradγ̄(W ) ,

where γ̄ denotes a smooth extension on M̄ of the cost function γ, i.e.,

γ̄(W ) = γ(W ), ∀W ∈ M .

We refer to [9] for more details about the orthogonal projector PW .

The gradient in the embedding Euclidean space is defined, as usual, from
the directional derivative,

〈gradγ̄(W ), ζ〉 = Dγ̄(W )[ζ] = lim
t→0

γ̄(W + tζ)− γ̄(W )
t

,

where 〈·, ·〉 denotes the scalar product.

To complete the description of the gradient-descent algorithm, the choice
of the step size tk has to be discussed. Several alternatives are conceivable.
First, an exact line-search identifies the minimum in the direction of search.
Such an optimization is usually tricky and requires a huge computational
effort. A good alternative is given by the Armijo step size tA. This step size
is defined by

tA = βmα ,

with the scalars α > 0, β ∈ (0, 1) and m being the first nonnegative integer
such that,

γ(W )− γ(RW (βmα)) ≥ −σ〈gradγ(W ), βmα〉W ,

where W is the current iterate on M, σ ∈ (0, 1), RW (η) is a retraction.

The KernelICA algorithm performs a gradient-descent optimization of the
F -correlation ρF on the orthogonal group Op [14]. The projection operator
and the retraction are respectively given by

PW (η) = (I −WWT )η and RW (η) = W exp(WT η) .

We refer to the original paper [14] for the details about the derivation of the
gradient.

A gradient-descent algorithm for the minimization over the orthogonal
group of the contrast function (12.6), originally dedicated to the RADICAL
algorithm [10], was recently proposed by us in [23].

Not only line-search methods generalize on nonlinear manifolds. We men-
tion, among others, trust-regions and conjugate gradient algorithms. More
details about these methods can be found in [9].
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12.5.2 FastICA

FastICA algorithms perform the optimization of the cost function γ in one
direction at the time,

max
w∈Rn

γ(w), such that wTw = 1 , (12.12)

where w is one column of the demixing matrix W . In this case, the orthonor-
mal constraint WTW = In reduces to a spherical constraint wTw = 1.

The FastICA approach then exploits standard constrained optimization
schemes. The solution of the problem (12.12) has to satisfy the Kuhn-Tucker
condition

∂γ(w)
∂w

− βw = 0 ,

where w ∈ R
n and β is a Lagrange multiplier. A Newton method to solve this

equation results in the iteration,

w+ = w −
(
∂2γ(w)
∂w2

− βI
)−1

·
(
∂γ(w)
∂w

− βw
)
, (12.13)

where w+ denotes the new iterate. The central point of the FastICA algorithm
is to approximate the matrix inversion of the Hessian by a simple scalar in-
version. It is shown in [17] that once the data is prewhitened, the Hessian of
the contrast is close to a scalar matrix,

∂2γ(w)
∂w2

≈ ∂2γ̃(z)
∂z2

I ,

with
γ̃ : R → R such that γ̃(wTX) = γ(w) ,

where X is the data. Hence, iteration (12.13) can be approximated by

w+ = w − 1
∂2γ̃(z)

∂z2 − β
·
(
∂γ(w)
∂w

− βw
)
. (12.14)

Multiplying both sides of (12.14) by (β − ∂2γ̃(z)
∂z2 ) results in,

w+ =
(
β − ∂

2γ̃(z)
∂z2

)
· w +

(
∂γ(w)
∂w

− βw
)

=
∂γ(w)
∂w

− ∂
2γ̃(z)
∂z2

w .

The new iterate is normalized at each iteration to a unit-norm to ensure the
stability of the algorithm,

w+ =
w+

‖w+‖ .

Hence, the FastICA algorithm consists in repeating the iteration
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w+ = ∂γ(w)

∂w − ∂2γ̃(z)
∂(z)2 w , with z = wTX,

w+ = w+

‖w+‖ .
(12.15)

More details about this algorithm can be found in [17].

The algorithm (12.15) identifies one column only of the demixing matrix
W . Nevertheless, it can be used to reconstruct several columns of that matrix
by means of a deflation technique. Assuming prewhitening of the data, the
demixing matrix is orthogonal. Suppose that p columns {w1, . . . , wp} of the
whole matrix W have been computed. The one-unit algorithm will converge
to a new vector wp+1 that is orthogonal to the already known directions if,
after each iteration, the projections of these directions are subtracted,

w+
p+1 = wp+1 −

p∑
j=1

wT
p+1wjwj .

The drawback of any deflation scheme is that small computational errors are
amplified by the computation of new vectors. Thus, the first computed direc-
tions should be accurately estimated. The last ones should be expected to be
tagged with larger errors.
An alternative is the symmetric orthogonalization, which performs all the
computations in parallel without favoring some directions. Each one-unit al-
gorithm is randomly initialized and the iterates are reorthogonalized after
each iteration according to,

W+ = (WWT )−
1
2W .

The matrix square root can be avoided by means of an iterative algorithm
that is described in [17].

12.5.3 Jacobi Rotations

Jacobi rotations provide a classical optimization method on the orthogonal
group [24, 8, 19]. The iterates are constrained on the orthogonal group by
successive multiplication by special orthogonal matrices Wk containing a sin-
gle parameter,
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Wk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 (i) (j)

. . .
(i) cos(α) · · · sin(α)

. . .
... 1

...
. . .

(j) − sin(α) · · · cos(α)
. . .

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Such matrices achieve a planar rotation of angle α in the subspace spanned
by the directions (i) and (j). At each iteration, a new subspace is selected
and the best rotation is computed to maximize the cost function. Hence, only
a one-dimensional optimization problem has to be solved at each iteration.
In case of the JADE algorithm [19], this task is performed analytically such
that an explicit expression of the optimal angle α is available. The RADICAL
algorithm on the other hand [10] performs the global minimization over that
parameter by exhaustive search on [0, 2π], or more precisely on [0, π

2 ] because
of the permutation symmetry of the contrast function.

12.6 Analysis of Gene Expression Data by ICA

12.6.1 Some Issues About the Application of ICA

To fix the notations, let us define the gene expression matrix X such that its
element (i, j) corresponds to the expression level of gene i in the jth experi-
ment. X is thus a n×N matrix, where n is the number of analyzed genes and
N is the number of experiments. Note that n is usually much larger than N .
The breast cancer database considered for the following analysis is related to
n = 17816 genes and N = 286 patients. The number n is typical for genome-
wide expression data while N = 286 is fairly large in comparison with most
other profiling studies in breast cancer.

Two modelling hypothesis underlie the application of ICA to gene expres-
sion data. First is that the expression level of a gene is a linear superposition
of biological processes, some of which try to express it, while others try to re-
press it. Specifically, ICA performs an approximate decomposition of the gene
expression matrix into two smaller matrices A and B that are respectively
n× p and p×N with p < N , i.e.,

X ≈ AB . (12.16)
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Figure 12.1 provides a clearer idea of this decomposition by representing ma-
trices with Hinton diagrams. In such diagrams, each value is displayed by a
square whose size is an image of the magnitude.

≈

X A B

G
en

es

Experiments

G
en

es

Experiments

Fig. 12.1. ICA decomposition of a gene expression database X

Each column of A is a vector in the gene space that is called an expression
mode. In the same spirit, each row of B is a vector in the samples space that
stands for the activity of the corresponding expression mode. This means that
the expression of one particular gene across a set of samples (e.g. different pa-
tients) is modelled as the superposition of a restricted number of expression
modes (typically about 10). The activity is the relative weight of an expres-
sion mode across the samples. The matrices A and B are selected to minimize
the error between X and AB in the least-square sense. The second hypoth-
esis imposes a notion of independence somewhere in the underlying biology.
Hence, the matrices A and B have to maximize a certain measure of statistical
independence.

Two alternatives are conceivable for the statistical independence assump-
tion within the model (12.16). Either the independence is set in sample space,
i.e., the rows of B stand for independent random variables (model I), or it is
set in gene space, i.e., the columns of A stand for independent random vari-
ables (model II). We next describe the underlying and distinct motivations
for the two models.

In the case of model I, the algorithm seeks independent components across
samples, which amounts to finding non-gaussian distributions for the rows of
B. It is expected that these non-gaussian projections separate samples into
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biologically relevant subtypes, although there is no requirement that this be
so. As such, the algorithm performs a kind of unsupervised projection pursuit.

In contrast model II seeks independent components across genes. There
is a strong biological motivation for this model, since it is most natural to
assume that the measured gene expression levels represent the net effect of
many independent biological processes, which may or may not have different
activity levels across samples. Furthermore, it is natural to assume that most
genes in an expression mode do not play an active role in it, and that it is
only a small percentage of genes which are relevant to any given expression
mode. This is tantamount to assuming that the distribution of weights in the
columns of A are supergaussian (leptokurtic), which fits in well with the ICA
model II.

An issue of importance deals with the estimation of p, the number of
independent components that underlie the gene expression data set. Some
approaches compute the probability of observing the data X if the underlying
model contains p components. This enables a rough estimation of the number
of independent components. The Bayesian Information Criterion (BIC) in a
maximum likelihood framework [25] or using the evidence bound in a varia-
tional Bayesian approach [26] are examples of such methods. In the present
study, we choose a fixed number of components for all algorithms. The correct
estimation of the number of components seems difficult because of the small
number N of samples available.

12.6.2 Evaluation of the Biological Relevance
of the Expression Modes

The general objective of PCA and ICA methods is to identify a small set of
variables, in terms of which the data can be more easily interpreted. Previ-
ous applications of ICA to gene expression data have evaluated the results
by means of the Gene Ontology (GO) framework. However, this does not
provide the best framework in which to validate these methods, since genes
with the same GO-annotation may not necessarily be part of the same bi-
ological pathway, and vice versa, genes that are part of the same pathway
may have quite distinct biological functions. Instead of GO, we propose to
use the framework of biological pathways, since it is the alteration pattern of
specific pathways that underlies the cancer-cell phenotype. The independent
components derived from ICA are expected to summarize the net effect of
independent altered transcriptional programs in cancer, and as such, should
map closer to aberrations in existing biological and cancer-related pathways.
While research in cancer biology is still at the stage of trying to elucidate all
the pathways that may be involved, several efforts are underway in building up
pathway databases. Some of these pathways have been curated from various
sources, while others were determined by specific experiments. Each pathway
in these databases is essentially a list of genes that are known to participate
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together when a certain biological function is required. In this work, we eval-
uate the PCA and ICA methods against their ability to correlate expression
modes with known pathways. To our knowledge, the PCA and ICA methods
were never evaluated in the explicit context of biological pathways.

Let us specify more concretely the concept of mapping between a pathway
and an expression mode. Each expression mode is a list of all the genes with an
associated weight. Since a pathway is just a list of some specific genes that are
known to present a linked activity, the expression modes require some post-
processing that consists in selecting the genes with major weights. To identify
the genes that are differentially activated, it is common to impose a threshold
of typically 2 or 3 standard deviations from the mean of the distribution of
the inferred weights. A gene list that looks like a pathway is thus obtained
by selecting the genes with an absolute weight that exceeds this threshold.
A stringent threshold at three standard deviations was chosen in the present
study to reveal the most relevant pathways captured by each of the expression
modes.

If the application of ICA/PCA in the gene expression context is biolog-
ically well-founded, each expression mode should be strongly tagged by a
specific pathway or by a superposition of some distinct pathways that are
highly dependent. A quantitative measure of the enrichment level of a given
expression mode i in a given pathway p has to be defined. Let ni denote
the number of genes in the expression mode and np denote the number of
genes in the pathway. Further, let di denote the number of genes selected in
the expression mode i and tip the number of genes from pathway p among
the selected di genes. Under the null-hypothesis, where the selected genes are
chosen randomly, the number tip follows a hypergeometric distribution [27].
Specifically, the probability distribution is

P (t) =
(
di

t

) t−1∏
j=0

np − j
ni − j

j=di−t−1∏
j=0

ni − np − j
ni − t− j

=

(
np

t

)(
ni − np

di − t
)

(
ni

di

) .

A probability can thus be computed as P (t > tip). This quantity enables
to estimate for each mode-pathway pair how the mode is enriched in terms
of genes from that particular pathway. This mode-pathway association will
be said significant if the P-value P (t > tip) is less than a certain threshold.
To evaluate the biological significance of the ICA approach, a large set of
pathways is selected and a pathway enrichment index (PEI) is defined as the
fraction of biological pathways that are found to be enriched in at least one
expression mode.
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12.6.3 Results Obtained on the Breast Cancer
Microarray Data Set

PCA as well as the four ICA methods detailed in the first sections of this pa-
per (i.e., JADE [19], RADICAL [10], KernelICA [14] and FastICA [17]) have
been applied to one of the largest breast cancer microarray data set available
[3]. The analysis was performed for both models I and II. The number of
components p was fixed to 10 in each study. Since the four ICA algorithms
are all prewhitening-based, the reduction of the dimensions of the problem
from N , the number of experiments, to p is simply done by Singular Value
Decomposition (SVD) during the prewhitening step. The ICA step computes
thereafter a square demixing matrix of dimensions p× p.

To evaluate the biological significance of the results, we compiled a list
of 536 pathways that are known to be directly or indirectly involved in can-
cer biology. 522 of these pathways come from the Molecular Signature Data-
base MSigDB [28]. The others are known oncogenic pathways recently derived
in [29] and cancer-signalling pathways coming from the resource NETPATH
(www.netpath.org). Figure 12.2 shows the pathway enrichment index (PEI)
based on these 536 pathways for the five methods for both models I and II.
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I

Model I

PCA JADE RADICAL KernelICA FastICA
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0.2

0.3
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E
I
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Fig. 12.2. PEI based on a set of 536 pathways for both models I and II

The same kind of analysis was performed on the reduced set of the onco-
genic pathways and the cancer-signalling pathways of NETPATH. Since these
14 pathways are frequently altered in cancer, many of them are expected to
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be captured by the expression modes. The PEI related to them are illustrated
on Figure 12.3.
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Fig. 12.3. PEI based on a set of 14 cancer-signalling and oncogenic pathways for
both models I and II

Both Figures 12.2 and 12.3 indicate that ICA achieves a more realistic
representation of the gene expression data than PCA. Furthermore, the PEI
values are clearly higher for model II than for model I. Hence, the ICA-model
with the independence assumption stated in the gene space seems to be the
most efficient approach to unveil the biological significance of the gene ex-
pression data. It is however difficult to discriminate between different ICA
algorithms.

The present work is part of a larger project that investigates the assets of
the ICA approach for the biological interpretation of microarray databases.
A deeper analysis of the ICA decomposition has been performed on a total
of nine microarray data sets related to breast cancer, gastric cancer and lym-
phoma. This large study also favors the use of ICA with model II for the
analysis of gene expression data. It highlights that ICA algorithms are able
to extract biological information not detected by PCA methods. More details
about this study can be found in [30].
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12.7 Conclusion

DNA microarrays enable new perspectives in biomedical research and espe-
cially in the understanding of some cellular mechanisms. This is of outmost
interest for the treatment of cancer diseases. This emerging technology pro-
vides such a huge amount of data that unsupervised algorithms are required
to automatically unveil the biological processes that have led to the observed
transcriptome. The present paper reviews some standard algorithms to per-
form Independent Component Analysis and emphases their common feature,
namely the optimization of a measure of statistical independence (the con-
trast) over a matrix manifold. The paper then illustrates the way to use these
algorithms in the context of gene expression data. Even if the application of
ICA to gene expression data sets is not a new idea, the evaluation of the re-
sults in the explicit context of biological pathways, has never been performed
before. The main conclusion of this study is the significant outperformance
of the ICA approach against Principal Component Analysis (PCA). The ICA
model, with the statistical independence assumption stated in the gene space,
seems to be a realistic representation of the mechanisms that determine the
gene expression levels. ICA shows significant promise for the analysis of DNA
microarray databases.
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