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Summary. Criteria for optimally discretizing measurable sets in Euclidean space is
a difficult and old problem which relates directly to the problem of good numerical
integration rules or finding points of low discrepancy. On the other hand, learning
meaningful descriptions of a finite number of given points in a measure space is
an exploding area of research with applications as diverse as dimension reduction,
data analysis, computer vision, critical infrastructure, complex networks, clustering,
imaging neural and sensor networks, wireless communications, financial marketing
and dynamic programming. The purpose of this paper is to show that a general
notion of extremal energy as defined and studied recently by Damelin, Hickernell and
Zeng on measurable sets X in Euclidean space, defines a diffusion metric on X which
is equivalent to a discrepancy on X and at the same time bounds the fill distance on
X for suitable measures with discrete support. The diffusion metric is used to learn
via normalized graph Laplacian dimension reduction and the discepancy is used to
discretize.
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11.1 Introduction

Criteria for optimally discretizing measurable sets in Euclidean space is a difficult
and old problem which relates directly to the problem of good numerical integration
rules or finding points of low discrepancy. Indeed, let us consider the problem of
uniformly distributing points on spheres, more generally, on compact sets in d ≥
1 dimensional Euclidean space. It is folklore, that such problems were discussed
already by Carl Friedrich Gauss in his famous Disquisitiones arithmaticae, although
it is most likely that similar problems appeared in mathematical writings even before
that time. For d ≥ 2, let Sd−1 denote the d-dimensional unit sphere in R

d, given by

x2
1 + · · · + x2

d = 1.



266 S.B. Damelin

For d = 2, the problem is reduced to uniformly distributing n ≥ 1 points on a circle,
and equidistant points provide an obvious answer. For d ≥ 3, the problem becomes
much more difficult; in fact, there are numerous criteria for uniformity, resulting in
different optimal configurations on the sphere. See [6, 3, 8, 9, 10, 12, 11] and the
references cited therein.

On the other hand, learning meaningful descriptions of a finite number of given
points in a measure space (set learning) is an exploding area of research with ap-
plications as diverse as dimension reduction, data analysis, computer vision, critical
infrastructure, complex networks, clustering, imaging neural and sensor networks,
wireless communications, financial marketing and dynamic programming. See [1]-
[25] and the references cited therein.

The purpose of this paper is to show that a general notion of extremal energy
as defined and studied recently by Damelin, Hickernell and Zeng on measurable
sets X in Euclidean space, defines a diffusion metric on X which is equivalent to a
discrepancy on X and at the same time bounds the fill distance on X for suitable
measures with discrete support. The diffusion metric is used to learn via normalized
graph Laplacian dimension reduction and the discepancy is used to discretize.

The remainder of this paper is structured as follows. In Sec. 2, we introduce
needed ideas of energy, discrepancy, integration and distance on measurable sets
in Euclidean space. In Sec. 3, we discuss set learning via normalized Laplacian
dimension reduction and diffusion distance. Finally, Sec. 4 is devoted to our main
result on bounds for discrepancy, diffusion and fill distance metrics.

11.2 Energy, Discrepancy, Distance
and Integration on Measurable Sets in Euclidean Space

Here and throughout, let X be a measurable subset of d ≥ 1 Euclidean space R
d and

let M(X ) denote the space of all (non zero), finite signed measures (distributions)
μ on X so that Q(μ) :=

�
X dμ exists and is finite. We will henceforth call Q(μ)

the total charge (mass) of μ. If the space M(X ) is endowed with a norm ‖ · ‖M(X),
then the discrepancy problem measures the difference between any two measures
in M(X ) in the norm || · ||M(X). Following, Damelin, Hickernell and Zeng, [6], let
K(x,y) be a positive definite function on X × X , where X ⊆ R

d. This means
that

�
X2 K(x,y) dμ(x) dμ(y) exists, is finite and is positive for μ ∈ M(X ). Also

we assume that K is symmetric, i.e., K(x,y) = K(y,x) for all x,y ∈ X and�
X K(x, y) dμ(y) exists. We call K an energy kernel, which means that the potential

field φK,µ induced by the charge distribution μ on X is

φK,µ(x) =

�
X
K(x,y) dμ(y), x ∈ X .

The energy of a charge distribution μ ∈ M(X ) is

EK(μ) =

�
X2
K(x,y) dμ(x) dμ(y) ,

and the energy of the charge distribution μ in the field

fK,µ(x) =

�
X
K(x,y) dμf (y)
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induced by the charge distribution μf is

EK(μ, μf ) =

�
X
f(x) dμ(x) =

�
X2

K(x,y) dμ(x) dμf (y) = 〈μ, μf 〉M .

Here we see that EK(μ, μf ) defines an inner product on the space M of signed
measures (charge distributions) for which the energy is finite. Sometimes we need
only assume that K is conditionally positive definite, meaning�

X2
K(x,y) dμ(x) dμ(y) > 0 ∀μ �= 0 with Q(μ) = 0 .

For conditionally positive definite kernels the energy EK(μ) may be negative. The
energy EK(μ, μf ) may be of either sign in general, even for positive definite kernels.
In what follows, |.| and |.|22 denotes the Euclidean and squared L2 norms in R

d

respectively.
We also call K the reproducing kernel of a Hilbert space, H(K) which is a Hilbert

space of functions f : X → R. This means that K(·,y) is the representer of the linear
functional that evaluates f ∈ H(K) at y:

f(y) = 〈K(·, y), f〉H(K) ∀f ∈ H(K), y ∈ X .

For any f, g ∈ H(K) with

f(x) =

�
X
K(x, y) dμf (y) and g(x) =

�
X
K(x,y) dμg(y)

it follows that their inner product is the energy of the two corresponding charge
distributions:

〈f, g〉H(K) = EK(μf , μg) =

�
X2

K(x,y) dμf (x) dμg(y) = 〈μf , μg〉M .

Note that a crucial feature of the function space H(K) is that it depends directly
on the kernel K.

In electrostatics, a positive charge μ placed upon a conductor (compact set) will
distribute itself so as to minimize its energy. Equilibrium will be reached when the
total energy is minimal amongst all possible possible charge distributions on X . One
would thus expect that the potential field

�
X K(x, y)dμ(Y) should be constant on

compact X most of the time for otherwise charge would flow from one point of X to
the next disturbing the equilibrium. The kernel K describes the interaction of the
electrons (positive charges) on the conductor X and a charge distribution which gives
a constant potential field is an example of an equilibrium measure. More precisely,
we have, see [6]:

Theorem 1. Let K be an energy kernel. Then

EK(μ) =

�
X2

K(x, y) dμ(x) dμ(y) ≥ [Q(μ)]2

CK(X )
, μ ∈ M(X )

for a constant CK(X ) depending only on X and K (called the capacity of X ) and
with equality holding for any equilibrium charge distribution or equilibrium measure,
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μe,K , defined as one that induces a constant field, 1

φK,µe,K (x) =

�
X
K(x,y) dμe,K(y) =

Q(μe,K)

CK(X )
∀x ∈ X .

Examples of energy kernels are:

(a) The weighted Riesz kernel on compact subsets of d ≥ 1 Euclidean space R
d

Ks,w(x,y) =

��
�
w(x,y)|x − y|−s, 0 < s < d, x,y ∈ X ,
−w(x,y) log |x − y|, s = 0, x,y ∈ X ,
w(x,y)(c− |x − y|−s), −1 ≤ s < 0, x,y ∈ X ,

where w : X × X → (0,∞) is chosen to be lower semi-continuous such that K
is an energy kernel. Such kernels (in the case w ≡ 1, s > 0), arise naturally
in describing the distributions of electrons on rectifiable manifolds such as the
sphere Sd. The case when w is active, comes about for example in problems in
computer modeling in which points are not necessarily uniformly distributed on
X . See [3, 8, 9, 10, 12]. The case when −1 ≤ s < 0 appears more frequently in
discrepancy theory. Here c is chosen so that the kernel is positive definite.

(b) If ρ(distK(x,y)) is conditionally negative semi-definite and ρ(0) = 0, then
K(x, y) = Ψ(ρ(distK(x, y))) is an energy kernel for any non constant, com-
pletely monotonic function Ψ on X where distK is a metric on X 2 which is
defined by way of (11.2) below. For example, typical examples of such kernels
are the heat kernel exp(−c|x − y|22), c > 0 on X and Hamming distance kernel
used in the construction of linear codes when well defined.

In what follows, we will assume that our kernels are finite. Good numerical
integration rules or good discretizations of X are obtained generally by optimizing
the placement of points and weights assigned to function values on X . In the classical
setting, the domain of integration is the interval [−1, 1] and as is known, the nodes
of the celebrated Gaussian quadrature formula, may be uniquely determined by the
following characteristic property of the nodes of an n ≥ 1 point Gauss quadrature:
The n nodes are the zeros of the unique monic polynomial of minimal mean-square
deviation on a real interval. In other words, the nodes are the zeros of the unique
solution of an extremal problem. In particular, recent work of Damelin and his
collaborators, see [3, 6, 8, 9] has shown that minimal energy points are good for
integrating functions with respect to equilibrium distributions. More precisely, in
numerical integration or cubature we approximate the integral of a function f ∈
H(K),

I(f ; μ̃) =

�
X
f(x) dμ̃(x) = EK(μ̃, μf ) = 〈μ̃, μf 〉M = 〈φµ̃, f〉H(K)

by the cubature rule

1 Note that the capacity depends of course on the dimension d but since d is fixed
when X is chosen, this dependence is suppressed for notational convenience. Also
the equilibrium measure depends on X and d but again it is supported on X by
definition so we suppress this notation again. We adopt the same convention for
other qualities as well throughout this paper which will be clear to the reader.
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I(f ; μ̂) =

�
X
f(x) dμ̂(x)

=
n�

i=1

cif(xi) = EK(μ̂, μf ) = 〈μ̂, μf 〉M = 〈φµ̂, f〉H(K) ,

where μ̂ is the charge distribution (signed measure) with support on the set of n
points, x1, . . . ,xn and charge ci at each point fi. Moreover,

φµ̃(x) =

�
X
K(x,y) dμ̃(y)

is the representer of the integration functional, and

φµ̂(x) =

�
X
K(x,y) dμ̂(y) =

n�
i=1

ciK(x,xi)

is the representer of the cubature rule functional. The error of this numerical ap-
proximation is�

X
f(x) dμ̃(x) −

n�
i=1

cif(xi) = I(f ; μ̃) − I(f ; μ̂) =

�
X
f(x) d[μ̃− μ̂](x)

= EK(μ̃− μ̂, μf ) = 〈μ̃− μ̂, μf 〉M = 〈φµ̃ − φµ̂, f〉H(K) .

The worst-case integration error is defined as the largest absolute value of this
error for integrands, f , with unit norm. By the Cauchy-Schwartz inequality we see
that this occurs when f is parallel to φµ̃−φµ̂, or equivalently, μf is parallel to μ̃− μ̂.
Thus, we have, see [6]:

Theorem 2.

DK(μ̃, μ̂) := min
‖f‖H(K)≤1

�����
�
X
f(x) dμ̃(x) −

n�
i=1

cif(xi)

����� (11.1)

=
	
EK(μ̃− μ̂) = ‖μ̃− μ̂‖M = ‖φµ̃ − φµ̂‖H(K)

=


�
X2

K(x, y) dμ̃(x) dμ̃(y) − 2

n�
i=1

ci

�
X
K(xi,y) dμ̃(y)

+

n�
i,k=1

cickK(xi,xk)

��



1/2

.

The quantity DK(μ̃, μ̂), defined by (1) which depends both on the placement and
magnitude of the point charges defining μ̂, is called the discrepancy. We see that it
is equivalent to the square root of an energy.

For a fixed choice of points Y = {x1, . . . ,xn}, the best cubature rule, i.e., the
choice of ci that minimizes the discrepancy, is obtained by choosing the potential
induced by μ̂ to match the potential induced by μ̃ on Y, i.e.,

φµ̂(xi) = φµ̃(xi), i = 1, · · · , n.
In this case
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DK(μ̃, μ̂) = {EK(μ̃) − EK(μ̂)}1/2 .

The best choice of locations and magnitude of the charges is to find the set Y
consisting of n points that has maximum energy under the given constraint.

It is now possible to define a distance on X by way of:

distK(x,y) :=
	
K(x,x) − 2K(x,y) +K(y,y), x,y ∈ X . (11.2)

In the next section, we will show that the distance defined in (11.2), for cer-
tain energy kernels, arises as a diffusion metric which may be used to learn X via
normalized graph Laplacian dimension reduction. Our main result in Sec. 4 shows
that this later distance is essentially equivalent to the discrpancy defined by way of
(11.2).

11.3 Set Learning via Normalized Laplacian
Dimension Reduction and Diffusion Distance

In this section, we show that the distance defined by way (2) arises in a natural
way in set learning. See [2]. In what follows, we will need to define a class of energy
kernels which we will call admissible in the sense below. Suppose first that K is
non-negative. Next, suppose that K is zonal in the sense that it depends only on
the Euclidean distance between two points x and y in X . For example, Damelin,
Levesley and Sun have shown in [8] that if X is a compact d dimensional homogenous
reflexive manifold with invariant group G, then if K is invariant under actions of
G, it is zonal. Suppose that X is a finite collection of points which are the vertices
of an oriented graph and if b(x,y) denotes the associated adjacency matrix, then
we assume that b(x,y) = 1 if there is an edge going from x to y and b(x,y) = 0
otherwise. Let μ̂ be a positive counting measure with support X . K is now scaled
in the following way. First, normalize K to be stochastic (to have sum 1 along its
rows) by setting

v2(x) =

�
X
K(x,y) dμ̂(y), x ∈ X

and defining

a(x,y) =
K(x,y)

v(x)v(y)
, x, y ∈ X .

Also define A : L2(μ̂) → L2(μ̂) by

Af(x) :=

�
X
a(x,y)f(y) dμ̂(y), x ∈ X .

Then A is bounded, has norm 1, and positive definite. As is well known, we may
also assume that A is symmetric. Assuming that A is compact, we may also write

a(x,y) =
�
j≥0

λjφj(x)φj(y), x,y ∈ X ,

where
Aφj(x) = λjφj(x), x ∈ X ,

where the λj are discrete, non-increasing and non-negative. Given m ≥ 1, following
[23], we define A(m)(x, y) to be the kernel for Am so that
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a(m)(x,y) =
�
j≥0

λm
j φj(x)φj(y), x,y ∈ X .

At the level of the points in X , a(m) denotes the probability for a Markov chain with
transition matrix a to reach y from x in m steps. The mapping

Ψ(x) := (ψ0(x), ψ1(x), ψ2(x), ...)T

maps X into an Euclidean space and each eigenfunction is a coordinate on this set.
Thus the mapping provides a dimension controlled representation of the points in
X in Euclidean space.

Define for each m on X , dista(m)(.) as given by (11.2). Then dista(m)(.) is a
diffusion distance which measures the rate of connectivity between points on the
data set X .

11.4 Main Result: Bounds for Discrepancy,
Diffusion and Fill Distance Metrics

Following is our main result.

Theorem 3. Let X be a finite measure space in R
d for some d ≥ 1 consisting of a

finite collection of n ≥ 1 points which we label as xi, i = 1, ..., n. Let μ̂ be a positive
counting measure with support X and let μ̃ be any measure in M(X ). Let m ≥ 1, let
K : X 2 → R be admissible and define dista(m)(.) as given by (2) and Sec. 3. Then
the following hold:

(a)

D2
a(m)(μ̃, μ̂) = −1

2

�
X2

dist2a(m)(x,y) dμ̃(x) dμ̃(y) (11.3)

+
1

n

n�
i=1

�
X

dist2a(m)(xi,x) dμ̃(x) − 1

2n2

n�
ij=1

dist2a(m)(xi,xj)

≤ fill2a(m)(μ̂) ,

where
fill2a(m)(μ̂) := sup

x∈X
min
y∈X

(dista(m)(y,x))

is the fill distance or mesh norm of X .
(b)

dist2a(m)(x,y) =
�
j≥0

λm
j (φj(x) − φj(y))2, x,y ∈ X .

Part (a) of the theorem gives an equivalence between discrepancy on X and
diffusion distance. Notice that μ̃ can be arbitrary in M(X ). Part (b) says that
discrepancy or diffusion metrics can be computed as weighted Euclidean distance in
the embedded space of Ψ , the weights being precisely the eigenvalues of the operator
A.

Proof Part (a) of the theorem follows from Theorem(2), the definition of A and
(11.2). Part (b) follows from (11.2). �
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